| Copyright | (c) 2019-2021 Rudy Matela |
|---|---|
| License | 3-Clause BSD (see the file LICENSE) |
| Maintainer | Rudy Matela <rudy@matela.com.br> |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Express
Description
Express is a library for manipulating dynamically typed Haskell expressions. It's like Data.Dynamic but with support for encoding applications and variables.
It provides the Expr type and over a hundred functions for
building, evaluating, comparing, folding, canonicalizing and matching
Exprs.
Basics.
For types that are Show instances,
we can use val to encode values as Exprs:
> let false = val False > :t false false :: Expr > print false False :: Bool
As seen above, the Show instance for Expr produces a string with the
encoded value and it's type.
For types that aren't Show instances, like functions,
we can use value to encode values as Exprs.
> let notE = value "not" not > :t notE notE :: Expr > print notE not :: Bool -> Bool
Using :$ we can apply function valued Exprs, to other Exprs.
> let notFalse = notE :$ false > :t notFalse notFalse :: Expr > notFalse not False :: Bool
Using evaluate or eval we can evaluate Exprs
back into a regular Haskell value.
> evaluate notFalse :: Maybe Bool Just True > evaluate notFalse :: Maybe Int Nothing > eval False notFalse True > eval (0::Int) notFalse 0
Example: Like with Data.Dynamic, we can use Express to create heterogeneous lists:
> let xs = [val False, val True, val (1::Int), val (2::Int), val (3::Integer), val "123"] > :t xs xs :: [Expr] > xs [ False :: Bool , True :: Bool , 1 :: Int , 2 :: Int , 3 :: Integer , "123" :: [Char] ]
We can then apply evaluate to select values of different types:
> import Data.Maybe > mapMaybe evaluate xs :: [Bool] [False,True] > mapMaybe evaluate xs :: [Int] [1,2] > mapMaybe evaluate xs :: [Integer] [3] > mapMaybe evaluate xs :: [String] ["123"]
If we define an heterogeneous list of functions encoded as Exprs:
> let fs = [value "not" not, value "&&" (&&), value "abs" (abs :: Int -> Int)] > :t fs fs :: [Expr]
Using $$ we can list the type correct applications
between the two previously defined lists:
> catMaybes [f $$ x | f <- fs, x <- xs] [ not False :: Bool , not True :: Bool , (False &&) :: Bool -> Bool , (True &&) :: Bool -> Bool , abs 1 :: Int , abs 2 :: Int ]
Other uses of Express include:
- generalizing counter-examples of property-based testing in Extrapolate;
- conjecturing equations based on the results of testing in Speculate.
In this documentation,
the complexity of most functions is given in big O notation
where n is the size of the expression being manipulated or produced.
There may still be a m cost associated with the values stored in Exprs.
Synopsis
- data Expr
- value :: Typeable a => String -> a -> Expr
- val :: (Typeable a, Show a) => a -> Expr
- ($$) :: Expr -> Expr -> Maybe Expr
- var :: Typeable a => String -> a -> Expr
- evaluate :: Typeable a => Expr -> Maybe a
- eval :: Typeable a => a -> Expr -> a
- evl :: Typeable a => Expr -> a
- typ :: Expr -> TypeRep
- etyp :: Expr -> Either (TypeRep, TypeRep) TypeRep
- mtyp :: Expr -> Maybe TypeRep
- toDynamic :: Expr -> Maybe Dynamic
- isValue :: Expr -> Bool
- isApp :: Expr -> Bool
- isVar :: Expr -> Bool
- isConst :: Expr -> Bool
- isIllTyped :: Expr -> Bool
- isWellTyped :: Expr -> Bool
- isFun :: Expr -> Bool
- hasVar :: Expr -> Bool
- hasHole :: Expr -> Bool
- isGround :: Expr -> Bool
- isComplete :: Expr -> Bool
- compareComplexity :: Expr -> Expr -> Ordering
- compareLexicographically :: Expr -> Expr -> Ordering
- compareQuickly :: Expr -> Expr -> Ordering
- arity :: Expr -> Int
- size :: Expr -> Int
- depth :: Expr -> Int
- height :: Expr -> Int
- showExpr :: Expr -> String
- showPrecExpr :: Int -> Expr -> String
- showOpExpr :: String -> Expr -> String
- subexprs :: Expr -> [Expr]
- values :: Expr -> [Expr]
- vars :: Expr -> [Expr]
- consts :: Expr -> [Expr]
- nubSubexprs :: Expr -> [Expr]
- nubValues :: Expr -> [Expr]
- nubVars :: Expr -> [Expr]
- nubConsts :: Expr -> [Expr]
- mapValues :: (Expr -> Expr) -> Expr -> Expr
- mapVars :: (Expr -> Expr) -> Expr -> Expr
- mapConsts :: (Expr -> Expr) -> Expr -> Expr
- mapSubexprs :: (Expr -> Maybe Expr) -> Expr -> Expr
- (//-) :: Expr -> [(Expr, Expr)] -> Expr
- (//) :: Expr -> [(Expr, Expr)] -> Expr
- renameVarsBy :: (String -> String) -> Expr -> Expr
- varAsTypeOf :: String -> Expr -> Expr
- listVars :: Typeable a => String -> a -> [Expr]
- listVarsAsTypeOf :: String -> Expr -> [Expr]
- hole :: Typeable a => a -> Expr
- isHole :: Expr -> Bool
- holes :: Expr -> [Expr]
- nubHoles :: Expr -> [Expr]
- holeAsTypeOf :: Expr -> Expr
- fill :: Expr -> [Expr] -> Expr
- fold :: [Expr] -> Expr
- unfold :: Expr -> [Expr]
- foldPair :: (Expr, Expr) -> Expr
- unfoldPair :: Expr -> (Expr, Expr)
- foldTrio :: (Expr, Expr, Expr) -> Expr
- unfoldTrio :: Expr -> (Expr, Expr, Expr)
- foldApp :: [Expr] -> Expr
- unfoldApp :: Expr -> [Expr]
- canonicalize :: Expr -> Expr
- canonicalizeWith :: (Expr -> [String]) -> Expr -> Expr
- canonicalization :: Expr -> [(Expr, Expr)]
- canonicalizationWith :: (Expr -> [String]) -> Expr -> [(Expr, Expr)]
- isCanonical :: Expr -> Bool
- isCanonicalWith :: (Expr -> [String]) -> Expr -> Bool
- canonicalVariations :: Expr -> [Expr]
- mostGeneralCanonicalVariation :: Expr -> Expr
- mostSpecificCanonicalVariation :: Expr -> Expr
- fastCanonicalVariations :: Expr -> [Expr]
- fastMostGeneralVariation :: Expr -> Expr
- fastMostSpecificVariation :: Expr -> Expr
- match :: Expr -> Expr -> Maybe [(Expr, Expr)]
- matchWith :: [(Expr, Expr)] -> Expr -> Expr -> Maybe [(Expr, Expr)]
- isInstanceOf :: Expr -> Expr -> Bool
- hasInstanceOf :: Expr -> Expr -> Bool
- isSubexprOf :: Expr -> Expr -> Bool
- encompasses :: Expr -> Expr -> Bool
- class (Show a, Typeable a) => Express a where
- deriveExpress :: Name -> DecsQ
- deriveExpressCascading :: Name -> DecsQ
- deriveExpressIfNeeded :: Name -> DecsQ
- class Name a where
- names :: Name a => a -> [String]
- variableNamesFromTemplate :: String -> [String]
- deriveName :: Name -> DecsQ
- deriveNameCascading :: Name -> DecsQ
- deriveNameIfNeeded :: Name -> DecsQ
- reifyEq :: (Typeable a, Eq a) => a -> [Expr]
- reifyOrd :: (Typeable a, Ord a) => a -> [Expr]
- reifyEqOrd :: (Typeable a, Ord a) => a -> [Expr]
- reifyName :: (Typeable a, Name a) => a -> [Expr]
- mkEq :: Typeable a => (a -> a -> Bool) -> [Expr]
- mkOrd :: Typeable a => (a -> a -> Ordering) -> [Expr]
- mkOrdLessEqual :: Typeable a => (a -> a -> Bool) -> [Expr]
- mkName :: Typeable a => (a -> String) -> [Expr]
- mkNameWith :: Typeable a => String -> a -> [Expr]
- isEq :: [Expr] -> Expr -> Bool
- isOrd :: [Expr] -> Expr -> Bool
- isEqOrd :: [Expr] -> Expr -> Bool
- isEqT :: [Expr] -> TypeRep -> Bool
- isOrdT :: [Expr] -> TypeRep -> Bool
- isEqOrdT :: [Expr] -> TypeRep -> Bool
- mkEquation :: [Expr] -> Expr -> Expr -> Expr
- mkComparisonLE :: [Expr] -> Expr -> Expr -> Expr
- mkComparisonLT :: [Expr] -> Expr -> Expr -> Expr
- mkComparison :: String -> [Expr] -> Expr -> Expr -> Expr
- lookupComparison :: String -> TypeRep -> [Expr] -> Maybe Expr
- listVarsWith :: [Expr] -> Expr -> [Expr]
- lookupName :: [Expr] -> Expr -> String
- lookupNames :: [Expr] -> Expr -> [String]
- validApps :: [Expr] -> Expr -> [Expr]
- findValidApp :: [Expr] -> Expr -> Maybe Expr
- preludeNameInstances :: [Expr]
The Expr datatype
Values of type Expr represent objects or applications between objects.
