| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Control.Eff.Concurrent
Contents
Description
Erlang style processes with message passing concurrency based on
(more) extensible-effects.
This module re-exports most of the library.
There are several scheduler implementations to choose from.
This module re-exports Control.Eff.Concurrent.Process.ForkIOScheduler.
To use another scheduler implementation, don't import this module, but instead import one of:
Synopsis
- newtype ProcessId = ProcessId {}
- data ProcessDown = ProcessDown {}
- data MonitorReference = MonitorReference {}
- data SomeExitReason where
- SomeExitReason :: Interrupt x -> SomeExitReason
- type Interrupts = Exc (Interrupt Recoverable)
- type HasSafeProcesses e inner = SetMember Process (Process inner) e
- type SafeProcesses r = Process r ': r
- type HasProcesses e inner = (HasSafeProcesses e inner, Member Interrupts e)
- type Processes e = Interrupts ': SafeProcesses e
- type RecoverableInterrupt = Interrupt Recoverable
- data Interrupt (t :: ExitRecovery) where
- NormalExitRequested :: Interrupt Recoverable
- NormalExitRequestedWith :: forall a. (Typeable a, Show a, NFData a) => a -> Interrupt Recoverable
- OtherProcessNotRunning :: ProcessId -> Interrupt Recoverable
- TimeoutInterrupt :: String -> Interrupt Recoverable
- LinkedProcessCrashed :: ProcessId -> Interrupt Recoverable
- ErrorInterrupt :: String -> Interrupt Recoverable
- InterruptedBy :: forall a. (Typeable a, Show a, NFData a) => a -> Interrupt Recoverable
- ExitNormally :: Interrupt NoRecovery
- ExitNormallyWith :: forall a. (Typeable a, Show a, NFData a) => a -> Interrupt NoRecovery
- ExitUnhandledError :: Text -> Interrupt NoRecovery
- ExitProcessCancelled :: Maybe ProcessId -> Interrupt NoRecovery
- ExitOtherProcessNotRunning :: ProcessId -> Interrupt NoRecovery
- data ExitSeverity
- = NormalExit
- | Crash
- data ExitRecovery
- data MessageSelector a
- data ResumeProcess v where
- Interrupted :: Interrupt Recoverable -> ResumeProcess v
- ResumeWith :: a -> ResumeProcess a
- newtype Serializer message = MkSerializer {
- runSerializer :: message -> StrictDynamic
- data StrictDynamic
- newtype Timeout = TimeoutMicros {}
- newtype ProcessDetails = MkProcessDetails {}
- newtype ProcessTitle = MkProcessTitle {}
- data Process (r :: [Type -> Type]) b where
- FlushMessages :: Process r (ResumeProcess [StrictDynamic])
- YieldProcess :: Process r (ResumeProcess ())
- Delay :: Timeout -> Process r (ResumeProcess ())
- SelfPid :: Process r (ResumeProcess ProcessId)
- Spawn :: ProcessTitle -> Eff (Process r ': r) () -> Process r (ResumeProcess ProcessId)
- SpawnLink :: ProcessTitle -> Eff (Process r ': r) () -> Process r (ResumeProcess ProcessId)
- Shutdown :: Interrupt NoRecovery -> Process r a
- SendShutdown :: ProcessId -> Interrupt NoRecovery -> Process r (ResumeProcess ())
- SendInterrupt :: ProcessId -> Interrupt Recoverable -> Process r (ResumeProcess ())
- SendMessage :: ProcessId -> StrictDynamic -> Process r (ResumeProcess ())
- ReceiveSelectedMessage :: forall r a. MessageSelector a -> Process r (ResumeProcess a)
- MakeReference :: Process r (ResumeProcess Int)
- Monitor :: ProcessId -> Process r (ResumeProcess MonitorReference)
- Demonitor :: MonitorReference -> Process r (ResumeProcess ())
- Link :: ProcessId -> Process r (ResumeProcess ())
- Unlink :: ProcessId -> Process r (ResumeProcess ())
- UpdateProcessDetails :: ProcessDetails -> Process r (ResumeProcess ())
- GetProcessState :: ProcessId -> Process r (ResumeProcess (Maybe (ProcessTitle, ProcessDetails, ProcessState)))
- fromProcessTitle :: Lens' ProcessTitle Text
- fromProcessDetails :: Lens' ProcessDetails Text
- toStrictDynamic :: (Typeable a, NFData a) => a -> StrictDynamic
- fromStrictDynamic :: Typeable a => StrictDynamic -> Maybe a
- unwrapStrictDynamic :: StrictDynamic -> Dynamic
- selectMessage :: Typeable t => MessageSelector t
- filterMessage :: Typeable a => (a -> Bool) -> MessageSelector a
- selectMessageWith :: Typeable a => (a -> Maybe b) -> MessageSelector b
- selectDynamicMessage :: (StrictDynamic -> Maybe a) -> MessageSelector a
- selectAnyMessage :: MessageSelector StrictDynamic
- toExitRecovery :: Interrupt r -> ExitRecovery
- toExitSeverity :: Interrupt e -> ExitSeverity
- interruptToExit :: Interrupt Recoverable -> Interrupt NoRecovery
- isProcessDownInterrupt :: Maybe ProcessId -> Interrupt r -> Bool
- provideInterruptsShutdown :: forall e a. Eff (Processes e) a -> Eff (SafeProcesses e) a
- handleInterrupts :: (HasCallStack, Member Interrupts r) => (Interrupt Recoverable -> Eff r a) -> Eff r a -> Eff r a
- tryUninterrupted :: (HasCallStack, Member Interrupts r) => Eff r a -> Eff r (Either (Interrupt Recoverable) a)
- logInterrupts :: forall r. (Member Logs r, HasCallStack, Member Interrupts r) => Eff r () -> Eff r ()
- exitOnInterrupt :: (HasCallStack, HasProcesses r q) => Eff r a -> Eff r a
- provideInterrupts :: HasCallStack => Eff (Interrupts ': r) a -> Eff r (Either (Interrupt Recoverable) a)
- mergeEitherInterruptAndExitReason :: Either (Interrupt Recoverable) (Interrupt NoRecovery) -> Interrupt NoRecovery
- interrupt :: (HasCallStack, Member Interrupts r) => Interrupt Recoverable -> Eff r a
- isCrash :: Interrupt x -> Bool
- isRecoverable :: Interrupt x -> Bool
- fromSomeExitReason :: SomeExitReason -> Either (Interrupt NoRecovery) (Interrupt Recoverable)
- toCrashReason :: Interrupt x -> Maybe Text
- logProcessExit :: forall e x. (Member Logs e, HasCallStack) => Interrupt x -> Eff e ()
- executeAndResume :: forall q r v. (HasSafeProcesses r q, HasCallStack) => Process q (ResumeProcess v) -> Eff r (Either (Interrupt Recoverable) v)
- executeAndResumeOrExit :: forall r q v. (HasSafeProcesses r q, HasCallStack) => Process q (ResumeProcess v) -> Eff r v
- executeAndResumeOrThrow :: forall q r v. (HasProcesses r q, HasCallStack) => Process q (ResumeProcess v) -> Eff r v
- yieldProcess :: forall r q. (HasProcesses r q, HasCallStack) => Eff r ()
- delay :: forall r q. (HasProcesses r q, HasCallStack) => Timeout -> Eff r ()
- sendMessage :: forall o r q. (HasProcesses r q, HasCallStack, Typeable o, NFData o) => ProcessId -> o -> Eff r ()
- sendAnyMessage :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> StrictDynamic -> Eff r ()
- sendShutdown :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Interrupt NoRecovery -> Eff r ()
- sendInterrupt :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Interrupt Recoverable -> Eff r ()
- spawn :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (Processes q) () -> Eff r ProcessId
- spawn_ :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (Processes q) () -> Eff r ()
- spawnLink :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (Processes q) () -> Eff r ProcessId
- spawnRaw :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (SafeProcesses q) () -> Eff r ProcessId
- spawnRaw_ :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (SafeProcesses q) () -> Eff r ()
- isProcessAlive :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r Bool
- getProcessState :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r (Maybe (ProcessTitle, ProcessDetails, ProcessState))
- updateProcessDetails :: forall r q. (HasCallStack, HasProcesses r q) => ProcessDetails -> Eff r ()
- receiveAnyMessage :: forall r q. (HasCallStack, HasProcesses r q) => Eff r StrictDynamic
- receiveSelectedMessage :: forall r q a. (HasCallStack, Show a, HasProcesses r q) => MessageSelector a -> Eff r a
- receiveMessage :: forall a r q. (HasCallStack, Typeable a, NFData a, Show a, HasProcesses r q) => Eff r a
- flushMessages :: forall r q. (HasCallStack, HasProcesses r q) => Eff r [StrictDynamic]
- receiveSelectedLoop :: forall r q a endOfLoopResult. (HasSafeProcesses r q, HasCallStack) => MessageSelector a -> (Either (Interrupt Recoverable) a -> Eff r (Maybe endOfLoopResult)) -> Eff r endOfLoopResult
- receiveAnyLoop :: forall r q endOfLoopResult. (HasSafeProcesses r q, HasCallStack) => (Either (Interrupt Recoverable) StrictDynamic -> Eff r (Maybe endOfLoopResult)) -> Eff r endOfLoopResult
- receiveLoop :: forall r q a endOfLoopResult. (HasSafeProcesses r q, HasCallStack, NFData a, Typeable a) => (Either (Interrupt Recoverable) a -> Eff r (Maybe endOfLoopResult)) -> Eff r endOfLoopResult
- self :: (HasCallStack, HasSafeProcesses r q) => Eff r ProcessId
- makeReference :: (HasCallStack, HasProcesses r q) => Eff r Int
- monitor :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r MonitorReference
- demonitor :: forall r q. (HasCallStack, HasProcesses r q) => MonitorReference -> Eff r ()
- withMonitor :: (HasCallStack, HasProcesses r q) => ProcessId -> (MonitorReference -> Eff r a) -> Eff r a
- receiveWithMonitor :: (HasCallStack, HasProcesses r q, Typeable a, Show a) => ProcessId -> MessageSelector a -> Eff r (Either ProcessDown a)
- becauseProcessIsDown :: ProcessDown -> Interrupt Recoverable
- selectProcessDown :: MonitorReference -> MessageSelector ProcessDown
- selectProcessDownByProcessId :: ProcessId -> MessageSelector ProcessDown
- linkProcess :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r ()
- unlinkProcess :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r ()
- exitBecause :: forall r q a. (HasCallStack, HasSafeProcesses r q) => Interrupt NoRecovery -> Eff r a
- exitNormally :: forall r q a. (HasCallStack, HasSafeProcesses r q) => Eff r a
- exitWithError :: forall r q a. (HasCallStack, HasSafeProcesses r q) => String -> Eff r a
- data Receiver a = (NFData out, Typeable out, Show out) => Receiver {
- _receiverPid :: ProcessId
- _receiverSerializer :: a -> out
- fromProcessId :: Iso' ProcessId Int
- sendToReceiver :: (NFData o, HasProcesses r q) => Receiver o -> o -> Eff r ()
- receiverPid :: forall a. Lens' (Receiver a) ProcessId
- type BaseEffects = Reader SchedulerState ': LoggingAndIo
