finite-typelits-0.2.1.0: A type inhabited by finitely many values, indexed by type-level naturals
Copyright(C) 2015-2024 mniip
LicenseBSD3
Maintainermniip <mniip@mniip.com>
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Finite.Internal.Integral

Description

 
Synopsis

Documentation

class Integral a => SaneIntegral a where Source #

A class of datatypes that faithfully represent a sub-range of Integer that includes 0. A valid instance must obey the following laws:

fromInteger must be a retract of toInteger:

fromInteger (toInteger a) == a

Restricted to the range [0, Limit] (with Nothing understood as positive infinity), fromInteger must be an inverse of toInteger:

limited i ==> toInteger (fromInteger i) == i

where:

limited i = case limit of
    Just l -> 0 <= i && i <= l
    Nothing -> 0 <= i

WARNING: violating the above constraint in particular breaks type safety.

The implementations of Ord, Enum, Num, Integral must be compatible with that of Integer, whenever all arguments and results fall within [0, Limit], for example:

limited i && limited j && limited k && (i * j == k) ==> (fromInteger i * fromInteger j == fromInteger k)

Methods modAdd, modSub, and modMul implement modular addition, multiplication, and subtraction. The default implementation is via Integer, but a faster implementation can be provided instead. If provided, the implementation must be correct for moduli in range [1, Limit].

WARNING: a naive implementaton is prone to arithmetic overflow and may produce invalid results for moduli close to Limit.

Minimal complete definition

Nothing

Associated Types

type Limit a :: Maybe Nat Source #

Methods

modAdd :: a -> a -> a -> a Source #

Given n > 0, 0 <= a < n, and 0 <= b < n, modAdd n a b computes (a + b) ` mod ` n.

modSub :: a -> a -> a -> a Source #

Given n > 0, 0 <= a < n, and 0 <= b < n, modSub n a b computes (a - b) ` mod ` n.

modMul :: a -> a -> a -> a Source #

Given n > 0, 0 <= a < n, and 0 <= b < n, modMul n a b computes (a * b) ` mod ` n.

unsafeWithLimited :: proxy1 a -> proxy2 n -> (Limited a n => r) -> r Source #

Unsafely obtain evidence that n <= Limit a. When Limit is Nothing there is no evidence to obtain, and \_ _ k -> k is a valid implementation. When Limit is a Just, the default implementation should work.

default unsafeWithLimited :: forall n r lim proxy1 proxy2. Limit a ~ 'Just lim => proxy1 a -> proxy2 n -> (Limited a n => r) -> r Source #

Instances

Instances details
SaneIntegral Int16 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Int16 :: Maybe Nat Source #

Methods

modAdd :: Int16 -> Int16 -> Int16 -> Int16 Source #

modSub :: Int16 -> Int16 -> Int16 -> Int16 Source #

modMul :: Int16 -> Int16 -> Int16 -> Int16 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Int16 -> proxy2 n -> (Limited Int16 n => r) -> r Source #

SaneIntegral Int32 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Int32 :: Maybe Nat Source #

Methods

modAdd :: Int32 -> Int32 -> Int32 -> Int32 Source #

modSub :: Int32 -> Int32 -> Int32 -> Int32 Source #

modMul :: Int32 -> Int32 -> Int32 -> Int32 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Int32 -> proxy2 n -> (Limited Int32 n => r) -> r Source #

SaneIntegral Int64 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Int64 :: Maybe Nat Source #

Methods

modAdd :: Int64 -> Int64 -> Int64 -> Int64 Source #

modSub :: Int64 -> Int64 -> Int64 -> Int64 Source #

modMul :: Int64 -> Int64 -> Int64 -> Int64 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Int64 -> proxy2 n -> (Limited Int64 n => r) -> r Source #

SaneIntegral Int8 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Int8 :: Maybe Nat Source #

Methods

modAdd :: Int8 -> Int8 -> Int8 -> Int8 Source #

modSub :: Int8 -> Int8 -> Int8 -> Int8 Source #

modMul :: Int8 -> Int8 -> Int8 -> Int8 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Int8 -> proxy2 n -> (Limited Int8 n => r) -> r Source #

SaneIntegral Word16 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Word16 :: Maybe Nat Source #

Methods

modAdd :: Word16 -> Word16 -> Word16 -> Word16 Source #

modSub :: Word16 -> Word16 -> Word16 -> Word16 Source #

modMul :: Word16 -> Word16 -> Word16 -> Word16 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Word16 -> proxy2 n -> (Limited Word16 n => r) -> r Source #

SaneIntegral Word32 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Word32 :: Maybe Nat Source #