Each object is encapsulated together with its type and string representation.
Values encoded in Exprs are always monomorphic.
An Expr can be constructed using:
val, for values that areShowinstances;value, for values that are notShowinstances, like functions;:$, for applications betweenExprs.
> val False False :: Bool
> value "not" not :$ val False not False :: Bool
An Expr can be evaluated using evaluate, eval or evl.
> evl $ val (1 :: Int) :: Int 1
> evaluate $ val (1 :: Int) :: Maybe Bool Nothing
> eval 'a' (val 'b') 'b'
Showing a value of type Expr will return a pretty-printed representation
of the expression together with its type.
> show (value "not" not :$ val False) "not False :: Bool"
Expr is like Dynamic but has support for applications and variables
(:$, var).
The var underscore convention:
Functions that manipulate Exprs usually follow the convention
where a value whose String representation starts with '_'
represents a variable.
Instances
| Eq Expr Source # | O(n). Does not evaluate values when comparing, but rather uses their representation as strings and their types. This instance works for ill-typed expressions. |
| Ord Expr Source # | O(n). Does not evaluate values when comparing, but rather uses their representation as strings and their types. This instance works for ill-typed expressions. Expressions come first
when they have smaller complexity ( |
| Show Expr Source # | Shows > show (value "not" not :$ val False) "not False :: Bool" |
Building Exprs
value :: Typeable a => String -> a -> Expr Source #
O(1).
It takes a string representation of a value and a value, returning an
Expr with that terminal value.
For instances of Show, it is preferable to use val.
> value "0" (0 :: Integer) 0 :: Integer
> value "'a'" 'a' 'a' :: Char
> value "True" True True :: Bool
> value "id" (id :: Int -> Int) id :: Int -> Int
> value "(+)" ((+) :: Int -> Int -> Int) (+) :: Int -> Int -> Int
> value "sort" (sort :: [Bool] -> [Bool]) sort :: [Bool] -> [Bool]
($$) :: Expr -> Expr -> Maybe Expr Source #
O(n).
Creates an Expr representing a function application.
Just an Expr application if the types match, Nothing otherwise.
(cf. :$)
> value "id" (id :: () -> ()) $$ val () Just (id () :: ())
> value "abs" (abs :: Int -> Int) $$ val (1337 :: Int) Just (abs 1337 :: Int)
> value "abs" (abs :: Int -> Int) $$ val 'a' Nothing
> value "abs" (abs :: Int -> Int) $$ val () Nothing
var :: Typeable a => String -> a -> Expr Source #
O(1).
Creates an Expr representing a variable with the given name and argument
type.
> var "x" (undefined :: Int) x :: Int
> var "u" (undefined :: ()) u :: ()
> var "xs" (undefined :: [Int]) xs :: [Int]
This function follows the underscore convention:
a variable is just a value whose string representation
starts with underscore ('_').
Evaluating Exprs
evaluate :: Typeable a => Expr -> Maybe a Source #
O(n).
Just the value of an expression when possible (correct type),
Nothing otherwise.
This does not catch errors from undefined Dynamic values.
> let one = val (1 :: Int) > let bee = val 'b' > let negateE = value "negate" (negate :: Int -> Int)
> evaluate one :: Maybe Int Just 1
> evaluate one :: Maybe Char Nothing
> evaluate bee :: Maybe Int Nothing
> evaluate bee :: Maybe Char Just 'b'
> evaluate $ negateE :$ one :: Maybe Int Just (-1)
> evaluate $ negateE :$ bee :: Maybe Int Nothing
eval :: Typeable a => a -> Expr -> a Source #
O(n). Evaluates an expression when possible (correct type). Returns a default value otherwise.
> let two = val (2 :: Int) > let three = val (3 :: Int) > let e1 -+- e2 = value "+" ((+) :: Int->Int->Int) :$ e1 :$ e2
> eval 0 $ two -+- three :: Int 5
> eval 'z' $ two -+- three :: Char 'z'
> eval 0 $ two -+- val '3' :: Int 0
typ :: Expr -> TypeRep Source #
O(n).
Computes the type of an expression. This raises errors, but this should
not happen if expressions are smart-constructed with $$.
> let one = val (1 :: Int) > let bee = val 'b' > let absE = value "abs" (abs :: Int -> Int)
> typ one Int
> typ bee Char
> typ absE Int -> Int
> typ (absE :$ one) Int
> typ (absE :$ bee) *** Exception: type mismatch, cannot apply `Int -> Int' to `Char'
> typ ((absE :$ bee) :$ one) *** Exception: type mismatch, cannot apply `Int -> Int' to `Char'
etyp :: Expr -> Either (TypeRep, TypeRep) TypeRep Source #
O(n). Computes the type of an expression returning either the type of the given expression when possible or when there is a type error, the pair of types which produced the error.
> let one = val (1 :: Int) > let bee = val 'b' > let absE = value "abs" (abs :: Int -> Int)
> etyp one Right Int
> etyp bee Right Char
> etyp absE Right (Int -> Int)
> etyp (absE :$ one) Right Int
> etyp (absE :$ bee) Left (Int -> Int, Char)
> etyp ((absE :$ bee) :$ one) Left (Int -> Int, Char)
toDynamic :: Expr -> Maybe Dynamic Source #
O(n).
Evaluates an expression to a terminal Dynamic value when possible.
Returns Nothing otherwise.
> toDynamic $ val (123 :: Int) :: Maybe Dynamic Just <<Int>>
> toDynamic $ value "abs" (abs :: Int -> Int) :$ val (-1 :: Int) Just <<Int>>
> toDynamic $ value "abs" (abs :: Int -> Int) :$ val 'a' Nothing
Boolean properties of Exprs
isValue :: Expr -> Bool Source #
O(1).
Returns whether an Expr is a terminal value (Value).
> isValue $ var "x" (undefined :: Int) True
> isValue $ val False True
> isValue $ value "not" not :$ var "p" (undefined :: Bool) False
This is equivalent to pattern matching the Value constructor.
Properties:
isValue (Value e) = True
isValue (e1 :$ e2) = False
isValue = not . isApp
isValue e = isVar e || isConst e
isApp :: Expr -> Bool Source #
O(1).
Returns whether an Expr is an application (:$).
> isApp $ var "x" (undefined :: Int) False
> isApp $ val False False
> isApp $ value "not" not :$ var "p" (undefined :: Bool) True
This is equivalent to pattern matching the :$ constructor.