- type HasBaseEffects r = (HasCallStack, Lifted IO r, BaseEffects <:: r)
- type Effects = Processes BaseEffects
- type SafeEffects = SafeProcesses BaseEffects
- defaultMain :: HasCallStack => Eff Effects () -> IO ()
- defaultMainWithLogWriter :: HasCallStack => LogWriter -> Eff Effects () -> IO ()
- schedule :: HasCallStack => Eff Effects () -> Eff LoggingAndIo ()
- data TimerElapsed
- data TimerReference
- receiveAfter :: forall a r q. (HasCallStack, HasProcesses r q, Typeable a, NFData a, Show a) => Timeout -> Eff r (Maybe a)
- receiveSelectedAfter :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => MessageSelector a -> Timeout -> Eff r (Either TimerElapsed a)
- receiveSelectedWithMonitorAfter :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => ProcessId -> MessageSelector a -> Timeout -> Eff r (Either (Either ProcessDown TimerElapsed) a)
- receiveAfterWithTitle :: forall a r q. (HasCallStack, HasProcesses r q, Typeable a, NFData a, Show a) => Timeout -> ProcessTitle -> Eff r (Maybe a)
- receiveSelectedAfterWithTitle :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => MessageSelector a -> Timeout -> ProcessTitle -> Eff r (Either TimerElapsed a)
- receiveSelectedWithMonitorAfterWithTitle :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => ProcessId -> MessageSelector a -> Timeout -> ProcessTitle -> Eff r (Either (Either ProcessDown TimerElapsed) a)
- selectTimerElapsed :: TimerReference -> MessageSelector TimerElapsed
- sendAfter :: forall r q message. (HasCallStack, HasProcesses r q, Typeable message, NFData message) => ProcessId -> Timeout -> (TimerReference -> message) -> Eff r TimerReference
- sendAfterWithTitle :: forall r q message. (HasCallStack, HasProcesses r q, Typeable message, NFData message) => ProcessTitle -> ProcessId -> Timeout -> (TimerReference -> message) -> Eff r TimerReference
- startTimerWithTitle :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Timeout -> Eff r TimerReference
- startTimer :: forall r q. (HasCallStack, HasProcesses r q) => Timeout -> Eff r TimerReference
- cancelTimer :: forall r q. (HasCallStack, HasProcesses r q) => TimerReference -> Eff r ()
- class (Typeable protocol, Typeable embeddedProtocol) => HasPduPrism protocol embeddedProtocol where
- embeddedPdu :: forall (result :: Synchronicity). Prism' (Pdu protocol result) (Pdu embeddedProtocol result)
- embedPdu :: forall (result :: Synchronicity). Pdu embeddedProtocol result -> Pdu protocol result
- fromPdu :: forall (result :: Synchronicity). Pdu protocol result -> Maybe (Pdu embeddedProtocol result)
- type family ProtocolReply (s :: Synchronicity) where ...
- data Synchronicity
- type TangiblePdu p r = (Typeable p, Typeable r, Tangible (Pdu p r), HasPdu p)
- type Tangible i = (NFData i, Typeable i, Show i)
- type Embeds outer inner = (HasPduPrism outer inner, CheckEmbeds outer inner, HasPdu outer)
- class Typeable protocol => HasPdu (protocol :: Type) where
- type EmbeddedPduList protocol :: [Type]
- data Pdu protocol (reply :: Synchronicity)
- newtype Endpoint protocol = Endpoint {}
- proxyAsEndpoint :: proxy protocol -> ProcessId -> Endpoint protocol
- asEndpoint :: forall protocol. ProcessId -> Endpoint protocol
- toEmbeddedEndpoint :: forall inner outer. Embeds outer inner => Endpoint outer -> Endpoint inner
- fromEmbeddedEndpoint :: forall outer inner. HasPduPrism outer inner => Endpoint inner -> Endpoint outer
- fromEndpoint :: forall protocol protocol. Iso (Endpoint protocol) (Endpoint protocol) ProcessId ProcessId
- type EndpointReader o = Reader (Endpoint o)
- type HasEndpointReader o r = (Typeable o, Member (EndpointReader o) r)
- cast :: forall destination protocol r q. (HasCallStack, HasProcesses r q, HasPdu destination, HasPdu protocol, Tangible (Pdu destination Asynchronous), Embeds destination protocol) => Endpoint destination -> Pdu protocol Asynchronous -> Eff r ()
- call :: forall result destination protocol r q. (HasProcesses r q, TangiblePdu destination (Synchronous result), TangiblePdu protocol (Synchronous result), Tangible result, Embeds destination protocol, HasCallStack) => Endpoint destination -> Pdu protocol (Synchronous result) -> Eff r result
- callWithTimeout :: forall result destination protocol r q. (HasProcesses r q, TangiblePdu destination (Synchronous result), TangiblePdu protocol (Synchronous result), Tangible result, Member Logs r, HasCallStack, Embeds destination protocol) => Endpoint destination -> Pdu protocol (Synchronous result) -> Timeout -> Eff r result
- runEndpointReader :: HasCallStack => Endpoint o -> Eff (EndpointReader o ': r) a -> Eff r a
- askEndpoint :: Member (EndpointReader o) e => Eff e (Endpoint o)
- callEndpointReader :: forall reply o r q. (HasEndpointReader o r, HasCallStack, Tangible reply, TangiblePdu o (Synchronous reply), HasProcesses r q, Embeds o o) => Pdu o (Synchronous reply) -> Eff r reply
- castEndpointReader :: forall o r q. (HasEndpointReader o r, HasProcesses r q, Tangible (Pdu o Asynchronous), HasCallStack, HasPdu o, Embeds o o) => Pdu o Asynchronous -> Eff r ()
- callSingleton :: forall outer inner reply q e. (HasCallStack, Member (EndpointReader outer) e, Embeds outer inner, Embeds outer outer, HasProcesses e q, TangiblePdu outer (Synchronous reply), TangiblePdu inner (Synchronous reply), Tangible reply) => Pdu inner (Synchronous reply) -> Eff e reply
- castSingleton :: forall outer inner q e. (HasCallStack, Member (EndpointReader outer) e, Tangible (Pdu outer Asynchronous), HasProcesses e q, HasPdu outer, HasPdu inner, Embeds outer inner, Embeds outer outer) => Pdu inner Asynchronous -> Eff e ()
- newtype ReplyTarget p r = MkReplyTarget (Arg (RequestOrigin p r) (Serializer (Reply p r)))
- data RequestOrigin (proto :: Type) reply = RequestOrigin {}
- data Reply protocol reply where
- data Request protocol where
- Call :: forall protocol reply. (Tangible reply, TangiblePdu protocol (Synchronous reply)) => RequestOrigin protocol reply -> Pdu protocol (Synchronous reply) -> Request protocol
- Cast :: forall protocol. (TangiblePdu protocol Asynchronous, NFData (Pdu protocol Asynchronous)) => Pdu protocol Asynchronous -> Request protocol
- makeRequestOrigin :: (Typeable r, NFData r, HasProcesses e q0) => Eff e (RequestOrigin p r)
- toEmbeddedOrigin :: forall outer inner reply. Embeds outer inner => RequestOrigin outer reply -> RequestOrigin inner reply
- embedRequestOrigin :: forall outer inner reply. Embeds outer inner => RequestOrigin inner reply -> RequestOrigin outer reply
- embedReplySerializer :: forall outer inner reply. Embeds outer inner => Serializer (Reply outer reply) -> Serializer (Reply inner reply)
- sendReply :: (HasProcesses eff q, Tangible reply, Typeable protocol) => ReplyTarget protocol reply -> reply -> Eff eff ()
- replyTarget :: Serializer (Reply p reply) -> RequestOrigin p reply -> ReplyTarget p reply
- replyTargetOrigin :: Lens' (ReplyTarget p reply) (RequestOrigin p reply)
- replyTargetSerializer :: Lens' (ReplyTarget p reply) (Serializer (Reply p reply))
- embeddedReplyTarget :: Embeds outer inner => Serializer (Reply outer reply) -> RequestOrigin outer reply -> ReplyTarget inner reply
- toEmbeddedReplyTarget :: Embeds outer inner => ReplyTarget outer reply -> ReplyTarget inner reply
- data family Pdu protocol (reply :: Synchronicity)
- type ObserverRegistryState event = State (ObserverRegistry event)
- data ObserverRegistry (event :: Type) = MkObserverRegistry {
- _observerRegistry :: Map ProcessId (ObservationSink event)
- type CanObserve eventSink event = (Tangible event, Embeds eventSink (Observer event), HasPdu eventSink)
- type IsObservable eventSource event = (Tangible event, Embeds eventSource (ObserverRegistry event), HasPdu eventSource)
- data ObservationSink event
- newtype Observer event = MkObserver (Arg ProcessId (ObservationSink event))
- registerObserver :: forall event eventSink eventSource r q. (HasCallStack, HasProcesses r q, IsObservable eventSource event, Tangible (Pdu eventSource Asynchronous), Tangible (Pdu eventSink Asynchronous), CanObserve eventSink event) => Endpoint eventSource -> Endpoint eventSink -> Eff r ()
- forgetObserver :: forall event eventSink eventSource r q. (HasProcesses r q, HasCallStack, Tangible (Pdu eventSource Asynchronous), Tangible (Pdu eventSink Asynchronous), IsObservable eventSource event, CanObserve eventSink event) => Endpoint eventSource -> Endpoint eventSink -> Eff r ()
- forgetObserverUnsafe :: forall event eventSource r q. (HasProcesses r q, HasCallStack, Tangible (Pdu eventSource Asynchronous), IsObservable eventSource event) => Endpoint eventSource -> ProcessId -> Eff r ()
- observerRegistryHandlePdu :: forall event q r. (HasCallStack, Typeable event, HasProcesses r q, Member (ObserverRegistryState event) r, Member Logs r) => Pdu (ObserverRegistry event) Asynchronous -> Eff r ()
- observerRegistryRemoveProcess :: forall event q r. (HasCallStack, Typeable event, HasProcesses r q, Member (ObserverRegistryState event) r, Member Logs r) => ProcessId -> Eff r Bool
- evalObserverRegistryState :: HasCallStack => Eff (ObserverRegistryState event ': r) a -> Eff r a
- emptyObserverRegistry :: ObserverRegistry event
- observerRegistryNotify :: forall event r q. (HasProcesses r q, Member (ObserverRegistryState event) r, Tangible event, HasCallStack) => event -> Eff r ()
- module Control.Eff.Log
- module Control.Eff.LogWriter.Async
- module Control.Eff.LogWriter.Console
- module Control.Eff.LogWriter.File
- module Control.Eff.LogWriter.UDP
- module Control.Eff.LogWriter.DebugTrace
- module Control.Eff.LogWriter.Rich
- module Control.Eff.LogWriter.UnixSocket
- module Control.Eff.Loop
Concurrent Processes with Message Passing Concurrency
Each process is identified by a single process id, that stays constant throughout the life cycle of a process. Also, message sending relies on these values to address messages to processes.
