module Data.Curve.Edwards.Ed448
( module Data.Curve.Edwards
, Point(..)
, module Data.Curve.Edwards.Ed448
) where
import Protolude
import Data.Field.Galois
import GHC.Natural (Natural)
import Data.Curve.Edwards
data Ed448
type Fq = Prime Q
type Q = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff
type Fr = Prime R
type R = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3
instance Curve 'Edwards c Ed448 Fq Fr => ECurve c Ed448 Fq Fr where
a_ = const _a
{-# INLINABLE a_ #-}
d_ = const _d
{-# INLINABLE d_ #-}
h_ = const _h
{-# INLINABLE h_ #-}
q_ = const _q
{-# INLINABLE q_ #-}
r_ = const _r
{-# INLINABLE r_ #-}
type PA = EAPoint Ed448 Fq Fr
instance EACurve Ed448 Fq Fr where
gA_ = gA
{-# INLINABLE gA_ #-}
type PP = EPPoint Ed448 Fq Fr
instance EPCurve Ed448 Fq Fr where
gP_ = gP
{-# INLINABLE gP_ #-}
_a :: Fq
_a = 0x1
{-# INLINABLE _a #-}
_d :: Fq
_d = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756
{-# INLINABLE _d #-}
_h :: Natural
_h = 0x4
{-# INLINABLE _h #-}
_q :: Natural
_q = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff
{-# INLINABLE _q #-}
_r :: Natural
_r = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3
{-# INLINABLE _r #-}
_x :: Fq
_x = 0x297ea0ea2692ff1b4faff46098453a6a26adf733245f065c3c59d0709cecfa96147eaaf3932d94c63d96c170033f4ba0c7f0de840aed939f
{-# INLINABLE _x #-}
_y :: Fq
_y = 0x13
{-# INLINABLE _y #-}
gA :: PA
gA = A _x _y
{-# INLINABLE gA #-}
gP :: PP
gP = P _x _y 1
{-# INLINABLE gP #-}