Properties:
isApp (e1 :$ e2) = True
isApp (Value e) = False
isApp = not . isValue
isApp e = not (isVar e) && not (isConst e)
isIllTyped :: Expr -> Bool Source #
O(n).
Returns whether the given Expr is ill typed.
(cf. isWellTyped)
> let one = val (1 :: Int) > let bee = val 'b' > let absE = value "abs" (abs :: Int -> Int)
> isIllTyped (absE :$ val (1 :: Int)) False
> isIllTyped (absE :$ val 'b') True
isWellTyped :: Expr -> Bool Source #
O(n).
Returns whether the given Expr is well typed.
(cf. isIllTyped)
> isWellTyped (absE :$ val (1 :: Int)) True
> isWellTyped (absE :$ val 'b') False
hasHole :: Expr -> Bool Source #
O(n). Returns whether an expression contains a hole
> hasHole $ hole (undefined :: Bool) True
> hasHole $ value "not" not :$ val True False
> hasHole $ value "not" not :$ hole (undefined :: Bool) True
isGround :: Expr -> Bool Source #
O(n).
Returns whether a Expr has no variables.
This is equivalent to "not . hasVar".
The name "ground" comes from term rewriting.
> isGround $ value "not" not :$ val True True
> isGround $ value "&&" (&&) :$ var "p" (undefined :: Bool) :$ val True False
isComplete :: Expr -> Bool Source #
O(n). Returns whether an expression is complete. A complete expression is one without holes.
> isComplete $ hole (undefined :: Bool) False
> isComplete $ value "not" not :$ val True True
> isComplete $ value "not" not :$ hole (undefined :: Bool) False
isComplete is the negation of hasHole.
isComplete = not . hasHole
isComplete is to hasHole what
isGround is to hasVar.
Comparing Exprs
compareComplexity :: Expr -> Expr -> Ordering Source #
O(n).
Compares the complexity of two Exprs.
An expression e1 is strictly simpler than another expression e2
if the first of the following conditions to distingish between them is:
- e1 is smaller in size/length than e2,
e.g.:
x + y < x + (y + z); - or, e1 has more distinct variables than e2,
e.g.:
x + y < x + x; - or, e1 has more variable occurrences than e2,
e.g.:
x + x < 1 + x; - or, e1 has fewer distinct constants than e2,
e.g.:
1 + 1 < 0 + 1.
They're otherwise considered of equal complexity,
e.g.: x + y and y + z.
> (xx -+- yy) `compareComplexity` (xx -+- (yy -+- zz)) LT
> (xx -+- yy) `compareComplexity` (xx -+- xx) LT
> (xx -+- xx) `compareComplexity` (one -+- xx) LT
> (one -+- one) `compareComplexity` (zero -+- one) LT
> (xx -+- yy) `compareComplexity` (yy -+- zz) EQ
> (zero -+- one) `compareComplexity` (one -+- zero) EQ
This comparison is not a total order.
compareLexicographically :: Expr -> Expr -> Ordering Source #
O(n).
Lexicographical structural comparison of Exprs
where variables < constants < applications
then types are compared before string representations.
> compareLexicographically one (one -+- one) LT > compareLexicographically one zero GT > compareLexicographically (xx -+- zero) (zero -+- xx) LT > compareLexicographically (zero -+- xx) (zero -+- xx) EQ
(cf. compareTy)
This comparison is a total order.
compareQuickly :: Expr -> Expr -> Ordering Source #
O(n).
A fast total order between Exprs
that can be used when sorting Expr values.
This is lazier than its counterparts
compareComplexity and compareLexicographically
and tries to evaluate the given Exprs as least as possible.
Properties of Exprs
O(n). Return the arity of the given expression, i.e. the number of arguments that its type takes.
> arity (val (0::Int)) 0
> arity (val False) 0
> arity (value "id" (id :: Int -> Int)) 1
> arity (value "const" (const :: Int -> Int -> Int)) 2
> arity (one -+- two) 0
O(n). Returns the size of the given expression, i.e. the number of terminal values in it.
zero = val (0 :: Int) one = val (1 :: Int) two = val (2 :: Int) xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy abs' xx = value "abs" (abs :: Int->Int) :$ xx
> size zero 1
> size (one -+- two) 3
> size (abs' one) 2
O(n).
Returns the maximum depth of a given expression
given by the maximum number of nested function applications.
Curried function application is counted only once,
i.e. the application of a two argument function
increases the depth of both its arguments by one.
(cf. height)
With
zero = val (0 :: Int) one = val (1 :: Int) two = val (2 :: Int) xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy abs' xx = value "abs" (abs :: Int->Int) :$ xx
> depth zero 1
> depth (one -+- two) 2
> depth (abs' one -+- two) 3
Flipping arguments of applications in any of the subterms does not affect the result.
height :: Expr -> Int Source #
O(n).
Returns the maximum height of a given expression
given by the maximum number of nested function applications.
Curried function application is counted each time,
i.e. the application of a two argument function
increases the depth of its first argument by two
and of its second argument by one.
(cf. depth)
With:
zero = val (0 :: Int) one = val (1 :: Int) two = val (2 :: Int) const' xx yy = value "const" (const :: Int->Int->Int) :$ xx :$ yy abs' xx = value "abs" (abs :: Int->Int) :$ xx
Then:
> height zero 1
> height (abs' one) 2
> height ((const' one) two) 3
> height ((const' (abs' one)) two) 4
> height ((const' one) (abs' two)) 3
Flipping arguments of applications in subterms may change the result of the function.
Showing Exprs
showExpr :: Expr -> String Source #
O(n).
Returns a string representation of an expression.
Differently from show (:: Expr -> String)
this function does not include the type in the output.
> putStrLn $ showExpr (one -+- two) 1 + 2
> putStrLn $ showExpr $ (pp -||- true) -&&- (qq -||- false) (p || True) && (q || False)
showPrecExpr :: Int -> Expr -> String Source #
O(n).
Like showExpr but allows specifying the surrounding precedence.
> showPrecExpr 6 (one -+- two) "1 + 2"
> showPrecExpr 7 (one -+- two) "(1 + 2)"
showOpExpr :: String -> Expr -> String Source #
O(n).
Like showPrecExpr but
the precedence is taken from the given operator name.
> showOpExpr "*" (two -*- three) "(2 * 3)"
> showOpExpr "+" (two -*- three) "2 * 3"
To imply that the surrounding environment is a function application,
use " " as the given operator.
> showOpExpr " " (two -*- three) "(2 * 3)"
Subexpressions
Listing subexpressions
subexprs :: Expr -> [Expr] Source #
O(n) for the spine, O(n^2) for full evaluation.
Lists subexpressions of a given expression in order and with repetitions.
This includes the expression itself and partial function applications.
(cf. nubSubexprs)
> subexprs (xx -+- yy) [ x + y :: Int , (x +) :: Int -> Int , (+) :: Int -> Int -> Int , x :: Int , y :: Int ]
> subexprs (pp -&&- (pp -&&- true)) [ p && (p && True) :: Bool , (p &&) :: Bool -> Bool , (&&) :: Bool -> Bool -> Bool , p :: Bool , p && True :: Bool , (p &&) :: Bool -> Bool , (&&) :: Bool -> Bool -> Bool , p :: Bool , True :: Bool ]
values :: Expr -> [Expr] Source #
O(n).
Lists all terminal values in an expression in order and with repetitions.
(cf. nubValues)
> values (xx -+- yy) [ (+) :: Int -> Int -> Int , x :: Int , y :: Int ]
> values (xx -+- (yy -+- zz)) [ (+) :: Int -> Int -> Int , x :: Int , (+) :: Int -> Int -> Int , y :: Int , z :: Int ]
> values (zero -+- (one -*- two)) [ (+) :: Int -> Int -> Int , 0 :: Int , (*) :: Int -> Int -> Int , 1 :: Int , 2 :: Int ]
> values (pp -&&- true) [ (&&) :: Bool -> Bool -> Bool , p :: Bool , True :: Bool ]
vars :: Expr -> [Expr] Source #
O(n).