Constructors
| ProcessId | |
Fields | |
Instances
data ProcessDown Source #
A monitored process exited. This message is sent to a process by the scheduler, when a process that was monitored died.
Since: 0.12.0
Constructors
| ProcessDown | |
Fields
| |
Instances
data MonitorReference Source #
A value that contains a unique reference of a process monitoring.
Since: 0.12.0
Constructors
| MonitorReference | |
Fields | |
Instances
data SomeExitReason where Source #
An existential wrapper around Interrupt
Constructors
| SomeExitReason :: Interrupt x -> SomeExitReason |
Instances
| Eq SomeExitReason Source # | |
Defined in Control.Eff.Concurrent.Process Methods (==) :: SomeExitReason -> SomeExitReason -> Bool # (/=) :: SomeExitReason -> SomeExitReason -> Bool # | |
| Ord SomeExitReason Source # | |
Defined in Control.Eff.Concurrent.Process Methods compare :: SomeExitReason -> SomeExitReason -> Ordering # (<) :: SomeExitReason -> SomeExitReason -> Bool # (<=) :: SomeExitReason -> SomeExitReason -> Bool # (>) :: SomeExitReason -> SomeExitReason -> Bool # (>=) :: SomeExitReason -> SomeExitReason -> Bool # max :: SomeExitReason -> SomeExitReason -> SomeExitReason # min :: SomeExitReason -> SomeExitReason -> SomeExitReason # | |
| Show SomeExitReason Source # | |
Defined in Control.Eff.Concurrent.Process Methods showsPrec :: Int -> SomeExitReason -> ShowS # show :: SomeExitReason -> String # showList :: [SomeExitReason] -> ShowS # | |
| NFData SomeExitReason Source # | |
Defined in Control.Eff.Concurrent.Process Methods rnf :: SomeExitReason -> () # | |
type Interrupts = Exc (Interrupt Recoverable) Source #
Exceptions containing Interrupts.
See handleInterrupts, exitOnInterrupt or provideInterrupts
type HasSafeProcesses e inner = SetMember Process (Process inner) e Source #
A constraint for an effect set that requires the presence of SafeProcesses.
This constrains the effect list to look like this:
[e1 ... eN, Process [e(N+1) .. e(N+k)], e(N+1) .. e(N+k)]
It constrains e to support the (only) Process effect.
This is more relaxed that HasProcesses since it does not require Interrupts.
Since: 0.27.1
type SafeProcesses r = Process r ': r Source #
Cons Process onto a list of effects. This is called SafeProcesses because
the the actions cannot be interrupted in.
type HasProcesses e inner = (HasSafeProcesses e inner, Member Interrupts e) Source #
A constraint for an effect set that requires the presence of Processes.
This constrains the effect list to look like this:
[e1 ... eN, Interrupts, Process [e(N+1) .. e(N+k)], e(N+1) .. e(N+k)]
It constrains e beyond HasSafeProcesses to encompass Interrupts.
Since: 0.27.1
type Processes e = Interrupts ': SafeProcesses e Source #
This adds a layer of the Interrupts effect on top of Processes
type RecoverableInterrupt = Interrupt Recoverable Source #
Interrupts which are Recoverable.
data Interrupt (t :: ExitRecovery) where Source #
A sum-type with reasons for why a process operation, such as receiving messages, is interrupted in the scheduling loop.
This includes errors, that can occur when scheduling messages.
Since: 0.23.0
Constructors
| NormalExitRequested :: Interrupt Recoverable | A process has finished a unit of work and might exit or work on
something else. This is primarily used for interrupting infinite
server loops, allowing for additional cleanup work before
exiting (e.g. with Since: 0.13.2 |
| NormalExitRequestedWith :: forall a. (Typeable a, Show a, NFData a) => a -> Interrupt Recoverable | Extension of Since: 0.30.0 |
| OtherProcessNotRunning :: ProcessId -> Interrupt Recoverable | A process that should be running was not running. |
| TimeoutInterrupt :: String -> Interrupt Recoverable | A |
| LinkedProcessCrashed :: ProcessId -> Interrupt Recoverable | A linked process is down, see |
| ErrorInterrupt :: String -> Interrupt Recoverable | An exit reason that has an error message and is |
| InterruptedBy :: forall a. (Typeable a, Show a, NFData a) => a -> Interrupt Recoverable | An interrupt with a custom message. Since: 0.30.0 |
| ExitNormally :: Interrupt NoRecovery | A process function returned or exited without any error. |
| ExitNormallyWith :: forall a. (Typeable a, Show a, NFData a) => a -> Interrupt NoRecovery | A process function returned or exited without any error, and with a custom message Since: 0.30.0 |
| ExitUnhandledError :: Text -> Interrupt NoRecovery | An error causes the process to exit immediately.
For example an unexpected runtime exception was thrown, i.e. an exception
derived from |
| ExitProcessCancelled :: Maybe ProcessId -> Interrupt NoRecovery | A process shall exit immediately, without any cleanup was cancelled (e.g. killed, in |
| ExitOtherProcessNotRunning :: ProcessId -> Interrupt NoRecovery | A process that is vital to the crashed process was not running |
Instances
data ExitSeverity Source #
This value indicates whether a process exited in way consistent with the planned behaviour or not.
Constructors
| NormalExit | |
| Crash |
Instances
| Eq ExitSeverity Source # | |
Defined in Control.Eff.Concurrent.Process | |
| Ord ExitSeverity Source # | |
Defined in Control.Eff.Concurrent.Process Methods compare :: ExitSeverity -> ExitSeverity -> Ordering # (<) :: ExitSeverity -> ExitSeverity -> Bool # (<=) :: ExitSeverity -> ExitSeverity -> Bool # (>) :: ExitSeverity -> ExitSeverity -> Bool # (>=) :: ExitSeverity -> ExitSeverity -> Bool # max :: ExitSeverity -> ExitSeverity -> ExitSeverity # min :: ExitSeverity -> ExitSeverity -> ExitSeverity # | |
| Show ExitSeverity Source # | |
Defined in Control.Eff.Concurrent.Process Methods showsPrec :: Int -> ExitSeverity -> ShowS # show :: ExitSeverity -> String # showList :: [ExitSeverity] -> ShowS # | |
| Generic ExitSeverity Source # | |
Defined in Control.Eff.Concurrent.Process Associated Types type Rep ExitSeverity :: Type -> Type # | |
| NFData ExitSeverity Source # | |
Defined in Control.Eff.Concurrent.Process Methods rnf :: ExitSeverity -> () # | |
| type Rep ExitSeverity Source # | |
Defined in Control.Eff.Concurrent.Process | |
data ExitRecovery Source #
This kind is used to indicate if a Interrupt can be treated like
a short interrupt which can be handled or ignored.
