extensible-0.4: Extensible, efficient, optics-friendly data types and effects

Copyright(c) Fumiaki Kinoshita 2017
LicenseBSD3
MaintainerFumiaki Kinoshita <fumiexcel@gmail.com>
Safe HaskellNone
LanguageHaskell2010

Data.Extensible.Field

Contents

Description

Flexible records and variants

Synopsis

Documentation

newtype Field h kv Source #

A Field h (k ':> v) is h v annotated with the field name k.

Field :: (v -> *) -> Assoc k v -> *

Constructors

Field 

Fields

Instances

Wrapper v h => Wrapper (Assoc k v) (Field k v h) Source # 

Associated Types

type Repr (Field k v h) (h :: Field k v h -> *) (v :: Field k v h) :: * Source #

Methods

_Wrapper :: (Functor f, Profunctor p) => Optic' * * p f (h v) (Repr (Field k v h) h v) Source #

Bounded (h (AssocValue k v kv)) => Bounded (Field k v h kv) Source # 

Methods

minBound :: Field k v h kv #

maxBound :: Field k v h kv #

Enum (h (AssocValue k v kv)) => Enum (Field k v h kv) Source # 

Methods

succ :: Field k v h kv -> Field k v h kv #

pred :: Field k v h kv -> Field k v h kv #

toEnum :: Int -> Field k v h kv #

fromEnum :: Field k v h kv -> Int #

enumFrom :: Field k v h kv -> [Field k v h kv] #

enumFromThen :: Field k v h kv -> Field k v h kv -> [Field k v h kv] #

enumFromTo :: Field k v h kv -> Field k v h kv -> [Field k v h kv] #

enumFromThenTo :: Field k v h kv -> Field k v h kv -> Field k v h kv -> [Field k v h kv] #

Eq (h (AssocValue k v kv)) => Eq (Field k v h kv) Source # 

Methods

(==) :: Field k v h kv -> Field k v h kv -> Bool #

(/=) :: Field k v h kv -> Field k v h kv -> Bool #

Floating (h (AssocValue k v kv)) => Floating (Field k v h kv) Source # 

Methods

pi :: Field k v h kv #

exp :: Field k v h kv -> Field k v h kv #

log :: Field k v h kv -> Field k v h kv #

sqrt :: Field k v h kv -> Field k v h kv #

(**) :: Field k v h kv -> Field k v h kv -> Field k v h kv #

logBase :: Field k v h kv -> Field k v h kv -> Field k v h kv #

sin :: Field k v h kv -> Field k v h kv #

cos :: Field k v h kv -> Field k v h kv #

tan :: Field k v h kv -> Field k v h kv #

asin :: Field k v h kv -> Field k v h kv #

acos :: Field k v h kv -> Field k v h kv #

atan :: Field k v h kv -> Field k v h kv #

sinh :: Field k v h kv -> Field k v h kv #

cosh :: Field k v h kv -> Field k v h kv #

tanh :: Field k v h kv -> Field k v h kv #

asinh :: Field k v h kv -> Field k v h kv #

acosh :: Field k v h kv -> Field k v h kv #

atanh :: Field k v h kv -> Field k v h kv #

log1p :: Field k v h kv -> Field k v h kv #

expm1 :: Field k v h kv -> Field k v h kv #

log1pexp :: Field k v h kv -> Field k v h kv #

log1mexp :: Field k v h kv -> Field k v h kv #

Fractional (h (AssocValue k v kv)) => Fractional (Field k v h kv) Source # 

Methods

(/) :: Field k v h kv -> Field k v h kv -> Field k v h kv #

recip :: Field k v h kv -> Field k v h kv #

fromRational :: Rational -> Field k v h kv #

Integral (h (AssocValue k v kv)) => Integral (Field k v h kv) Source # 

Methods

quot :: Field k v h kv -> Field k v h kv -> Field k v h kv #

rem :: Field k v h kv -> Field k v h kv -> Field k v h kv #

div :: Field k v h kv -> Field k v h kv -> Field k v h kv #

mod :: Field k v h kv -> Field k v h kv -> Field k v h kv #

quotRem :: Field k v h kv -> Field k v h kv -> (Field k v h kv, Field k v h kv) #

