exp-pairs-0.2.1.0: Linear programming over exponent pairs

Copyright (c) Andrew Lelechenko 2014-2020 GPL-3 andrew.lelechenko@gmail.com Safe Haskell2010

Math.ExpPairs.RatioInf

Description

Rational numbers extended with infinities.

Synopsis

# Documentation

data RatioInf t Source #

Extend Ratio t with $$\pm \infty$$ positive and negative infinities.

Constructors

 InfMinus $$- \infty$$ Finite !(Ratio t) Finite value InfPlus $$+ \infty$$
Instances
 Eq t => Eq (RatioInf t) Source # Instance detailsDefined in Math.ExpPairs.RatioInf Methods(==) :: RatioInf t -> RatioInf t -> Bool #(/=) :: RatioInf t -> RatioInf t -> Bool # Integral t => Fractional (RatioInf t) Source # Instance detailsDefined in Math.ExpPairs.RatioInf Methods(/) :: RatioInf t -> RatioInf t -> RatioInf t #recip :: RatioInf t -> RatioInf t # Integral t => Num (RatioInf t) Source # Instance detailsDefined in Math.ExpPairs.RatioInf Methods(+) :: RatioInf t -> RatioInf t -> RatioInf t #(-) :: RatioInf t -> RatioInf t -> RatioInf t #(*) :: RatioInf t -> RatioInf t -> RatioInf t #negate :: RatioInf t -> RatioInf t #abs :: RatioInf t -> RatioInf t #signum :: RatioInf t -> RatioInf t # Integral t => Ord (RatioInf t) Source # Instance detailsDefined in Math.ExpPairs.RatioInf Methodscompare :: RatioInf t -> RatioInf t -> Ordering #(<) :: RatioInf t -> RatioInf t -> Bool #(<=) :: RatioInf t -> RatioInf t -> Bool #(>) :: RatioInf t -> RatioInf t -> Bool #(>=) :: RatioInf t -> RatioInf t -> Bool #max :: RatioInf t -> RatioInf t -> RatioInf t #min :: RatioInf t -> RatioInf t -> RatioInf t # Integral t => Real (RatioInf t) Source # Instance detailsDefined in Math.ExpPairs.RatioInf Methods Show t => Show (RatioInf t) Source # Instance detailsDefined in Math.ExpPairs.RatioInf MethodsshowsPrec :: Int -> RatioInf t -> ShowS #show :: RatioInf t -> String #showList :: [RatioInf t] -> ShowS # (Integral t, Pretty t) => Pretty (RatioInf t) Source # Instance detailsDefined in Math.ExpPairs.RatioInf Methodspretty :: RatioInf t -> Doc ann #prettyList :: [RatioInf t] -> Doc ann #

Arbitrary-precision rational numbers with positive and negative infinities.