Constructors
| Recoverable | |
| NoRecovery |
Instances
| Eq ExitRecovery Source # | |
Defined in Control.Eff.Concurrent.Process | |
| Ord ExitRecovery Source # | |
Defined in Control.Eff.Concurrent.Process Methods compare :: ExitRecovery -> ExitRecovery -> Ordering # (<) :: ExitRecovery -> ExitRecovery -> Bool # (<=) :: ExitRecovery -> ExitRecovery -> Bool # (>) :: ExitRecovery -> ExitRecovery -> Bool # (>=) :: ExitRecovery -> ExitRecovery -> Bool # max :: ExitRecovery -> ExitRecovery -> ExitRecovery # min :: ExitRecovery -> ExitRecovery -> ExitRecovery # | |
| Show ExitRecovery Source # | |
Defined in Control.Eff.Concurrent.Process Methods showsPrec :: Int -> ExitRecovery -> ShowS # show :: ExitRecovery -> String # showList :: [ExitRecovery] -> ShowS # | |
| Generic ExitRecovery Source # | |
Defined in Control.Eff.Concurrent.Process Associated Types type Rep ExitRecovery :: Type -> Type # | |
| NFData ExitRecovery Source # | |
Defined in Control.Eff.Concurrent.Process Methods rnf :: ExitRecovery -> () # | |
| type Rep ExitRecovery Source # | |
Defined in Control.Eff.Concurrent.Process | |
data MessageSelector a Source #
A function that decided if the next message will be received by
ReceiveSelectedMessage. It conveniently is an instance of
Alternative so the message selector can be combined:
>
> selectInt :: MessageSelector Int
> selectInt = selectMessage
>
> selectString :: MessageSelector String
> selectString = selectMessage
>
> selectIntOrString :: MessageSelector (Either Int String)
> selectIntOrString =
> Left $ selectTimeout| Right $ selectString
Instances
data ResumeProcess v where Source #
Every Process action returns it's actual result wrapped in this type. It
will allow to signal errors as well as pass on normal results such as
incoming messages.
Constructors
| Interrupted :: Interrupt Recoverable -> ResumeProcess v | The current operation of the process was interrupted with a
|
| ResumeWith :: a -> ResumeProcess a | The process may resume to do work, using the given result. |
Instances
newtype Serializer message Source #
Serialize a message into a StrictDynamic value to be sent via sendAnyMessage.
This indirection allows, among other things, the composition of
Servers.
Since: 0.24.1
Constructors
| MkSerializer | |
Fields
| |
Instances
| Contravariant Serializer Source # | |
Defined in Control.Eff.Concurrent.Process Methods contramap :: (a -> b) -> Serializer b -> Serializer a # (>$) :: b -> Serializer b -> Serializer a # | |
| Typeable message => Show (Serializer message) Source # | |
Defined in Control.Eff.Concurrent.Process Methods showsPrec :: Int -> Serializer message -> ShowS # show :: Serializer message -> String # showList :: [Serializer message] -> ShowS # | |
| NFData (Serializer message) Source # | |
Defined in Control.Eff.Concurrent.Process Methods rnf :: Serializer message -> () # | |
data StrictDynamic Source #
Data flows between Processes via these messages.
This is just a newtype wrapper around Dynamic.
The reason this type exists is to force construction through the code in this
module, which always evaluates a message to normal form before
sending it to another process.
Since: 0.22.0
Instances
| Show StrictDynamic Source # | |
Defined in Control.Eff.Concurrent.Process Methods showsPrec :: Int -> StrictDynamic -> ShowS # show :: StrictDynamic -> String # showList :: [StrictDynamic] -> ShowS # | |
| NFData StrictDynamic Source # | |
Defined in Control.Eff.Concurrent.Process Methods rnf :: StrictDynamic -> () # | |
A number of micro seconds.
Since: 0.12.0
Constructors
| TimeoutMicros | |
Fields | |
Instances
| Enum Timeout Source # | |
| Eq Timeout Source # | |
| Integral Timeout Source # | |
Defined in Control.Eff.Concurrent.Process | |
| Num Timeout Source # | |
| Ord Timeout Source # | |
Defined in Control.Eff.Concurrent.Process | |
| Real Timeout Source # | |
Defined in Control.Eff.Concurrent.Process Methods toRational :: Timeout -> Rational # | |
| Show Timeout Source # | |
| NFData Timeout Source # | |
Defined in Control.Eff.Concurrent.Process | |
newtype ProcessDetails Source #
A multi-line text describing the current state of a process for debugging purposes.
Since: 0.24.1
Constructors
| MkProcessDetails | |
Fields | |
Instances
newtype ProcessTitle Source #
A short title for a Process for logging purposes.
Since: 0.24.1
Constructors
| MkProcessTitle | |
Fields | |
Instances
data Process (r :: [Type -> Type]) b where Source #
The process effect is the basis for message passing concurrency. This effect describes an interface for concurrent, communicating isolated processes identified uniquely by a process-id.
Processes can raise exceptions that can be caught, exit gracefully or with an error, or be killed by other processes, with the option of ignoring the shutdown request.
Process Scheduling is implemented in different modules. All scheduler implementations should follow some basic rules:
- fair scheduling
- sending a message does not block
- receiving a message does block
- spawning a child blocks only a very moment
- a newly spawned process shall be scheduled before the parent process after
- the spawnRaw
- when the first process exists, all process should be killed immediately
Constructors
| FlushMessages :: Process r (ResumeProcess [StrictDynamic]) | Remove all messages from the process' message queue |
| YieldProcess :: Process r (ResumeProcess ()) | In cooperative schedulers, this will give processing time to the scheduler. Every other operation implicitly serves the same purpose. Since: 0.12.0 |
| Delay :: Timeout -> Process r (ResumeProcess ()) | Simply wait until the time in the given Since: 0.30.0 |
| SelfPid :: Process r (ResumeProcess ProcessId) | Return the current |
| Spawn :: ProcessTitle -> Eff (Process r ': r) () -> Process r (ResumeProcess ProcessId) | Start a new process, the new process will execute an effect, the function
will return immediately with a |
| SpawnLink :: ProcessTitle -> Eff (Process r ': r) () -> Process r (ResumeProcess ProcessId) | Start a new process, and Since: 0.12.0 |
| Shutdown :: Interrupt NoRecovery -> Process r a | Shutdown the process; irregardless of the exit reason, this function never returns, |
| SendShutdown :: ProcessId -> Interrupt NoRecovery -> Process r (ResumeProcess ()) | Shutdown another process immediately, the other process has no way of handling this! |
| SendInterrupt :: ProcessId -> Interrupt Recoverable -> Process r (ResumeProcess ()) | Request that another a process interrupts. The targeted process is interrupted
and gets an |
| SendMessage :: ProcessId -> StrictDynamic -> Process r (ResumeProcess ()) | Send a message to a process addressed by the |
| ReceiveSelectedMessage :: forall r a. MessageSelector a -> Process r (ResumeProcess a) | Receive a message that matches a criteria.
This should block until an a message was received. The message is returned
as a |
| MakeReference :: Process r (ResumeProcess Int) | Generate a unique |
| Monitor :: ProcessId -> Process r (ResumeProcess MonitorReference) | Monitor another process. When the monitored process exits a
Since: 0.12.0 |
| Demonitor :: MonitorReference -> Process r (ResumeProcess ()) | Remove a monitor. Since: 0.12.0 |
| Link :: ProcessId -> Process r (ResumeProcess ()) | Connect the calling process to another process, such that
if one of the processes crashes (i.e. You might wonder: Why not tearing down the linked process when exiting
normally?
I thought about this. If a process exits normally, it should have the
opportunity to shutdown stuff explicitly.
And if you want to make sure that there are no dangling child processes
after e.g. a broker crash, you can always use Since: 0.12.0 |
| Unlink :: ProcessId -> Process r (ResumeProcess ()) | Unlink the calling process from the other process. See Since: 0.12.0 |
| UpdateProcessDetails :: ProcessDetails -> Process r (ResumeProcess ()) | Update the |
| GetProcessState :: ProcessId -> Process r (ResumeProcess (Maybe (ProcessTitle, ProcessDetails, ProcessState))) | Get the |
Instances
fromProcessTitle :: Lens' ProcessTitle Text Source #
An isomorphism lens for the ProcessTitle
Since: 0.24.1
fromProcessDetails :: Lens' ProcessDetails Text Source #
An isomorphism lens for the ProcessDetails
Since: 0.24.1
toStrictDynamic :: (Typeable a, NFData a) => a -> StrictDynamic Source #
Deeply evaluate the given value and wrap it into a StrictDynamic.
Since: 0.22.0
fromStrictDynamic :: Typeable a => StrictDynamic -> Maybe a Source #
Convert a StrictDynamic back to a value.
Since: 0.22.0
unwrapStrictDynamic :: StrictDynamic -> Dynamic Source #
Convert a StrictDynamic back to an unwrapped Dynamic.
Since: 0.22.0
selectMessage :: Typeable t => MessageSelector t Source #
Create a message selector for a value that can be obtained by fromStrictDynamic.
Since: 0.9.1
filterMessage :: Typeable a => (a -> Bool) -> MessageSelector a Source #
Create a message selector from a predicate.
Since: 0.9.1
selectMessageWith :: Typeable a => (a -> Maybe b) -> MessageSelector b Source #
Select a message of type a and apply the given function to it.
If the function returns Just The ReceiveSelectedMessage function will
return the result (sans Maybe).
Since: 0.9.1
selectDynamicMessage :: (StrictDynamic -> Maybe a) -> MessageSelector a Source #
Create a message selector.
Since: 0.9.1
selectAnyMessage :: MessageSelector StrictDynamic Source #
Create a message selector that will match every message. This is lazy
because the result is not forceed.