divMod :: Field k v h kv -> Field k v h kv -> (Field k v h kv, Field k v h kv) #

toInteger :: Field k v h kv -> Integer #

Num (h (AssocValue k v kv)) => Num (Field k v h kv) Source # 

Methods

(+) :: Field k v h kv -> Field k v h kv -> Field k v h kv #

(-) :: Field k v h kv -> Field k v h kv -> Field k v h kv #

(*) :: Field k v h kv -> Field k v h kv -> Field k v h kv #

negate :: Field k v h kv -> Field k v h kv #

abs :: Field k v h kv -> Field k v h kv #

signum :: Field k v h kv -> Field k v h kv #

fromInteger :: Integer -> Field k v h kv #

Ord (h (AssocValue k v kv)) => Ord (Field k v h kv) Source # 

Methods

compare :: Field k v h kv -> Field k v h kv -> Ordering #

(<) :: Field k v h kv -> Field k v h kv -> Bool #

(<=) :: Field k v h kv -> Field k v h kv -> Bool #

(>) :: Field k v h kv -> Field k v h kv -> Bool #

(>=) :: Field k v h kv -> Field k v h kv -> Bool #

max :: Field k v h kv -> Field k v h kv -> Field k v h kv #

min :: Field k v h kv -> Field k v h kv -> Field k v h kv #

Real (h (AssocValue k v kv)) => Real (Field k v h kv) Source # 

Methods

toRational :: Field k v h kv -> Rational #

RealFloat (h (AssocValue k v kv)) => RealFloat (Field k v h kv) Source # 

Methods

floatRadix :: Field k v h kv -> Integer #

floatDigits :: Field k v h kv -> Int #

floatRange :: Field k v h kv -> (Int, Int) #

decodeFloat :: Field k v h kv -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Field k v h kv #

exponent :: Field k v h kv -> Int #

significand :: Field k v h kv -> Field k v h kv #

scaleFloat :: Int -> Field k v h kv -> Field k v h kv #

isNaN :: Field k v h kv -> Bool #

isInfinite :: Field k v h kv -> Bool #

isDenormalized :: Field k v h kv -> Bool #

isNegativeZero :: Field k v h kv -> Bool #

isIEEE :: Field k v h kv -> Bool #

atan2 :: Field k v h kv -> Field k v h kv -> Field k v h kv #

RealFrac (h (AssocValue k v kv)) => RealFrac (Field k v h kv) Source # 

Methods

properFraction :: Integral b => Field k v h kv -> (b, Field k v h kv) #

truncate :: Integral b => Field k v h kv -> b #

round :: Integral b => Field k v h kv -> b #

ceiling :: Integral b => Field k v h kv -> b #

floor :: Integral b => Field k v h kv -> b #

(KnownSymbol k, Wrapper v h, Show (Repr v h v1)) => Show (Field Symbol v h ((:>) Symbol v k v1)) Source #

Shows in field @= value style instead of the derived one.

Methods

showsPrec :: Int -> Field Symbol v h ((Symbol :> v) k v1) -> ShowS #

show :: Field Symbol v h ((Symbol :> v) k v1) -> String #

showList :: [Field Symbol v h ((Symbol :> v) k v1)] -> ShowS #

Semigroup (h (AssocValue k v kv)) => Semigroup (Field k v h kv) Source # 

Methods

(<>) :: Field k v h kv -> Field k v h kv -> Field k v h kv #

sconcat :: NonEmpty (Field k v h kv) -> Field k v h kv #

stimes :: Integral b => b -> Field k v h kv -> Field k v h kv #

Monoid (h (AssocValue k v kv)) => Monoid (Field k v h kv) Source # 

Methods

mempty :: Field k v h kv #

mappend :: Field k v h kv -> Field k v h kv -> Field k v h kv #

mconcat :: [Field k v h kv] -> Field k v h kv #

Storable (h (AssocValue k v kv)) => Storable (Field k v h kv) Source # 

Methods

sizeOf :: Field k v h kv -> Int #

alignment :: Field k v h kv -> Int #

peekElemOff :: Ptr (Field k v h kv) -> Int -> IO (Field k v h kv) #

pokeElemOff :: Ptr (Field k v h kv) -> Int -> Field k v h kv -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Field k v h kv) #

pokeByteOff :: Ptr b -> Int -> Field k v h kv -> IO () #

peek :: Ptr (Field k v h kv) -> IO (Field k v h kv) #

poke :: Ptr (Field k v h kv) -> Field k v h kv -> IO () #

NFData (h (AssocValue k v kv)) => NFData (Field k v h kv) Source # 

Methods

rnf :: Field k v h kv -> () #

type Repr (Assoc k v) (Field k v h) kv Source # 
type Repr (Assoc k v) (Field k v h) kv = Repr v h (AssocValue k v kv)

(@=) :: Wrapper h => FieldName k -> Repr h v -> Field h (k :> v) infix 1 Source #

Annotate a value by the field name.