Lists all variables in an expression in order and with repetitions.
(cf. nubVars)
> vars (xx -+- yy) [ x :: Int , y :: Int ]
> vars (xx -+- (yy -+- xx)) [ x :: Int , y :: Int , x :: Int ]
> vars (zero -+- (one -*- two)) []
> vars (pp -&&- true) [p :: Bool]
consts :: Expr -> [Expr] Source #
O(n).
List terminal constants in an expression in order and with repetitions.
(cf. nubConsts)
> consts (xx -+- yy) [ (+) :: Int -> Int -> Int ]
> consts (xx -+- (yy -+- zz)) [ (+) :: Int -> Int -> Int , (+) :: Int -> Int -> Int ]
> consts (zero -+- (one -*- two)) [ (+) :: Int -> Int -> Int , 0 :: Int , (*) :: Int -> Int -> Int , 1 :: Int , 2 :: Int ]
> consts (pp -&&- true) [ (&&) :: Bool -> Bool -> Bool , True :: Bool ]
nubSubexprs :: Expr -> [Expr] Source #
O(n^3) for full evaluation.
Lists all subexpressions of a given expression without repetitions.
This includes the expression itself and partial function applications.
(cf. subexprs)
> nubSubexprs (xx -+- yy) [ x :: Int , y :: Int , (+) :: Int -> Int -> Int , (x +) :: Int -> Int , x + y :: Int ]
> nubSubexprs (pp -&&- (pp -&&- true)) [ p :: Bool , True :: Bool , (&&) :: Bool -> Bool -> Bool , (p &&) :: Bool -> Bool , p && True :: Bool , p && (p && True) :: Bool ]
Runtime averages to
O(n^2 log n) on evenly distributed expressions
such as (f x + g y) + (h z + f w);
and to O(n^3) on deep expressions
such as f (g (h (f (g (h x))))).
nubValues :: Expr -> [Expr] Source #
O(n^2).
Lists all terminal values in an expression without repetitions.
(cf. values)
> nubValues (xx -+- yy) [ x :: Int , y :: Int , (+) :: Int -> Int -> Int
]
> nubValues (xx -+- (yy -+- zz)) [ x :: Int , y :: Int , z :: Int , (+) :: Int -> Int -> Int ]
> nubValues (zero -+- (one -*- two)) [ 0 :: Int , 1 :: Int , 2 :: Int , (*) :: Int -> Int -> Int , (+) :: Int -> Int -> Int ]
> nubValues (pp -&&- pp) [ p :: Bool , (&&) :: Bool -> Bool -> Bool ]
Runtime averages to
O(n log n) on evenly distributed expressions
such as (f x + g y) + (h z + f w);
and to O(n^2) on deep expressions
such as f (g (h (f (g (h x))))).
nubVars :: Expr -> [Expr] Source #
O(n^2).
Lists all variables in an expression without repetitions.
(cf. vars)
> nubVars (yy -+- xx) [ x :: Int , y :: Int ]
> nubVars (xx -+- (yy -+- xx)) [ x :: Int , y :: Int ]
> nubVars (zero -+- (one -*- two)) []
> nubVars (pp -&&- true) [p :: Bool]
Runtime averages to
O(n log n) on evenly distributed expressions
such as (f x + g y) + (h z + f w);
and to O(n^2) on deep expressions
such as f (g (h (f (g (h x))))).
nubConsts :: Expr -> [Expr] Source #
O(n^2).
List terminal constants in an expression without repetitions.
(cf. consts)
> nubConsts (xx -+- yy) [ (+) :: Int -> Int -> Int ]
> nubConsts (xx -+- (yy -+- zz)) [ (+) :: Int -> Int -> Int ]
> nubConsts (pp -&&- true) [ True :: Bool , (&&) :: Bool -> Bool -> Bool ]
Runtime averages to
O(n log n) on evenly distributed expressions
such as (f x + g y) + (h z + f w);
and to O(n^2) on deep expressions
such as f (g (h (f (g (h x))))).
Mapping subexpressions
mapValues :: (Expr -> Expr) -> Expr -> Expr Source #
O(n*m).
Applies a function to all terminal values in an expression.
(cf. //-)
Given that:
> let zero = val (0 :: Int) > let one = val (1 :: Int) > let two = val (2 :: Int) > let three = val (3 :: Int) > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy > let intToZero e = if typ e == typ zero then zero else e
Then:
> one -+- (two -+- three) 1 + (2 + 3) :: Int
> mapValues intToZero $ one -+- (two -+- three) 0 + (0 + 0) :: Integer
Given that the argument function is O(m), this function is O(n*m).
mapVars :: (Expr -> Expr) -> Expr -> Expr Source #
O(n*m). Applies a function to all variables in an expression.
Given that:
> let primeify e = if isVar e | then case e of (Value n d) -> Value (n ++ "'") d | else e > let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int) > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy
Then:
> xx -+- yy x + y :: Int
> primeify xx x' :: Int
> mapVars primeify $ xx -+- yy x' + y' :: Int
> mapVars (primeify . primeify) $ xx -+- yy x'' + y'' :: Int
Given that the argument function is O(m), this function is O(n*m).
mapConsts :: (Expr -> Expr) -> Expr -> Expr Source #
O(n*m). Applies a function to all terminal constants in an expression.
Given that:
> let one = val (1 :: Int) > let two = val (2 :: Int) > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy > let intToZero e = if typ e == typ zero then zero else e
Then:
> one -+- (two -+- xx) 1 + (2 + x) :: Int
> mapConsts intToZero (one -+- (two -+- xx)) 0 + (0 + x) :: Integer
Given that the argument function is O(m), this function is O(n*m).
mapSubexprs :: (Expr -> Maybe Expr) -> Expr -> Expr Source #
O(n*m).
Substitute subexpressions of an expression using the given function.
Outer expressions have more precedence than inner expressions.
(cf. //)
With:
> let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int) > let zz = var "z" (undefined :: Int) > let plus = value "+" ((+) :: Int->Int->Int) > let times = value "*" ((*) :: Int->Int->Int) > let xx -+- yy = plus :$ xx :$ yy > let xx -*- yy = times :$ xx :$ yy
> let pluswap (o :$ xx :$ yy) | o == plus = Just $ o :$ yy :$ xx | pluswap _ = Nothing
Then:
> mapSubexprs pluswap $ (xx -*- yy) -+- (yy -*- zz) y * z + x * y :: Int
> mapSubexprs pluswap $ (xx -+- yy) -*- (yy -+- zz) (y + x) * (z + y) :: Int
Substitutions do not stack, in other words a replaced expression or its subexpressions are not further replaced:
> mapSubexprs pluswap $ (xx -+- yy) -+- (yy -+- zz) (y + z) + (x + y) :: Int
Given that the argument function is O(m), this function is O(n*m).
(//-) :: Expr -> [(Expr, Expr)] -> Expr Source #
O(n*m).
Substitute occurrences of values in an expression
from the given list of substitutions.
(cf. mapValues)
Given that:
> let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int) > let zz = var "z" (undefined :: Int) > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy
Then:
> ((xx -+- yy) -+- (yy -+- zz)) //- [(xx, yy), (zz, yy)] (y + y) + (y + y) :: Int
> ((xx -+- yy) -+- (yy -+- zz)) //- [(yy, yy -+- zz)] (x + (y + z)) + ((y + z) + z) :: Int
This function does not work for substituting non-terminal subexpressions:
> (xx -+- yy) //- [(xx -+- yy, zz)] x + y :: Int
Please use the slower // if you want the above replacement to work.
Replacement happens only once:
> xx //- [(xx,yy), (yy,zz)] y :: Int
Given that the argument list has length m, this function is O(n*m).
(//) :: Expr -> [(Expr, Expr)] -> Expr Source #
O(n*n*m).
Substitute subexpressions in an expression
from the given list of substitutions.
(cf. mapSubexprs).
Please consider using //- if you are replacing just terminal values
as it is faster.