Since: 0.9.1
toExitRecovery :: Interrupt r -> ExitRecovery Source #
Get the ExitRecovery
toExitSeverity :: Interrupt e -> ExitSeverity Source #
Get the ExitSeverity of a Interrupt.
interruptToExit :: Interrupt Recoverable -> Interrupt NoRecovery Source #
Return either ExitNormally or interruptToExit from a Recoverable Interrupt;
If the Interrupt is NormalExitRequested then return ExitNormally
isProcessDownInterrupt :: Maybe ProcessId -> Interrupt r -> Bool Source #
A predicate for linked process crashes.
provideInterruptsShutdown :: forall e a. Eff (Processes e) a -> Eff (SafeProcesses e) a Source #
Handle all Interrupts of an Processes by
wrapping them up in interruptToExit and then do a process Shutdown.
handleInterrupts :: (HasCallStack, Member Interrupts r) => (Interrupt Recoverable -> Eff r a) -> Eff r a -> Eff r a Source #
Handle Interrupts arising during process operations, e.g.
when a linked process crashes while we wait in a receiveSelectedMessage
via a call to interrupt.
tryUninterrupted :: (HasCallStack, Member Interrupts r) => Eff r a -> Eff r (Either (Interrupt Recoverable) a) Source #
Like handleInterrupts, but instead of passing the Interrupt
to a handler function, Either is returned.
Since: 0.13.2
logInterrupts :: forall r. (Member Logs r, HasCallStack, Member Interrupts r) => Eff r () -> Eff r () Source #
Handle interrupts by logging them with logProcessExit and otherwise
ignoring them.
exitOnInterrupt :: (HasCallStack, HasProcesses r q) => Eff r a -> Eff r a Source #
Handle Interrupts arising during process operations, e.g.
when a linked process crashes while we wait in a receiveSelectedMessage
via a call to interrupt.
provideInterrupts :: HasCallStack => Eff (Interrupts ': r) a -> Eff r (Either (Interrupt Recoverable) a) Source #
Handle Interrupts arising during process operations, e.g.
when a linked process crashes while we wait in a receiveSelectedMessage
via a call to interrupt.
mergeEitherInterruptAndExitReason :: Either (Interrupt Recoverable) (Interrupt NoRecovery) -> Interrupt NoRecovery Source #
Wrap all (left) Interrupts into interruptToExit and
return the (right) NoRecovery Interrupts as is.
interrupt :: (HasCallStack, Member Interrupts r) => Interrupt Recoverable -> Eff r a Source #
Throw an Interrupt, can be handled by handleInterrupts or
exitOnInterrupt or provideInterrupts.
isCrash :: Interrupt x -> Bool Source #
A predicate for crashes. A crash happens when a process exits
with an Interrupt other than ExitNormally
isRecoverable :: Interrupt x -> Bool Source #
A predicate for recoverable exit reasons. This predicate defines the
exit reasons which functions such as executeAndResume
fromSomeExitReason :: SomeExitReason -> Either (Interrupt NoRecovery) (Interrupt Recoverable) Source #
Partition a SomeExitReason back into either a NoRecovery
or a Recoverable Interrupt
toCrashReason :: Interrupt x -> Maybe Text Source #
Print a Interrupt to Just a formatted String when isCrash
is True.
This can be useful in combination with view patterns, e.g.:
logCrash :: Interrupt -> Eff e () logCrash (toCrashReason -> Just reason) = logError reason logCrash _ = return ()
Though this can be improved to:
logCrash = traverse_ logError . toCrashReason
logProcessExit :: forall e x. (Member Logs e, HasCallStack) => Interrupt x -> Eff e () Source #
Log the Interrupts
executeAndResume :: forall q r v. (HasSafeProcesses r q, HasCallStack) => Process q (ResumeProcess v) -> Eff r (Either (Interrupt Recoverable) v) Source #
Execute a and action and return the result;
if the process is interrupted by an error or exception, or an explicit
shutdown from another process, or through a crash of a linked process, i.e.
whenever the exit reason satisfies isRecoverable, return the exit reason.
executeAndResumeOrExit :: forall r q v. (HasSafeProcesses r q, HasCallStack) => Process q (ResumeProcess v) -> Eff r v Source #
Execute a Process action and resume the process, exit
the process when an Interrupts was raised. Use executeAndResume to catch
interrupts.
executeAndResumeOrThrow :: forall q r v. (HasProcesses r q, HasCallStack) => Process q (ResumeProcess v) -> Eff r v Source #
Execute a Process action and resume the process, exit
the process when an Interrupts was raised. Use executeAndResume to catch
interrupts.
yieldProcess :: forall r q. (HasProcesses r q, HasCallStack) => Eff r () Source #
Use executeAndResumeOrExit to execute YieldProcess. Refer to YieldProcess
for more information.
delay :: forall r q. (HasProcesses r q, HasCallStack) => Timeout -> Eff r () Source #
Simply block until the time in the Timeout has passed.
Since: 0.30.0
sendMessage :: forall o r q. (HasProcesses r q, HasCallStack, Typeable o, NFData o) => ProcessId -> o -> Eff r () Source #
Send a message to a process addressed by the ProcessId.
See SendMessage.
The message will be reduced to normal form (rnf) by/in the caller process.
sendAnyMessage :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> StrictDynamic -> Eff r () Source #
Send a Dynamic value to a process addressed by the ProcessId.
See SendMessage.
sendShutdown :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Interrupt NoRecovery -> Eff r () Source #
Exit a process addressed by the ProcessId. The process will exit,
it might do some cleanup, but is ultimately unrecoverable.
See SendShutdown.
sendInterrupt :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Interrupt Recoverable -> Eff r () Source #
Interrupts a process addressed by the ProcessId. The process might exit,
or it may continue.
| Like sendInterrupt, but also return True iff the process to exit exists.
spawn :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (Processes q) () -> Eff r ProcessId Source #
Start a new process, the new process will execute an effect, the function
will return immediately with a ProcessId. If the new process is
interrupted, the process will Shutdown with the Interrupt
wrapped in interruptToExit. For specific use cases it might be better to use
spawnRaw.
spawn_ :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (Processes q) () -> Eff r () Source #
Like spawn but return ().
spawnLink :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (Processes q) () -> Eff r ProcessId Source #
spawnRaw :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (SafeProcesses q) () -> Eff r ProcessId Source #
Start a new process, the new process will execute an effect, the function
will return immediately with a ProcessId. The spawned process has only the
raw SafeProcesses effects. For non-library code spawn might be better
suited.
spawnRaw_ :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Eff (SafeProcesses q) () -> Eff r () Source #
Like spawnRaw but return ().
isProcessAlive :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r Bool Source #
Return True if the process is alive.
Since: 0.12.0
getProcessState :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r (Maybe (ProcessTitle, ProcessDetails, ProcessState)) Source #
Return the ProcessTitle, ProcessDetails and ProcessState,
for the given process, if the process is alive.
Since: 0.24.1
updateProcessDetails :: forall r q. (HasCallStack, HasProcesses r q) => ProcessDetails -> Eff r () Source #
Replace the ProcessDetails of the process.
Since: 0.24.1
receiveAnyMessage :: forall r q. (HasCallStack, HasProcesses r q) => Eff r StrictDynamic Source #
Block until a message was received.
See ReceiveSelectedMessage for more documentation.
receiveSelectedMessage :: forall r q a. (HasCallStack, Show a, HasProcesses r q) => MessageSelector a -> Eff r a Source #
Block until a message was received, that is not Nothing after applying
a callback to it.
See ReceiveSelectedMessage for more documentation.
receiveMessage :: forall a r q. (HasCallStack, Typeable a, NFData a, Show a, HasProcesses r q) => Eff r a Source #
Receive and cast the message to some Typeable instance.
See ReceiveSelectedMessage for more documentation.
This will wait for a message of the return type using receiveSelectedMessage
flushMessages :: forall r q. (HasCallStack, HasProcesses r q) => Eff r [StrictDynamic] Source #
Remove and return all messages currently enqueued in the process message queue.
Since: 0.12.0
receiveSelectedLoop :: forall r q a endOfLoopResult. (HasSafeProcesses r q, HasCallStack) => MessageSelector a -> (Either (Interrupt Recoverable) a -> Eff r (Maybe endOfLoopResult)) -> Eff r endOfLoopResult Source #
Enter a loop to receive messages and pass them to a callback, until the
function returns Just a result.
Only the messages of the given type will be received.
If the process is interrupted by an exception of by a SendShutdown from
another process, with an exit reason that satisfies isRecoverable, then
the callback will be invoked with , otherwise the
process will be exited with the same reason using Left InterruptexitBecause.
See also ReceiveSelectedMessage for more documentation.
receiveAnyLoop :: forall r q endOfLoopResult. (HasSafeProcesses r q, HasCallStack) => (Either (Interrupt Recoverable) StrictDynamic -> Eff r (Maybe endOfLoopResult)) -> Eff r endOfLoopResult Source #
Like receiveSelectedLoop but not selective.
See also selectAnyMessage, receiveSelectedLoop.
receiveLoop :: forall r q a endOfLoopResult. (HasSafeProcesses r q, HasCallStack, NFData a, Typeable a) => (Either (Interrupt Recoverable) a -> Eff r (Maybe endOfLoopResult)) -> Eff r endOfLoopResult Source #
Like receiveSelectedLoop but refined to casting to a specific Typeable
using selectMessage.
self :: (HasCallStack, HasSafeProcesses r q) => Eff r ProcessId Source #
Returns the ProcessId of the current process.
makeReference :: (HasCallStack, HasProcesses r q) => Eff r Int Source #
Generate a unique Int for the current process.
monitor :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r MonitorReference Source #
Monitor another process. When the monitored process exits a
ProcessDown is sent to the calling process.
The return value is a unique identifier for that monitor.
There can be multiple monitors on the same process,
and a message for each will be sent.
If the process is already dead, the ProcessDown message
will be sent immediately, without exit reason
Since: 0.12.0
demonitor :: forall r q. (HasCallStack, HasProcesses r q) => MonitorReference -> Eff r () Source #
Remove a monitor created with monitor.
