-- | -- Module : Data.Express.Match -- Copyright : (c) 2019 Rudy Matela -- License : 3-Clause BSD (see the file LICENSE) -- Maintainer : Rudy Matela <rudy@matela.com.br> -- -- Utilities for matching 'Expr's with 'var'iables. module Data.Express.Match ( match , matchWith , isInstanceOf , hasInstanceOf , isSubexprOf ) where import Data.Express.Basic import Data.Maybe import Data.Functor ((<$>)) import Control.Monad ((>=>)) -- | -- Given two expressions, returns a 'Just' list of matches -- of subexpressions of the first expressions -- to variables in the second expression. -- Returns 'Nothing' when there is no match. -- -- > > let zero = val (0::Int) -- > > let one = val (1::Int) -- > > let xx = var "x" (undefined :: Int) -- > > let yy = var "y" (undefined :: Int) -- > > let e1 -+- e2 = value "+" ((+)::Int->Int->Int) :$ e1 :$ e2 -- -- > > (zero -+- one) `match` (xx -+- yy) -- > Just [(y :: Int,1 :: Int),(x :: Int,0 :: Int)] -- -- > > (zero -+- (one -+- two)) `match` (xx -+- yy) -- > Just [(y :: Int,1 + 2 :: Int),(x :: Int,0 :: Int)] -- -- > > (zero -+- (one -+- two)) `match` (xx -+- (yy -+- yy)) -- > Nothing -- -- In short: -- -- > (zero -+- one) `match` (xx -+- yy) = Just [(xx,zero), (yy,one)] -- > (zero -+- (one -+- two)) `match` (xx -+- yy) = Just [(xx,zero), (yy,one-+-two)] -- > (zero -+- (one -+- two)) `match` (xx -+- (yy -+- yy)) = Nothing match :: Expr -> Expr -> Maybe [(Expr,Expr)] match = matchWith [] -- | -- Like 'match' but allowing predefined bindings. -- -- > matchWith [(xx,zero)] (zero -+- one) (xx -+- yy) = Just [(xx,zero), (yy,one)] -- > matchWith [(xx,one)] (zero -+- one) (xx -+- yy) = Nothing matchWith :: [(Expr,Expr)] -> Expr -> Expr -> Maybe [(Expr,Expr)] matchWith bs e1' e2' = m e1' e2' bs where m :: Expr -> Expr -> [(Expr,Expr)] -> Maybe [(Expr,Expr)] m (f1 :$ x1) (f2 :$ x2) = m f1 f2 >=> m x1 x2 m e1 e2 | isVar e2 && mtyp e1 == mtyp e2 = updateAssignments (e2,e1) | e1 == e2 = Just | otherwise = const Nothing updateAssignments :: (Expr,Expr) -> [(Expr,Expr)] -> Maybe [(Expr,Expr)] updateAssignments (e,e') = \bs -> case lookup e bs of Nothing -> Just ((e,e'):bs) Just e'' -> if e'' == e' then Just bs else Nothing -- | -- Given two 'Expr's, -- checks if the first expression -- is an instance of the second -- in terms of variables. -- (cf. 'hasInstanceOf') -- -- > > let zero = val (0::Int) -- > > let one = val (1::Int) -- > > let xx = var "x" (undefined :: Int) -- > > let yy = var "y" (undefined :: Int) -- > > let e1 -+- e2 = value "+" ((+)::Int->Int->Int) :$ e1 :$ e2 -- -- > one `isInstanceOf` one = True -- > xx `isInstanceOf` xx = True -- > yy `isInstanceOf` xx = True -- > zero `isInstanceOf` xx = True -- > xx `isInstanceOf` zero = False -- > one `isInstanceOf` zero = False -- > (xx -+- (yy -+- xx)) `isInstanceOf` (xx -+- yy) = True -- > (yy -+- (yy -+- xx)) `isInstanceOf` (xx -+- yy) = True -- > (zero -+- (yy -+- xx)) `isInstanceOf` (zero -+- yy) = True -- > (one -+- (yy -+- xx)) `isInstanceOf` (zero -+- yy) = False isInstanceOf :: Expr -> Expr -> Bool e1 `isInstanceOf` e2 = isJust $ e1 `match` e2 -- | -- Checks if any of the subexpressions of the first argument 'Expr' -- is an instance of the second argument 'Expr'. hasInstanceOf :: Expr -> Expr -> Bool e1 `hasInstanceOf` e2 = any (`isInstanceOf` e2) (subexprs e1) -- | /O(n^2)/. -- Checks if an 'Expr' is a subexpression of another. -- -- > > (xx -+- yy) `isSubexprOf` (zz -+- (xx -+- yy)) -- > True -- -- > > (xx -+- yy) `isSubexprOf` abs' (yy -+- xx) -- > False -- -- > > xx `isSubexprOf` yy -- > False isSubexprOf :: Expr -> Expr -> Bool isSubexprOf e = (e `elem`) . subexprs