Given that:
> let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int) > let zz = var "z" (undefined :: Int) > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy
Then:
> ((xx -+- yy) -+- (yy -+- zz)) // [(xx -+- yy, yy), (yy -+- zz, yy)] y + y :: Int
> ((xx -+- yy) -+- zz) // [(xx -+- yy, zz), (zz, xx -+- yy)] z + (x + y) :: Int
Replacement happens only once with outer expressions having more precedence than inner expressions.
> (xx -+- yy) // [(yy,xx), (xx -+- yy,zz), (zz,xx)] z :: Int
Given that the argument list has length m, this function is O(n*n*m). Remember that since n is the size of an expression, comparing two expressions is O(n) in the worst case, and we may need to compare with n subexpressions in the worst case.
renameVarsBy :: (String -> String) -> Expr -> Expr Source #
Rename variables in an Expr.
> renameVarsBy (++ "'") (xx -+- yy) x' + y' :: Int
> renameVarsBy (++ "'") (yy -+- (zz -+- xx)) (y' + (z' + x')) :: Int
> renameVarsBy (++ "1") (abs' xx) abs x1 :: Int
> renameVarsBy (++ "2") $ abs' (xx -+- yy) abs (x2 + y2) :: Int
NOTE: this will affect holes!
Variables and holes
Creating variables
listVars :: Typeable a => String -> a -> [Expr] Source #
Generate an infinite list of variables
based on a template and a given type.
(cf. listVarsAsTypeOf)
> putL 10 $ listVars "x" (undefined :: Int) [ x :: Int , y :: Int , z :: Int , x' :: Int , y' :: Int , z' :: Int , x'' :: Int , ... ]
> putL 10 $ listVars "p" (undefined :: Bool) [ p :: Bool , q :: Bool , r :: Bool , p' :: Bool , q' :: Bool , r' :: Bool , p'' :: Bool , ... ]
listVarsAsTypeOf :: String -> Expr -> [Expr] Source #
Generate an infinite list of variables
based on a template
and the type of a given Expr.
(cf. listVars)
> let one = val (1::Int) > putL 10 $ "x" `listVarsAsTypeOf` one [ x :: Int , y :: Int , z :: Int , x' :: Int , ... ]
> let false = val False > putL 10 $ "p" `listVarsAsTypeOf` false [ p :: Bool , q :: Bool , r :: Bool , p' :: Bool , ... ]
Typed holes
hole :: Typeable a => a -> Expr Source #
O(1).
Creates an Expr representing a typed hole of the given argument type.
> hole (undefined :: Int) _ :: Int
> hole (undefined :: Maybe String) _ :: Maybe [Char]
A hole is represented as a variable with no name or
a value named "_":
hole x = var "" x hole x = value "_" x
holes :: Expr -> [Expr] Source #
O(n).
Lists all holes in an expression, in order and with repetitions.
(cf. nubHoles)
> holes $ hole (undefined :: Bool) [_ :: Bool]
> holes $ value "&&" (&&) :$ hole (undefined :: Bool) :$ hole (undefined :: Bool) [_ :: Bool,_ :: Bool]
> holes $ hole (undefined :: Bool->Bool) :$ hole (undefined::Bool) [_ :: Bool -> Bool,_ :: Bool]
nubHoles :: Expr -> [Expr] Source #
O(n^2).
Lists all holes in an expression without repetitions.
(cf. holes)
> nubHoles $ hole (undefined :: Bool) [_ :: Bool]
> nubHoles $ value "&&" (&&) :$ hole (undefined :: Bool) :$ hole (undefined :: Bool) [_ :: Bool]
> nubHoles $ hole (undefined :: Bool->Bool) :$ hole (undefined::Bool) [_ :: Bool,_ :: Bool -> Bool]
Runtime averages to
O(n log n) on evenly distributed expressions
such as (f x + g y) + (h z + f w);
and to O(n^2) on deep expressions
such as f (g (h (f (g (h x))))).
holeAsTypeOf :: Expr -> Expr Source #
fill :: Expr -> [Expr] -> Expr Source #
Fill holes in an expression with the given list.
> let i_ = hole (undefined :: Int) > let e1 -+- e2 = value "+" ((+) :: Int -> Int -> Int) :$ e1 :$ e2 > let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int)
> fill (i_ -+- i_) [xx, yy] x + y :: Int
> fill (i_ -+- i_) [xx, xx] x + x :: Int
> let one = val (1::Int)
> fill (i_ -+- i_) [one, one -+- one] 1 + (1 + 1) :: Int
This function silently remaining expressions:
> fill i_ [xx, yy] x :: Int
This function silently keeps remaining holes:
> fill (i_ -+- i_ -+- i_) [xx, yy] (x + y) + _ :: Int
This function silently skips remaining holes if one is not of the right type:
> fill (i_ -+- i_ -+- i_) [xx, val 'c', yy] (x + _) + _ :: Int
Juggling Exprs
Folding Exprs
fold :: [Expr] -> Expr Source #
O(n).
Folds a list of Exprs into a single Expr.
(cf. unfold)
This always generates an ill-typed expression.
fold [val False, val True, val (1::Int)] [False,True,1] :: ill-typed # ExprList $ Bool #
This is useful when applying transformations on lists of Exprs, such as
canonicalize,
mapValues or
canonicalVariations.
> let ii = var "i" (undefined::Int) > let kk = var "k" (undefined::Int) > let qq = var "q" (undefined::Bool) > let notE = value "not" not > unfold . canonicalize . fold $ [ii,kk,notE :$ qq, notE :$ val False] [x :: Int,y :: Int,not p :: Bool,not False :: Bool]
foldPair :: (Expr, Expr) -> Expr Source #
O(1).
Folds a pair of Expr values into a single Expr.
(cf. unfoldPair)
This always generates an ill-typed expression, as it uses a fake pair constructor.
> foldPair (val False, val (1::Int)) (False,1) :: ill-typed # ExprPair $ Bool #
> foldPair (val (0::Int), val True) (0,True) :: ill-typed # ExprPair $ Int #
This is useful when applying transformations on pairs of Exprs, such as
canonicalize,
mapValues or
canonicalVariations.
> let ii = var "i" (undefined::Int) > let kk = var "k" (undefined::Int) > unfoldPair $ canonicalize $ foldPair (ii,kk) (x :: Int,y :: Int)
foldTrio :: (Expr, Expr, Expr) -> Expr Source #
O(1).
Folds a trio/triple of Expr values into a single Expr.
(cf. unfoldTrio)
This always generates an ill-typed expression as it uses a fake trio/triple constructor.
> foldTrio (val False, val (1::Int), val 'a') (False,1,'a') :: ill-typed # ExprTrio $ Bool #
> foldTrio (val (0::Int), val True, val 'b') (0,True,'b') :: ill-typed # ExprTrio $ Int #
This is useful when applying transformations on pairs of Exprs, such as
canonicalize,
mapValues or
canonicalVariations.
> let ii = var "i" (undefined::Int) > let kk = var "k" (undefined::Int) > let zz = var "z" (undefined::Int) > unfoldPair $ canonicalize $ foldPair (ii,kk,zz) (x :: Int,y :: Int,z :: Int)
unfoldTrio :: Expr -> (Expr, Expr, Expr) Source #
O(1).
Unfolds an Expr representing a trio/triple.
This reverses the effect of foldTrio.
> value ",," ((,,) :: Bool->Bool->Bool->(Bool,Bool,Bool)) :$ val True :$ val False :$ val True (True,False,True) :: (Bool,Bool,Bool) > unfoldTrio $ value ",," ((,,) :: Bool->Bool->Bool->(Bool,Bool,Bool)) :$ val True :$ val False :$ val True (True :: Bool,False :: Bool,True :: Bool)
(cf. unfoldPair)
foldApp :: [Expr] -> Expr Source #
O(n).
Folds a list of Expr with function application (:$).