Since: 0.12.0
withMonitor :: (HasCallStack, HasProcesses r q) => ProcessId -> (MonitorReference -> Eff r a) -> Eff r a Source #
receiveWithMonitor :: (HasCallStack, HasProcesses r q, Typeable a, Show a) => ProcessId -> MessageSelector a -> Eff r (Either ProcessDown a) Source #
A MessageSelector for receiving either a monitor of the
given process or another message.
Since: 0.12.0
becauseProcessIsDown :: ProcessDown -> Interrupt Recoverable Source #
Make an Interrupt for a ProcessDown message.
For example: doSomething >>= either (interrupt . becauseProcessIsDown) return
Since: 0.12.0
selectProcessDown :: MonitorReference -> MessageSelector ProcessDown Source #
A MessageSelector for the ProcessDown message of a specific
process.
The parameter is the value obtained by monitor.
Since: 0.12.0
selectProcessDownByProcessId :: ProcessId -> MessageSelector ProcessDown Source #
A MessageSelector for the ProcessDown message. of a specific
process.
In contrast to selectProcessDown this function matches the ProcessId.
Since: 0.28.0
linkProcess :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r () Source #
Connect the calling process to another process, such that
if one of the processes crashes (i.e. isCrash returns True), the other
is shutdown with the Interrupt LinkedProcessCrashed.
See Link for a discussion on linking.
Since: 0.12.0
unlinkProcess :: forall r q. (HasCallStack, HasProcesses r q) => ProcessId -> Eff r () Source #
Unlink the calling process from the other process.
See Link for a discussion on linking.
Since: 0.12.0
exitBecause :: forall r q a. (HasCallStack, HasSafeProcesses r q) => Interrupt NoRecovery -> Eff r a Source #
Exit the process with a Interrupt.
exitNormally :: forall r q a. (HasCallStack, HasSafeProcesses r q) => Eff r a Source #
Exit the process.
exitWithError :: forall r q a. (HasCallStack, HasSafeProcesses r q) => String -> Eff r a Source #
Exit the process with an error.
Constructors
| (NFData out, Typeable out, Show out) => Receiver | |
Fields
| |
Instances
| Contravariant Receiver Source # | |
| Eq (Receiver o) Source # | |
| Ord (Receiver o) Source # | |
Defined in Control.Eff.Concurrent.Process | |
| Typeable protocol => Show (Receiver protocol) Source # | |
| NFData (Receiver o) Source # | |
Defined in Control.Eff.Concurrent.Process | |
sendToReceiver :: (NFData o, HasProcesses r q) => Receiver o -> o -> Eff r () Source #
Scheduler Process Effect Handler
Concurrent Scheduler
type BaseEffects = Reader SchedulerState ': LoggingAndIo Source #
The concrete list of Effects for this scheduler implementation.
Since: 0.25.0
type HasBaseEffects r = (HasCallStack, Lifted IO r, BaseEffects <:: r) Source #
Type class constraint to indicate that an effect union contains the effects required by every process and the scheduler implementation itself.
Since: 0.25.0
type Effects = Processes BaseEffects Source #
type SafeEffects = SafeProcesses BaseEffects Source #
The concrete list of Effects of processes compatible with this scheduler.
This builds upon BaseEffects.
Since: 0.25.0
defaultMain :: HasCallStack => Eff Effects () -> IO () Source #
Start the message passing concurrency system then execute a Process on
top of BaseEffects effect. All logging is sent to standard output.
defaultMainWithLogWriter :: HasCallStack => LogWriter -> Eff Effects () -> IO () Source #
Start the message passing concurrency system then execute a Process on
top of BaseEffects effect. All logging is sent to standard output.
schedule :: HasCallStack => Eff Effects () -> Eff LoggingAndIo () Source #
This is the main entry point to running a message passing concurrency
application. This function takes a Process on top of the BaseEffects
effect for concurrent logging.
Timers and Timeouts
data TimerElapsed Source #
A value to be sent when timer started with startTimer has elapsed.
Since: 0.12.0
Instances
| Eq TimerElapsed Source # | |
Defined in Control.Eff.Concurrent.Process.Timer | |
| Ord TimerElapsed Source # | |
Defined in Control.Eff.Concurrent.Process.Timer Methods compare :: TimerElapsed -> TimerElapsed -> Ordering # (<) :: TimerElapsed -> TimerElapsed -> Bool # (<=) :: TimerElapsed -> TimerElapsed -> Bool # (>) :: TimerElapsed -> TimerElapsed -> Bool # (>=) :: TimerElapsed -> TimerElapsed -> Bool # max :: TimerElapsed -> TimerElapsed -> TimerElapsed # min :: TimerElapsed -> TimerElapsed -> TimerElapsed # | |
| Show TimerElapsed Source # | |
Defined in Control.Eff.Concurrent.Process.Timer Methods showsPrec :: Int -> TimerElapsed -> ShowS # show :: TimerElapsed -> String # showList :: [TimerElapsed] -> ShowS # | |
| NFData TimerElapsed Source # | |
Defined in Control.Eff.Concurrent.Process.Timer Methods rnf :: TimerElapsed -> () # | |
data TimerReference Source #
The reference to a timer started by startTimer, required to stop
a timer via cancelTimer.
Since: 0.12.0
Instances
receiveAfter :: forall a r q. (HasCallStack, HasProcesses r q, Typeable a, NFData a, Show a) => Timeout -> Eff r (Maybe a) Source #
Wait for a message of the given type for the given time. When no message
arrives in time, return Nothing. This is based on
receiveSelectedAfter.
Since: 0.12.0
receiveSelectedAfter :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => MessageSelector a -> Timeout -> Eff r (Either TimerElapsed a) Source #
Wait for a message of the given type for the given time. When no message
arrives in time, return Left TimerElapsed. This is based on
selectTimerElapsed and startTimer.
Since: 0.12.0
receiveSelectedWithMonitorAfter :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => ProcessId -> MessageSelector a -> Timeout -> Eff r (Either (Either ProcessDown TimerElapsed) a) Source #
Like receiveWithMonitor combined with receiveSelectedAfter.
Since: 0.22.0
receiveAfterWithTitle :: forall a r q. (HasCallStack, HasProcesses r q, Typeable a, NFData a, Show a) => Timeout -> ProcessTitle -> Eff r (Maybe a) Source #
Wait for a message of the given type for the given time. When no message
arrives in time, return Nothing. This is based on
receiveSelectedAfterWithTitle.
Since: 0.12.0
receiveSelectedAfterWithTitle :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => MessageSelector a -> Timeout -> ProcessTitle -> Eff r (Either TimerElapsed a) Source #
Wait for a message of the given type for the given time. When no message
arrives in time, return Left TimerElapsed. This is based on
selectTimerElapsed and startTimerWithTitle.
Since: 0.12.0
receiveSelectedWithMonitorAfterWithTitle :: forall a r q. (HasCallStack, HasProcesses r q, Show a, Typeable a) => ProcessId -> MessageSelector a -> Timeout -> ProcessTitle -> Eff r (Either (Either ProcessDown TimerElapsed) a) Source #
Like receiveWithMonitorWithTitle combined with receiveSelectedAfterWithTitle.
Since: 0.30.0
selectTimerElapsed :: TimerReference -> MessageSelector TimerElapsed Source #
A MessageSelector matching TimerElapsed messages created by
startTimer.
Since: 0.12.0
sendAfter :: forall r q message. (HasCallStack, HasProcesses r q, Typeable message, NFData message) => ProcessId -> Timeout -> (TimerReference -> message) -> Eff r TimerReference Source #
Send a message to a given process after waiting. The message is created by
applying the function parameter to the TimerReference, such that the
message can directly refer to the timer.
Since: 0.12.0
sendAfterWithTitle :: forall r q message. (HasCallStack, HasProcesses r q, Typeable message, NFData message) => ProcessTitle -> ProcessId -> Timeout -> (TimerReference -> message) -> Eff r TimerReference Source #
Like sendAfter but with a user provided name for the timer process.
Since: 0.30.0
startTimerWithTitle :: forall r q. (HasCallStack, HasProcesses r q) => ProcessTitle -> Timeout -> Eff r TimerReference Source #
Start a new timer, after the time has elapsed, TimerElapsed is sent to
calling process. The message also contains the TimerReference returned by
this function. Use cancelTimer to cancel the timer. Use
selectTimerElapsed to receive the message using receiveSelectedMessage.
To receive messages with guarded with a timeout see receiveAfter.
This calls sendAfterWithTitle under the hood with TimerElapsed as
message.
Since: 0.30.0
startTimer :: forall r q. (HasCallStack, HasProcesses r q) => Timeout -> Eff r TimerReference Source #
Start a new timer, after the time has elapsed, TimerElapsed is sent to
calling process. The message also contains the TimerReference returned by
this function. Use cancelTimer to cancel the timer. Use
selectTimerElapsed to receive the message using receiveSelectedMessage.
To receive messages with guarded with a timeout see receiveAfter.
Calls sendAfter under the hood.
Since: 0.12.0
cancelTimer :: forall r q. (HasCallStack, HasProcesses r q) => TimerReference -> Eff r () Source #
Cancel a timer started with startTimer.
Since: 0.12.0
Data Types and Functions for APIs (aka Protocols)
class (Typeable protocol, Typeable embeddedProtocol) => HasPduPrism protocol embeddedProtocol where Source #
A class for Pdu instances that embed other Pdu.
This is a part of Embeds provide instances for your
Pdus but in client code use the Embeds constraint.
Instances of this class serve as proof to Embeds that
a conversion into another Pdu actually exists.