(<@=>) :: (Functor f, Wrapper h) => FieldName k -> f (Repr h v) -> Comp f (Field h) (k :> v) infix 1 Source #

Lifted (@=)

(@:>) :: FieldName k -> h v -> Field h (k :> v) infix 1 Source #

Annotate a value by the field name without Wrapper.

type FieldOptic k = forall kind. forall f p t xs h v. (Extensible f p t, Associate k v xs, Labelling k p, Wrapper h) => Optic' p f (t (Field h) xs) (Repr h v) Source #

FieldOptic s is a type of optics that points a field/constructor named s.

The yielding fields can be Lenses for Records and Prisms for Variants.

FieldOptic "foo" = Associate "foo" a xs => Lens' (Record xs) a
FieldOptic "foo" = Associate "foo" a xs => Prism' (Variant xs) a

FieldOptics can be generated using mkField defined in the Data.Extensible.TH module.

type FieldName k = Optic' (LabelPhantom k) Proxy (Inextensible (Field Proxy) '[k :> ()]) () Source #

When you see this type as an argument, it expects a FieldLens. This type is used to resolve the name of the field internally.

liftField :: (g (AssocValue kv) -> h (AssocValue kv)) -> Field g kv -> Field h kv Source #

Lift a function for the content.

liftField2 :: (f (AssocValue kv) -> g (AssocValue kv) -> h (AssocValue kv)) -> Field f kv -> Field g kv -> Field h kv Source #

Lift a function for the content.

Records and variants

type RecordOf h = (:*) (Field h) Source #

The type of records which contain several fields.

RecordOf :: (v -> *) -> [Assoc k v] -> *

type Record = RecordOf Identity Source #

Simple record

emptyRecord :: Record '[] Source #

An empty Record.

type VariantOf h = (:|) (Field h) Source #

The dual of RecordOf

VariantOf :: (v -> *) -> [Assoc k v] -> *

type Variant = VariantOf Identity Source #

Simple variant

Matching

matchWithField :: (forall x. f x -> g x -> r) -> RecordOf f xs -> VariantOf g xs -> r Source #

Select a corresponding field of a variant.

matchField :: RecordOf (Match h r) xs -> VariantOf h xs -> r Source #

Pattern matching on a Variant

Key / value

type family AssocKey (kv :: Assoc k v) :: k where ... Source #

Take the type of the key

Equations

AssocKey (k :> v) = k 

type family AssocValue (kv :: Assoc k v) :: v where ... Source #

Take the type of the value

Equations

AssocValue (k :> v) = v 

class (pk (AssocKey kv), pv (AssocValue kv)) => KeyValue pk pv kv Source #

Combined constraint for Assoc

Instances

(pk k1, pv v1) => KeyValue v k pk pv ((:>) k v k1 v1) Source # 

proxyAssocKey :: proxy kv -> Proxy (AssocKey kv) Source #

Proxy-level AssocKey. This is useful when using symbolVal.

Internal

data LabelPhantom s a b Source #

A ghostly type which spells the field name

Instances

Profunctor (LabelPhantom * * k s) Source # 

Methods

dimap :: (a -> b) -> (c -> d) -> LabelPhantom * * k s b c -> LabelPhantom * * k s a d #

lmap :: (a -> b) -> LabelPhantom * * k s b c -> LabelPhantom * * k s a c #

rmap :: (b -> c) -> LabelPhantom * * k s a b -> LabelPhantom * * k s a c #

(#.) :: Coercible * c b => (b -> c) -> LabelPhantom * * k s a b -> LabelPhantom * * k s a c #

(.#) :: Coercible * b a => LabelPhantom * * k s b c -> (a -> b) -> LabelPhantom * * k s a c #

type family Labelling s p :: Constraint where ... Source #

Signifies a field name internally

Equations

Labelling s (LabelPhantom t) = s ~ t 
Labelling s p = () 

data Inextensible h xs Source #

The trivial inextensible data type

Instances

(Functor f, Profunctor p) => Extensible k f p (Inextensible k) Source # 

Methods

pieceAt :: Membership f xs x -> Optic' * * (Inextensible k) p (t h xs) (h x) Source #