| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Data.Fin
Description
Finite numbers.
This module is designed to be imported qualified.
- data Fin n where
- cata :: forall a n. a -> (a -> a) -> Fin n -> a
- explicitShow :: Fin n -> String
- explicitShowsPrec :: Int -> Fin n -> ShowS
- toNat :: Fin n -> Nat
- fromNat :: SNatI n => Nat -> Maybe (Fin n)
- toNatural :: Fin n -> Natural
- toInteger :: Integral a => a -> Integer
- inverse :: forall n. SNatI n => Fin n -> Fin n
- universe :: SNatI n => [Fin n]
- inlineUniverse :: InlineInduction n => [Fin n]
- universe1 :: SNatI n => NonEmpty (Fin (S n))
- inlineUniverse1 :: InlineInduction n => NonEmpty (Fin (S n))
- absurd :: Fin Nat0 -> b
- boring :: Fin Nat1
- fin0 :: Fin (Plus Nat0 (S n))
- fin1 :: Fin (Plus Nat1 (S n))
- fin2 :: Fin (Plus Nat2 (S n))
- fin3 :: Fin (Plus Nat3 (S n))
- fin4 :: Fin (Plus Nat4 (S n))
- fin5 :: Fin (Plus Nat5 (S n))
- fin6 :: Fin (Plus Nat6 (S n))
- fin7 :: Fin (Plus Nat7 (S n))
- fin8 :: Fin (Plus Nat8 (S n))
- fin9 :: Fin (Plus Nat9 (S n))
Documentation
Finite Numbers up to n.
Instances
| ((~) Nat n (S m), SNatI m) => Bounded (Fin n) Source # | |
| SNatI n => Enum (Fin n) Source # | |
| Eq (Fin n) Source # | |
| SNatI n => Integral (Fin n) Source # | |
| SNatI n => Num (Fin n) Source # | Operations module
|
| Ord (Fin n) Source # | |
| SNatI n => Real (Fin n) Source # | |
| Show (Fin n) Source # | To see explicit structure, use |
| NFData (Fin n) Source # | |
| Hashable (Fin n) Source # | |
Showing
explicitShow :: Fin n -> String Source #
Conversions
fromNat :: SNatI n => Nat -> Maybe (Fin n) Source #
Convert from Nat.
>>>fromNat N.nat1 :: Maybe (Fin N.Nat2)Just 1
>>>fromNat N.nat1 :: Maybe (Fin N.Nat1)Nothing
Interesting
inverse :: forall n. SNatI n => Fin n -> Fin n Source #
Multiplicative inverse.
Works for where Fin nn is coprime with an argument, i.e. in general when n is prime.
>>>map inverse universe :: [Fin N.Nat5][0,1,3,2,4]
>>>zipWith (*) universe (map inverse universe) :: [Fin N.Nat5][0,1,1,1,1]
Adaptation of pseudo-code in Wikipedia
inlineUniverse :: InlineInduction n => [Fin n] Source #
universe which will be fully inlined, if n is known at compile time.
>>>inlineUniverse :: [Fin N.Nat3][0,1,2]
inlineUniverse1 :: InlineInduction n => NonEmpty (Fin (S n)) Source #
>>>inlineUniverse1 :: NonEmpty (Fin N.Nat3)0 :| [1,2]