A Prism for the embedded Pdu is the center of this class
Laws: embeddedPdu = prism' embedPdu fromPdu
Since: 0.29.0
Minimal complete definition
Nothing
Methods
embeddedPdu :: forall (result :: Synchronicity). Prism' (Pdu protocol result) (Pdu embeddedProtocol result) Source #
embedPdu :: forall (result :: Synchronicity). Pdu embeddedProtocol result -> Pdu protocol result Source #
fromPdu :: forall (result :: Synchronicity). Pdu protocol result -> Maybe (Pdu embeddedProtocol result) Source #
Instances
type family ProtocolReply (s :: Synchronicity) where ... Source #
This type function takes an Pdu and analysis the reply type, i.e. the Synchronicity
and evaluates to either t for an
Pdu x ( or to '()' for an Synchronous t)Pdu x .Asynchronous
Since: 0.24.0
Equations
| ProtocolReply (Synchronous t) = t | |
| ProtocolReply Asynchronous = () |
data Synchronicity Source #
The (promoted) constructors of this type specify (at the type level) the
reply behavior of a specific constructor of an Pdu instance.
Constructors
| Synchronous Type | Specify that handling a request is a blocking operation
with a specific return type, e.g. |
| Asynchronous | Non-blocking, asynchronous, request handling |
type TangiblePdu p r = (Typeable p, Typeable r, Tangible (Pdu p r), HasPdu p) Source #
A Constraint that bundles the requirements for the
Pdu values of a protocol.
This ensures that Pdus can be strictly and deeply evaluated and shown
such that for example logging is possible.
Since: 0.24.0
type Embeds outer inner = (HasPduPrism outer inner, CheckEmbeds outer inner, HasPdu outer) Source #
A constraint that requires that the outer Pdu has a clause to
embed values from the inner Pdu.
Also, this constraint requires a HasPduPrism instance, as a proof for
a possible conversion
of an embedded Pdu value into to the enclosing Pdu.
This generates better compiler error messages, when an embedding of a Pdu
into another.
This is provided by HasPdu instances. The instances are required to
provide a list of embedded Pdu values in EmbeddedPduList.
Note that every type embeds itself, so Embeds x x always holds.
Since: 0.29.1
class Typeable protocol => HasPdu (protocol :: Type) Source #
This type class and the associated data family defines the protocol data units (PDU) of a protocol.
A Protocol in the sense of a communication interface description between processes.
The first parameter is usually a user defined type that identifies the
protocol that uses the Pdus are. It maybe a phantom type.
The second parameter specifies if a specific constructor of an (GADT-like)
Pdu instance is Synchronous, i.e. returns a result and blocks the caller
or if it is Asynchronous
Example:
data BookShop deriving Typeable
instance Typeable r => HasPdu BookShop r where
data instance Pdu BookShop r where
RentBook :: BookId -> Pdu BookShop ('Synchronous (Either RentalError RentalId))
BringBack :: RentalId -> Pdu BookShop 'Asynchronous
deriving Typeable
type BookId = Int
type RentalId = Int
type RentalError = String
Since: 0.25.1
Associated Types
type EmbeddedPduList protocol :: [Type] Source #
A type level list Protocol phantom types included in the associated Pdu instance.
This is just a helper for better compiler error messages.
It relies on Embeds to add the constraint HasPduPrism.
Since: 0.29.0
data Pdu protocol (reply :: Synchronicity) Source #
The protocol data unit type for the given protocol.
Instances
| Tangible event => HasPdu (ObserverRegistry event) Source # | |
Defined in Control.Eff.Concurrent.Protocol.Observer Associated Types type EmbeddedPduList (ObserverRegistry event) :: [Type] Source # data Pdu (ObserverRegistry event) reply :: Type Source # | |
| Typeable p => HasPdu (Broker p) Source # | |
| Typeable child => HasPdu (Watchdog child) Source # | |
| (HasPdu a1, HasPdu a2) => HasPdu (a1, a2) Source # | |
Defined in Control.Eff.Concurrent.Protocol | |
| Tangible event => HasPdu (Observer event) Source # | |
| (HasPdu a1, HasPdu a2, HasPdu a3) => HasPdu (a1, a2, a3) Source # | |
Defined in Control.Eff.Concurrent.Protocol | |
| (HasPdu a1, HasPdu a2, HasPdu a3, HasPdu a4) => HasPdu (a1, a2, a3, a4) Source # | |
Defined in Control.Eff.Concurrent.Protocol | |
| (HasPdu a1, HasPdu a2, HasPdu a3, HasPdu a4, HasPdu a5) => HasPdu (a1, a2, a3, a4, a5) Source # | |
Defined in Control.Eff.Concurrent.Protocol | |
newtype Endpoint protocol Source #
A server process for protocol.
Protocols are represented by phantom types, which are used in different places to index type families and type class instances.
A Process can send and receive any messages. An Endpoint
wraps around a ProcessId and carries a phantom type to indicate
the kinds of messages accepted by the process.
As a metaphor, communication between processes can be thought of waiting for and sending protocol data units belonging to some protocol.
Constructors
| Endpoint | |
Fields | |
Instances
| Eq (Endpoint protocol) Source # | |
| Ord (Endpoint protocol) Source # | |
Defined in Control.Eff.Concurrent.Protocol Methods compare :: Endpoint protocol -> Endpoint protocol -> Ordering # (<) :: Endpoint protocol -> Endpoint protocol -> Bool # (<=) :: Endpoint protocol -> Endpoint protocol -> Bool # (>) :: Endpoint protocol -> Endpoint protocol -> Bool # (>=) :: Endpoint protocol -> Endpoint protocol -> Bool # max :: Endpoint protocol -> Endpoint protocol -> Endpoint protocol # min :: Endpoint protocol -> Endpoint protocol -> Endpoint protocol # | |
| Typeable protocol => Show (Endpoint protocol) Source # | |
| NFData (Endpoint protocol) Source # | |
Defined in Control.Eff.Concurrent.Protocol | |
| type ToPretty (Endpoint a :: Type) Source # | |
proxyAsEndpoint :: proxy protocol -> ProcessId -> Endpoint protocol Source #
asEndpoint :: forall protocol. ProcessId -> Endpoint protocol Source #
toEmbeddedEndpoint :: forall inner outer. Embeds outer inner => Endpoint outer -> Endpoint inner Source #
Convert an Endpoint to an endpoint for an embedded protocol.
See Embeds, fromEmbeddedEndpoint.
Since: 0.25.1
fromEmbeddedEndpoint :: forall outer inner. HasPduPrism outer inner => Endpoint inner -> Endpoint outer Source #
Convert an Endpoint to an endpoint for a server, that embeds the protocol.
See Embeds, toEmbeddedEndpoint.
Since: 0.25.1
fromEndpoint :: forall protocol protocol. Iso (Endpoint protocol) (Endpoint protocol) ProcessId ProcessId Source #
Client Functions for Consuming APIs
type EndpointReader o = Reader (Endpoint o) Source #
The reader effect for ProcessIds for Pdus, see runEndpointReader
type HasEndpointReader o r = (Typeable o, Member (EndpointReader o) r) Source #
cast :: forall destination protocol r q. (HasCallStack, HasProcesses r q, HasPdu destination, HasPdu protocol, Tangible (Pdu destination Asynchronous), Embeds destination protocol) => Endpoint destination -> Pdu protocol Asynchronous -> Eff r () Source #
Send a request Pdu that has no reply and return immediately.
The type signature enforces that the corresponding Pdu clause is
Asynchronous. The operation never fails, if it is important to know if the
message was delivered, use call instead.
The message will be reduced to normal form (rnf) in the caller process.
call :: forall result destination protocol r q. (HasProcesses r q, TangiblePdu destination (Synchronous result), TangiblePdu protocol (Synchronous result), Tangible result, Embeds destination protocol, HasCallStack) => Endpoint destination -> Pdu protocol (Synchronous result) -> Eff r result Source #
Send a request Pdu and wait for the server to return a result value.
The type signature enforces that the corresponding Pdu clause is
Synchronous.
Always prefer callWithTimeout over call
callWithTimeout :: forall result destination protocol r q. (HasProcesses r q, TangiblePdu destination (Synchronous result), TangiblePdu protocol (Synchronous result), Tangible result, Member Logs r, HasCallStack, Embeds destination protocol) => Endpoint destination -> Pdu protocol (Synchronous result) -> Timeout -> Eff r result Source #
Send an request Pdu and wait for the server to return a result value.
The type signature enforces that the corresponding Pdu clause is
Synchronous.
If the server that was called dies, this function interrupts the
process with ProcessDown.
If the server takes longer to reply than the given timeout, this
function interrupts the process with TimeoutInterrupt.
Always prefer this function over call
Since: 0.22.0
runEndpointReader :: HasCallStack => Endpoint o -> Eff (EndpointReader o ': r) a -> Eff r a Source #
Run a reader effect that contains the one server handling a specific
Pdu instance.
askEndpoint :: Member (EndpointReader o) e => Eff e (Endpoint o) Source #
Get the Endpoint registered with runEndpointReader.
callEndpointReader :: forall reply o r q. (HasEndpointReader o r, HasCallStack, Tangible reply, TangiblePdu o (Synchronous reply), HasProcesses r q, Embeds o o) => Pdu o (Synchronous reply) -> Eff r reply Source #
Like call but take the Endpoint from the reader provided by
runEndpointReader.
When working with an embedded Pdu use callSingleton.
castEndpointReader :: forall o r q. (HasEndpointReader o r, HasProcesses r q, Tangible (Pdu o Asynchronous), HasCallStack, HasPdu o, Embeds o o) => Pdu o Asynchronous -> Eff r () Source #
Like cast but take the Endpoint from the reader provided by
runEndpointReader.
When working with an embedded Pdu use castSingleton.
callSingleton :: forall outer inner reply q e. (HasCallStack, Member (EndpointReader outer) e, Embeds outer inner, Embeds outer outer, HasProcesses e q, TangiblePdu outer (Synchronous reply), TangiblePdu inner (Synchronous reply), Tangible reply) => Pdu inner (Synchronous reply) -> Eff e reply Source #
Like callEndpointReader, uses embedPdu to embed the value.