This reverses the effect of unfoldApp.
foldApp [e0] = e0 foldApp [e0,e1] = e0 :$ e1 foldApp [e0,e1,e2] = e0 :$ e1 :$ e2 foldApp [e0,e1,e2,e3] = e0 :$ e1 :$ e2 :$ e3
Remember :$ is left-associative, so:
foldApp [e0] = e0 foldApp [e0,e1] = (e0 :$ e1) foldApp [e0,e1,e2] = ((e0 :$ e1) :$ e2) foldApp [e0,e1,e2,e3] = (((e0 :$ e1) :$ e2) :$ e3)
This function may produce an ill-typed expression.
unfoldApp :: Expr -> [Expr] Source #
O(n).
Unfold a function application Expr into a list of function and
arguments.
unfoldApp $ e0 = [e0] unfoldApp $ e0 :$ e1 = [e0,e1] unfoldApp $ e0 :$ e1 :$ e2 = [e0,e1,e2] unfoldApp $ e0 :$ e1 :$ e2 :$ e3 = [e0,e1,e2,e3]
Remember :$ is left-associative, so:
unfoldApp e0 = [e0] unfoldApp (e0 :$ e1) = [e0,e1] unfoldApp ((e0 :$ e1) :$ e2) = [e0,e1,e2] unfoldApp (((e0 :$ e1) :$ e2) :$ e3) = [e0,e1,e2,e3]
Canonicalizing Exprs
canonicalize :: Expr -> Expr Source #
Canonicalizes an Expr so that variable names appear in order.
Variable names are taken from the preludeNameInstances.
> canonicalize (xx -+- yy) x + y :: Int
> canonicalize (yy -+- xx) x + y :: Int
> canonicalize (xx -+- xx) x + x :: Int
> canonicalize (yy -+- yy) x + x :: Int
Constants are untouched:
> canonicalize (jj -+- (zero -+- abs' ii)) x + (y + abs y) :: Int
This also works for variable functions:
> canonicalize (gg yy -+- ff xx -+- gg xx) (f x + g y) + f y :: Int
canonicalizeWith :: (Expr -> [String]) -> Expr -> Expr Source #
Like canonicalize but allows customization
of the list of variable names.
(cf. lookupNames, variableNamesFromTemplate)
> canonicalizeWith (const ["i","j","k","l",...]) (xx -+- yy) i + j :: Int
The argument Expr of the argument function allows
to provide a different list of names for different types:
> let namesFor e > | typ e == typeOf (undefined::Char) = variableNamesFromTemplate "c1" > | typ e == typeOf (undefined::Int) = variableNamesFromTemplate "i" > | otherwise = variableNamesFromTemplate "x"
> canonicalizeWith namesFor ((xx -+- ord' dd) -+- (ord' cc -+- yy)) (i + ord c1) + (ord c2 + j) :: Int
canonicalization :: Expr -> [(Expr, Expr)] Source #
Return a canonicalization of an Expr
that makes variable names appear in order
using names as provided by preludeNameInstances.
By using //- it can canonicalize Exprs.
> canonicalization (gg yy -+- ff xx -+- gg xx) [ (x :: Int, y :: Int) , (f :: Int -> Int, g :: Int -> Int) , (y :: Int, x :: Int) , (g :: Int -> Int, f :: Int -> Int) ]
> canonicalization (yy -+- xx -+- yy) [ (x :: Int, y :: Int) , (y :: Int, x :: Int) ]
canonicalizationWith :: (Expr -> [String]) -> Expr -> [(Expr, Expr)] Source #
Like canonicalization but allows customization
of the list of variable names.
(cf. lookupNames, variableNamesFromTemplate)
isCanonical :: Expr -> Bool Source #
Returns whether an Expr is canonical:
if applying canonicalize is an identity
using names as provided by preludeNameInstances.
isCanonicalWith :: (Expr -> [String]) -> Expr -> Bool Source #
Like isCanonical but allows specifying
the list of variable names.
canonicalVariations :: Expr -> [Expr] Source #
Returns all canonical variations of an Expr
by filling holes with variables.
Where possible, variations are listed
from most general to least general.
> canonicalVariations $ i_ [x :: Int]
> canonicalVariations $ i_ -+- i_ [ x + y :: Int , x + x :: Int ]
> canonicalVariations $ i_ -+- i_ -+- i_ [ (x + y) + z :: Int , (x + y) + x :: Int , (x + y) + y :: Int , (x + x) + y :: Int , (x + x) + x :: Int ]
> canonicalVariations $ i_ -+- ord' c_ [x + ord c :: Int]
> canonicalVariations $ i_ -+- i_ -+- ord' c_ [ (x + y) + ord c :: Int , (x + x) + ord c :: Int ]
> canonicalVariations $ i_ -+- i_ -+- length' (c_ -:- unit c_) [ (x + y) + length (c:d:"") :: Int , (x + y) + length (c:c:"") :: Int , (x + x) + length (c:d:"") :: Int , (x + x) + length (c:c:"") :: Int ]
In an expression without holes this functions just returns a singleton list with the expression itself:
> canonicalVariations $ val (0 :: Int) [0 :: Int]
> canonicalVariations $ ord' bee [ord 'b' :: Int]
When applying this to expressions already containing variables clashes are avoided and these variables are not touched:
> canonicalVariations $ i_ -+- ii -+- jj -+- i_ [ x + i + j + y :: Int , x + i + j + y :: Int ]
> canonicalVariations $ ii -+- jj [i + j :: Int]
> canonicalVariations $ xx -+- i_ -+- i_ -+- length' (c_ -:- unit c_) -+- yy [ (((x + z) + x') + length (c:d:"")) + y :: Int , (((x + z) + x') + length (c:c:"")) + y :: Int , (((x + z) + z) + length (c:d:"")) + y :: Int , (((x + z) + z) + length (c:c:"")) + y :: Int ]
mostGeneralCanonicalVariation :: Expr -> Expr Source #
Returns the most general canonical variation of an Expr
by filling holes with variables.
> mostGeneralCanonicalVariation $ i_ x :: Int
> mostGeneralCanonicalVariation $ i_ -+- i_ x + y :: Int
> mostGeneralCanonicalVariation $ i_ -+- i_ -+- i_ (x + y) + z :: Int
> mostGeneralCanonicalVariation $ i_ -+- ord' c_ x + ord c :: Int
> mostGeneralCanonicalVariation $ i_ -+- i_ -+- ord' c_ (x + y) + ord c :: Int
> mostGeneralCanonicalVariation $ i_ -+- i_ -+- length' (c_ -:- unit c_) (x + y) + length (c:d:"") :: Int
In an expression without holes this functions just returns the given expression itself:
> mostGeneralCanonicalVariation $ val (0 :: Int) 0 :: Int
> mostGeneralCanonicalVariation $ ord' bee ord 'b' :: Int
This function is the same as taking the head of canonicalVariations
but a bit faster.
mostSpecificCanonicalVariation :: Expr -> Expr Source #
Returns the most specific canonical variation of an Expr
by filling holes with variables.
> mostSpecificCanonicalVariation $ i_ x :: Int
> mostSpecificCanonicalVariation $ i_ -+- i_ x + x :: Int
> mostSpecificCanonicalVariation $ i_ -+- i_ -+- i_ (x + x) + x :: Int
> mostSpecificCanonicalVariation $ i_ -+- ord' c_ x + ord c :: Int
> mostSpecificCanonicalVariation $ i_ -+- i_ -+- ord' c_ (x + x) + ord c :: Int
> mostSpecificCanonicalVariation $ i_ -+- i_ -+- length' (c_ -:- unit c_) (x + x) + length (c:c:"") :: Int
In an expression without holes this functions just returns the given expression itself:
> mostSpecificCanonicalVariation $ val (0 :: Int) 0 :: Int
> mostSpecificCanonicalVariation $ ord' bee ord 'b' :: Int
This function is the same as taking the last of canonicalVariations
but a bit faster.
fastCanonicalVariations :: Expr -> [Expr] Source #
A faster version of canonicalVariations that
disregards name clashes across different types.
Results are confusing to the user
but fine for Express which differentiates
between variables with the same name but different types.