This function makes use of AmbigousTypes and TypeApplications.
When not working with an embedded Pdu use callEndpointReader.
Since: 0.25.1
castSingleton :: forall outer inner q e. (HasCallStack, Member (EndpointReader outer) e, Tangible (Pdu outer Asynchronous), HasProcesses e q, HasPdu outer, HasPdu inner, Embeds outer inner, Embeds outer outer) => Pdu inner Asynchronous -> Eff e () Source #
Like castEndpointReader, but uses embedPdu to embed the value.
This function makes use of AmbigousTypes and TypeApplications.
When not working with an embedded Pdu use castEndpointReader.
Since: 0.25.1
Protocol-Server Support Functions for building protocol servers
newtype ReplyTarget p r Source #
Target of a Call reply.
This combines a RequestOrigin with a Serializer for a Reply using Arg.
There are to smart constructors for this type: replyTarget and embeddedReplyTarget.
Because of Arg the Eq and Ord instances are implemented via
the RequestOrigin instances.
Since: 0.26.0
Constructors
| MkReplyTarget (Arg (RequestOrigin p r) (Serializer (Reply p r))) |
Instances
data RequestOrigin (proto :: Type) reply Source #
Constructors
| RequestOrigin | |
Fields | |
Instances
data Reply protocol reply where Source #
The wrapper around replies to Calls.
Since: 0.15.0
Constructors
| Reply | |
Fields
| |
data Request protocol where Source #
A wrapper sum type for calls and casts for the Pdus of a protocol
Since: 0.15.0
Constructors
| Call :: forall protocol reply. (Tangible reply, TangiblePdu protocol (Synchronous reply)) => RequestOrigin protocol reply -> Pdu protocol (Synchronous reply) -> Request protocol | |
| Cast :: forall protocol. (TangiblePdu protocol Asynchronous, NFData (Pdu protocol Asynchronous)) => Pdu protocol Asynchronous -> Request protocol |
makeRequestOrigin :: (Typeable r, NFData r, HasProcesses e q0) => Eff e (RequestOrigin p r) Source #
Create a new, unique RequestOrigin value for the current process.
Since: 0.24.0
toEmbeddedOrigin :: forall outer inner reply. Embeds outer inner => RequestOrigin outer reply -> RequestOrigin inner reply Source #
Turn an RequestOrigin to an origin for an embedded request (See Embeds).
This is useful of a server delegates the calls and casts for an embedded protocol
to functions, that require the Serializer and RequestOrigin in order to call
sendReply.
See also embedReplySerializer.
Since: 0.24.3
embedRequestOrigin :: forall outer inner reply. Embeds outer inner => RequestOrigin inner reply -> RequestOrigin outer reply Source #
Turn an embedded RequestOrigin to a RequestOrigin for the bigger request.
This is the inverse of toEmbeddedOrigin.
This function is strict in all parameters.
Since: 0.24.2
embedReplySerializer :: forall outer inner reply. Embeds outer inner => Serializer (Reply outer reply) -> Serializer (Reply inner reply) Source #
Turn a Serializer for a Pdu instance that contains embedded Pdu values
into a Reply Serializer for the embedded Pdu.
This is useful of a server delegates the calls and casts for an embedded protocol
to functions, that require the Serializer and RequestOrigin in order to call
sendReply.
See also toEmbeddedOrigin.
Since: 0.24.2
sendReply :: (HasProcesses eff q, Tangible reply, Typeable protocol) => ReplyTarget protocol reply -> reply -> Eff eff () Source #
Answer a Call by sending the reply value to the client process.
The ProcessId, the RequestOrigin and the Reply Serializer are
stored in the ReplyTarget.
Since: 0.25.1
replyTarget :: Serializer (Reply p reply) -> RequestOrigin p reply -> ReplyTarget p reply Source #
Smart constructor for a ReplyTarget.
To build a ReplyTarget for an Embeds instance use embeddedReplyTarget.
Since: 0.26.0
replyTargetOrigin :: Lens' (ReplyTarget p reply) (RequestOrigin p reply) Source #
A simple Lens for the RequestOrigin of a ReplyTarget.
Since: 0.26.0
replyTargetSerializer :: Lens' (ReplyTarget p reply) (Serializer (Reply p reply)) Source #
A simple Lens for the Reply Serializer of a ReplyTarget.
Since: 0.26.0
embeddedReplyTarget :: Embeds outer inner => Serializer (Reply outer reply) -> RequestOrigin outer reply -> ReplyTarget inner reply Source #
Smart constructor for an embedded ReplyTarget.
This combines replyTarget and toEmbeddedReplyTarget.
Since: 0.26.0
toEmbeddedReplyTarget :: Embeds outer inner => ReplyTarget outer reply -> ReplyTarget inner reply Source #
Convert a ReplyTarget to be usable for embedded replies.
This combines a toEmbeddedOrigin with embedReplySerializer to produce a
ReplyTarget that can be passed to functions defined soley on an embedded protocol.
Since: 0.26.0
Observer Functions for Events and Event Listener
data family Pdu protocol (reply :: Synchronicity) Source #
The protocol data unit type for the given protocol.
Instances
type ObserverRegistryState event = State (ObserverRegistry event) Source #
Alias for the effect that contains the observers managed by evalObserverRegistryState
data ObserverRegistry (event :: Type) Source #
A protocol for managing Observers, encompassing registration and de-registration of
Observers.
Since: 0.28.0
Constructors
| MkObserverRegistry | |
Fields
| |
Instances
type CanObserve eventSink event = (Tangible event, Embeds eventSink (Observer event), HasPdu eventSink) Source #
Convenience type alias.
Since: 0.28.0
type IsObservable eventSource event = (Tangible event, Embeds eventSource (ObserverRegistry event), HasPdu eventSource) Source #
Convenience type alias.
Since: 0.28.0
data ObservationSink event Source #
The Information necessary to wrap an Observed event to a process specific
message, e.g. the embedded Observer Pdu instance, and the MonitorReference of
the destination process.
Since: 0.28.0
Instances
newtype Observer event Source #
A protocol to communicate Observed events from a sources to many sinks.
A sink is any process that serves a protocol with a Pdu instance that embeds
the Observer Pdu via an HasPduPrism instance.
This type has dual use, for one it serves as type-index for Pdu, i.e.
HasPdu respectively, and secondly it contains an ObservationSink and
a MonitorReference.
The ObservationSink is used to serialize and send the Observed events,
while the ProcessId serves as key for internal maps.
Since: 0.28.0
Constructors
| MkObserver (Arg ProcessId (ObservationSink event)) |
Instances
registerObserver :: forall event eventSink eventSource r q. (HasCallStack, HasProcesses r q, IsObservable eventSource event, Tangible (Pdu eventSource Asynchronous), Tangible (Pdu eventSink Asynchronous), CanObserve eventSink event) => Endpoint eventSource -> Endpoint eventSink -> Eff r () Source #
And an Observer to the set of recipients for all observations reported by observerRegistryNotify.
Note that the observerRegistry are keyed by the observing process, i.e. a previous entry for the process
contained in the Observer is overwritten. If you want multiple entries for a single process, just
combine several filter functions.
Since: 0.16.0
forgetObserver :: forall event eventSink eventSource r q. (HasProcesses r q, HasCallStack, Tangible (Pdu eventSource Asynchronous), Tangible (Pdu eventSink Asynchronous), IsObservable eventSource event, CanObserve eventSink event) => Endpoint eventSource -> Endpoint eventSink -> Eff r () Source #
Send the ForgetObserver message
Since: 0.16.0
forgetObserverUnsafe :: forall event eventSource r q. (HasProcesses r q, HasCallStack, Tangible (Pdu eventSource Asynchronous), IsObservable eventSource event) => Endpoint eventSource -> ProcessId -> Eff r () Source #
Send the ForgetObserver message, use a raw ProcessId as parameter.
Since: 0.28.0
observerRegistryHandlePdu :: forall event q r. (HasCallStack, Typeable event, HasProcesses r q, Member (ObserverRegistryState event) r, Member Logs r) => Pdu (ObserverRegistry event) Asynchronous -> Eff r () Source #
Provide the implementation for the ObserverRegistry Protocol, this handled RegisterObserver and ForgetObserver
messages. It also adds the ObserverRegistryState constraint to the effect list.
Since: 0.28.0
observerRegistryRemoveProcess :: forall event q r. (HasCallStack, Typeable event, HasProcesses r q, Member (ObserverRegistryState event) r, Member Logs r) => ProcessId -> Eff r Bool Source #
Remove the entry in the ObserverRegistry for the ProcessId
and return True if there was an entry, False otherwise.
Since: 0.28.0
evalObserverRegistryState :: HasCallStack => Eff (ObserverRegistryState event ': r) a -> Eff r a Source #
Keep track of registered Observers.
Handle the ObserverRegistryState effect, i.e. run evalState on an emptyObserverRegistry.
Since: 0.28.0
emptyObserverRegistry :: ObserverRegistry event Source #
The empty ObserverRegistryState
Since: 0.28.0
observerRegistryNotify :: forall event r q. (HasProcesses r q, Member (ObserverRegistryState event) r, Tangible event, HasCallStack) => event -> Eff r () Source #
Report an observation to all observers.
The process needs to evalObserverRegistryState and to observerRegistryHandlePdu.
Since: 0.28.0
Utilities
FilteredLogging Effect
module Control.Eff.Log
Log Writer
Asynchronous
module Control.Eff.LogWriter.Async
Console
File
module Control.Eff.LogWriter.File
UDP
module Control.Eff.LogWriter.UDP
Debug.Trace
Generic IO
module Control.Eff.LogWriter.Rich
Unix Domain Socket
Preventing Space Leaks
module Control.Eff.Loop