Without applying canonicalize, the following Expr
may seem to have only one variable:
> fastCanonicalVariations $ i_ -+- ord' c_ [x + ord x :: Int]
Where in fact it has two, as the second x has a different type.
Applying canonicalize disambiguates:
> map canonicalize . fastCanonicalVariations $ i_ -+- ord' c_ [x + ord c :: Int]
This function is useful when resulting Exprs are
not intended to be presented to the user
but instead to be used by another function.
It is simply faster to skip the step where clashes are resolved.
fastMostGeneralVariation :: Expr -> Expr Source #
A faster version of mostGeneralCanonicalVariation
that disregards name clashes across different types.
Consider using mostGeneralCanonicalVariation instead.
The same caveats of fastCanonicalVariations do apply here.
fastMostSpecificVariation :: Expr -> Expr Source #
A faster version of mostSpecificCanonicalVariation
that disregards name clashes across different types.
Consider using mostSpecificCanonicalVariation instead.
The same caveats of fastCanonicalVariations do apply here.
Matching Exprs
match :: Expr -> Expr -> Maybe [(Expr, Expr)] Source #
Given two expressions, returns a Just list of matches
of subexpressions of the first expressions
to variables in the second expression.
Returns Nothing when there is no match.
> let zero = val (0::Int) > let one = val (1::Int) > let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int) > let e1 -+- e2 = value "+" ((+)::Int->Int->Int) :$ e1 :$ e2
> (zero -+- one) `match` (xx -+- yy) Just [(y :: Int,1 :: Int),(x :: Int,0 :: Int)]
> (zero -+- (one -+- two)) `match` (xx -+- yy) Just [(y :: Int,1 + 2 :: Int),(x :: Int,0 :: Int)]
> (zero -+- (one -+- two)) `match` (xx -+- (yy -+- yy)) Nothing
In short:
(zero -+- one) `match` (xx -+- yy) = Just [(xx,zero), (yy,one)] (zero -+- (one -+- two)) `match` (xx -+- yy) = Just [(xx,zero), (yy,one-+-two)] (zero -+- (one -+- two)) `match` (xx -+- (yy -+- yy)) = Nothing
matchWith :: [(Expr, Expr)] -> Expr -> Expr -> Maybe [(Expr, Expr)] Source #
Like match but allowing predefined bindings.
matchWith [(xx,zero)] (zero -+- one) (xx -+- yy) = Just [(xx,zero), (yy,one)] matchWith [(xx,one)] (zero -+- one) (xx -+- yy) = Nothing
isInstanceOf :: Expr -> Expr -> Bool Source #
Given two Exprs,
checks if the first expression
is an instance of the second
in terms of variables.
(cf. encompasses, hasInstanceOf)
> let zero = val (0::Int) > let one = val (1::Int) > let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int) > let e1 -+- e2 = value "+" ((+)::Int->Int->Int) :$ e1 :$ e2
one `isInstanceOf` one = True xx `isInstanceOf` xx = True yy `isInstanceOf` xx = True zero `isInstanceOf` xx = True xx `isInstanceOf` zero = False one `isInstanceOf` zero = False (xx -+- (yy -+- xx)) `isInstanceOf` (xx -+- yy) = True (yy -+- (yy -+- xx)) `isInstanceOf` (xx -+- yy) = True (zero -+- (yy -+- xx)) `isInstanceOf` (zero -+- yy) = True (one -+- (yy -+- xx)) `isInstanceOf` (zero -+- yy) = False
isSubexprOf :: Expr -> Expr -> Bool Source #
O(n^2).
Checks if an Expr is a subexpression of another.
> (xx -+- yy) `isSubexprOf` (zz -+- (xx -+- yy)) True
> (xx -+- yy) `isSubexprOf` abs' (yy -+- xx) False
> xx `isSubexprOf` yy False
encompasses :: Expr -> Expr -> Bool Source #
Given two Exprs,
checks if the first expression
encompasses the second expression
in terms of variables.
This is equivalent to flipping the arguments of isInstanceOf.
zero `encompasses` xx = False xx `encompasses` zero = True
Typeclasses
The Express typeclass
class (Show a, Typeable a) => Express a where Source #
Express typeclass instances provide an expr function
that allows values to be deeply encoded as applications of Exprs.
expr False = val False expr (Just True) = value "Just" (Just :: Bool -> Maybe Bool) :$ val True
The function expr can be contrasted with the function val:
valalways encodes values as atomicValueExprs -- shallow encoding.exprideally encodes expressions as applications (:$) betweenValueExprs -- deep encoding.
Depending on the situation, one or the other may be desirable.
Instances can be automatically derived using the TH function
deriveExpress.
The following example shows a datatype and its instance:
data Stack a = Stack a (Stack a) | Empty
instance Express a => Express (Stack a) where expr s@(Stack x y) = value "Stack" (Stack ->>: s) :$ expr x :$ expr y expr s@Empty = value "Empty" (Empty -: s)
To declare expr it may be useful to use auxiliary type binding operators:
-:, ->:, ->>:, ->>>:, ->>>>:, ->>>>>:, ...
For types with atomic values, just declare expr = val
Instances
deriveExpress :: Name -> DecsQ Source #
deriveExpressCascading :: Name -> DecsQ Source #
deriveExpressIfNeeded :: Name -> DecsQ Source #
Same as deriveExpress but does not warn when instance already exists
(deriveExpress is preferable).
The Name typeclass
If we were to come up with a variable name for the given type
what name would it be?
An instance for a given type Ty is simply given by:
instance Name Ty where name _ = "x"
Examples:
> name (undefined :: Int) "x"
> name (undefined :: Bool) "p"
> name (undefined :: [Int]) "xs"
This is then used to generate an infinite list of variable names:
> names (undefined :: Int) ["x", "y", "z", "x'", "y'", "z'", "x''", "y''", "z''", ...]
> names (undefined :: Bool) ["p", "q", "r", "p'", "q'", "r'", "p''", "q''", "r''", ...]
> names (undefined :: [Int]) ["xs", "ys", "zs", "xs'", "ys'", "zs'", "xs''", "ys''", ...]
Minimal complete definition
Nothing
Methods
O(1).
Returns a name for a variable of the given argument's type.
> name (undefined :: Int) "x"
> name (undefined :: [Bool]) "ps"
> name (undefined :: [Maybe Integer]) "mxs"
The default definition is:
name _ = "x"
Instances
| Name Bool Source # | name (undefined :: Bool) = "p" names (undefined :: Bool) = ["p", "q", "r", "p'", "q'", ...] |
| Name Char Source # | name (undefined :: Char) = "c" names (undefined :: Char) = ["c", "d", "e", "c'", "d'", ...] |
| Name Double Source # | name (undefined :: Double) = "x" names (undefined :: Double) = ["x", "y", "z", "x'", ...] |
| Name Float Source # | name (undefined :: Float) = "x" names (undefined :: Float) = ["x", "y", "z", "x'", ...] |
| Name Int Source # | name (undefined :: Int) = "x" names (undefined :: Int) = ["x", "y", "z", "x'", "y'", ...] |
| Name Integer Source # | name (undefined :: Integer) = "x" names (undefined :: Integer) = ["x", "y", "z", "x'", ...] |
| Name Ordering Source # | name (undefined :: Ordering) = "o" names (undefined :: Ordering) = ["o", "p", "q", "o'", ...] |
| Name Word Source # | |
| Name () Source # | name (undefined :: ()) = "u" names (undefined :: ()) = ["u", "v", "w", "u'", "v'", ...] |
Defined in Data.Express.Name | |
| Name a => Name [a] Source # | names (undefined :: [Int]) = ["xs", "ys", "zs", "xs'", ...] names (undefined :: [Bool]) = ["ps", "qs", "rs", "ps'", ...] |
Defined in Data.Express.Name | |
| Name a => Name (Maybe a) Source # | names (undefined :: Maybe Int) = ["mx", "mx1", "mx2", ...] nemes (undefined :: Maybe Bool) = ["mp", "mp1", "mp2", ...] |
| Name (Ratio a) Source # | name (undefined :: Rational) = "q" names (undefined :: Rational) = ["q", "r", "s", "q'", ...] |
| Name (a -> b) Source # | names (undefined :: ()->()) = ["f", "g", "h", "f'", ...] names (undefined :: Int->Int) = ["f", "g", "h", ...] |
Defined in Data.Express.Name | |
| (Name a, Name b) => Name (Either a b) Source # | names (undefined :: Either Int Int) = ["exy", "exy1", ...] names (undefined :: Either Int Bool) = ["exp", "exp1", ...] |
| (Name a, Name b) => Name (a, b) Source # | names (undefined :: (Int,Int)) = ["xy", "zw", "xy'", ...] names (undefined :: (Bool,Bool)) = ["pq", "rs", "pq'", ...] |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c) => Name (a, b, c) Source # | names (undefined :: (Int,Int,Int)) = ["xyz","uvw", ...] names (undefined :: (Int,Bool,Char)) = ["xpc", "xpc1", ...] |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d) => Name (a, b, c, d) Source # | names (undefined :: ((),(),(),())) = ["uuuu", "uuuu1", ...] names (undefined :: (Int,Int,Int,Int)) = ["xxxx", ...] |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e) => Name (a, b, c, d, e) Source # | |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e, Name f) => Name (a, b, c, d, e, f) Source # | |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e, Name f, Name g) => Name (a, b, c, d, e, f, g) Source # | |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e, Name f, Name g, Name h) => Name (a, b, c, d, e, f, g, h) Source # | |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e, Name f, Name g, Name h, Name i) => Name (a, b, c, d, e, f, g, h, i) Source # | |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e, Name f, Name g, Name h, Name i, Name j) => Name (a, b, c, d, e, f, g, h, i, j) Source # | |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e, Name f, Name g, Name h, Name i, Name j, Name k) => Name (a, b, c, d, e, f, g, h, i, j, k) Source # | |
Defined in Data.Express.Name | |
| (Name a, Name b, Name c, Name d, Name e, Name f, Name g, Name h, Name i, Name j, Name k, Name l) => Name (a, b, c, d, e, f, g, h, i, j, k, l) Source # | |
Defined in Data.Express.Name | |
names :: Name a => a -> [String] Source #
Returns na infinite list of variable names from the given type:
the result of variableNamesFromTemplate after name.
> names (undefined :: Int) ["x", "y", "z", "x'", "y'", "z'", "x''", "y''", "z''", ...]
> names (undefined :: Bool) ["p", "q", "r", "p'", "q'", "r'", "p''", "q''", "r''", ...]
> names (undefined :: [Int]) ["xs", "ys", "zs", "xs'", "ys'", "zs'", "xs''", "ys''", ...]
variableNamesFromTemplate :: String -> [String] Source #
Returns an infinite list of variable names based on the given template.
> variableNamesFromTemplate "x" ["x", "y", "z", "x'", "y'", ...]
> variableNamesFromTemplate "p" ["p", "q", "r", "p'", "q'", ...]
> variableNamesFromTemplate "xy" ["xy", "zw", "xy'", "zw'", "xy''", ...]
deriveName :: Name -> DecsQ Source #
deriveNameCascading :: Name -> DecsQ Source #
deriveNameIfNeeded :: Name -> DecsQ Source #
Same as deriveName but does not warn when instance already exists
(deriveName is preferable).
Typeclass instances as Exprs
reifyEq :: (Typeable a, Eq a) => a -> [Expr] Source #
O(1).
Reifies an Eq instance into a list of Exprs.
The list will contain == and /= for the given type.
(cf. mkEq, mkEquation)
> reifyEq (undefined :: Int) [ (==) :: Int -> Int -> Bool , (/=) :: Int -> Int -> Bool ]
> reifyEq (undefined :: Bool) [ (==) :: Bool -> Bool -> Bool , (/=) :: Bool -> Bool -> Bool ]
> reifyEq (undefined :: String) [ (==) :: [Char] -> [Char] -> Bool , (/=) :: [Char] -> [Char] -> Bool ]
reifyOrd :: (Typeable a, Ord a) => a -> [Expr] Source #
O(1).
Reifies an Ord instance into a list of Exprs.
The list will contain compare, <= and < for the given type.
(cf. mkOrd, mkOrdLessEqual, mkComparisonLE, mkComparisonLT)
> reifyOrd (undefined :: Int) [ (<=) :: Int -> Int -> Bool , (<) :: Int -> Int -> Bool ]
> reifyOrd (undefined :: Bool) [ (<=) :: Bool -> Bool -> Bool , (<) :: Bool -> Bool -> Bool ]
> reifyOrd (undefined :: [Bool]) [ (<=) :: [Bool] -> [Bool] -> Bool , (<) :: [Bool] -> [Bool] -> Bool ]
reifyName :: (Typeable a, Name a) => a -> [Expr] Source #
O(1).
Reifies a Name instance into a list of Exprs.
The list will contain name for the given type.
(cf. mkName, lookupName, lookupNames)
> reifyName (undefined :: Int) [name :: Int -> [Char]]
> reifyName (undefined :: Bool) [name :: Bool -> [Char]]
mkOrd :: Typeable a => (a -> a -> Ordering) -> [Expr] Source #
O(1).
Builds a reified Ord instance from the given compare function.
(cf. reifyOrd, mkOrdLessEqual)
mkName :: Typeable a => (a -> String) -> [Expr] Source #
O(1).
Builds a reified Name instance from the given name function.
(cf. reifyName, mkNameWith)
isEq :: [Expr] -> Expr -> Bool Source #
O(n+m).
Returns whether an Eq instance exists in the given instances list
for the given Expr.
> isEq (reifyEqOrd (undefined :: Int)) (val (0::Int)) True
> isEq (reifyEqOrd (undefined :: Int)) (val ([[[0::Int]]])) False
Given that the instances list has length m
and that the given Expr has size n,
this function is O(n+m).
isOrd :: [Expr] -> Expr -> Bool Source #
O(n+m).
Returns whether an Ord instance exists in the given instances list
for the given Expr.
> isOrd (reifyEqOrd (undefined :: Int)) (val (0::Int)) True
> isOrd (reifyEqOrd (undefined :: Int)) (val ([[[0::Int]]])) False
Given that the instances list has length m
and that the given Expr has size n,
this function is O(n+m).
isEqT :: [Expr] -> TypeRep -> Bool Source #
O(n).
Returns whether an Eq instance exists in the given instances list
for the given TypeRep.
> isEqT (reifyEqOrd (undefined :: Int)) (typeOf (undefined :: Int)) True
> isEqT (reifyEqOrd (undefined :: Int)) (typeOf (undefined :: [[[Int]]])) False
Given that the instances list has length n, this function is O(n).
isOrdT :: [Expr] -> TypeRep -> Bool Source #
O(n).
Returns whether an Ord instance exists in the given instances list
for the given TypeRep.
> isOrdT (reifyEqOrd (undefined :: Int)) (typeOf (undefined :: Int)) True
> isOrdT (reifyEqOrd (undefined :: Int)) (typeOf (undefined :: [[[Int]]])) False
Given that the instances list has length n, this function is O(n).
mkComparison :: String -> [Expr] -> Expr -> Expr -> Expr Source #
O(n+m).
Like mkEquation, mkComparisonLE and mkComparisonLT
but allows providing the binary operator name.
When not possible, this function returns False encoded as an Expr.
lookupComparison :: String -> TypeRep -> [Expr] -> Maybe Expr Source #
O(n).
Lookups for a comparison function (:: a -> a -> Bool)
with the given name and argument type.
listVarsWith :: [Expr] -> Expr -> [Expr] Source #
O(n+m).
Like lookupNames but returns a list of variables encoded as Exprs.
lookupNames :: [Expr] -> Expr -> [String] Source #
O(n+m).
A mix between lookupName and names:
this returns an infinite list of names
based on an instances list and an Expr.