Methods

modAdd :: Word32 -> Word32 -> Word32 -> Word32 Source #

modSub :: Word32 -> Word32 -> Word32 -> Word32 Source #

modMul :: Word32 -> Word32 -> Word32 -> Word32 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Word32 -> proxy2 n -> (Limited Word32 n => r) -> r Source #

SaneIntegral Word64 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Word64 :: Maybe Nat Source #

Methods

modAdd :: Word64 -> Word64 -> Word64 -> Word64 Source #

modSub :: Word64 -> Word64 -> Word64 -> Word64 Source #

modMul :: Word64 -> Word64 -> Word64 -> Word64 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Word64 -> proxy2 n -> (Limited Word64 n => r) -> r Source #

SaneIntegral Word8 Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Word8 :: Maybe Nat Source #

Methods

modAdd :: Word8 -> Word8 -> Word8 -> Word8 Source #

modSub :: Word8 -> Word8 -> Word8 -> Word8 Source #

modMul :: Word8 -> Word8 -> Word8 -> Word8 Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Word8 -> proxy2 n -> (Limited Word8 n => r) -> r Source #

SaneIntegral Integer Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Integer :: Maybe Nat Source #

Methods

modAdd :: Integer -> Integer -> Integer -> Integer Source #

modSub :: Integer -> Integer -> Integer -> Integer Source #

modMul :: Integer -> Integer -> Integer -> Integer Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Integer -> proxy2 n -> (Limited Integer n => r) -> r Source #

SaneIntegral Natural Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Natural :: Maybe Nat Source #

Methods

modAdd :: Natural -> Natural -> Natural -> Natural Source #

modSub :: Natural -> Natural -> Natural -> Natural Source #

modMul :: Natural -> Natural -> Natural -> Natural Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Natural -> proxy2 n -> (Limited Natural n => r) -> r Source #

SaneIntegral Int Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Int :: Maybe Nat Source #

Methods

modAdd :: Int -> Int -> Int -> Int Source #

modSub :: Int -> Int -> Int -> Int Source #

modMul :: Int -> Int -> Int -> Int Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Int -> proxy2 n -> (Limited Int n => r) -> r Source #

SaneIntegral Word Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Associated Types

type Limit Word :: Maybe Nat Source #

Methods

modAdd :: Word -> Word -> Word -> Word Source #

modSub :: Word -> Word -> Word -> Word Source #

modMul :: Word -> Word -> Word -> Word Source #

unsafeWithLimited :: forall proxy1 proxy2 (n :: Nat) r. proxy1 Word -> proxy2 n -> (Limited Word n => r) -> r Source #

type Limited a (n :: Nat) = LeqMaybe n (Limit a) Source #

Ensures that the value of n is representable in type a (which should be a SaneIntegral).

class KnownIntegral a (n :: Nat) Source #

This class asserts that the value of n is known at runtime, and that it is representable in type a (which should be a SaneIntegral).

At runtime it acts like an implicit parameter of type a, much like KnownNat is an implicit parameter of type Integer.

Minimal complete definition

intVal_

Instances

Instances details
(SaneIntegral a, Limited a n, KnownNat n) => KnownIntegral a n Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

intVal_ :: Tagged n a

intVal :: forall n a proxy. KnownIntegral a n => proxy n -> a Source #

Reflect a type-level number into a term.

withIntegral :: forall a n r proxy1 proxy2. (SaneIntegral a, KnownIntegral a n) => proxy1 a -> proxy2 n -> (KnownNat n => r) -> r Source #

Recover a KnownNat constraint from a KnownIntegral constraint.

withLimited :: forall a n r proxy1 proxy2. (SaneIntegral a, KnownIntegral a n) => proxy1 a -> proxy2 n -> (Limited a n => r) -> r Source #

Recover a Limited constraint from a KnownIntegral constraint.

newtype Finite a (n :: Nat) Source #

Finite number type. The type Finite a n is inhabited by exactly n values from type a, in the range [0, n) including 0 but excluding n. a must be an instance of SaneIntegral to use this type. Invariants:

getFinite x < intVal x
getFinite x >= 0

Constructors

Finite a 

Instances

Instances details
(SaneIntegral a, KnownIntegral a n) => Bounded (Finite a n) Source #

Throws an error for Finite _ 0

Instance details

Defined in Data.Finite.Internal.Integral

Methods

minBound :: Finite a n #

maxBound :: Finite a n #

(SaneIntegral a, KnownIntegral a n) => Enum (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

succ :: Finite a n -> Finite a n #

pred :: Finite a n -> Finite a n #

toEnum :: Int -> Finite a n #

fromEnum :: Finite a n -> Int #

enumFrom :: Finite a n -> [Finite a n] #

enumFromThen :: Finite a n -> Finite a n -> [Finite a n] #

enumFromTo :: Finite a n -> Finite a n -> [Finite a n] #

enumFromThenTo :: Finite a n -> Finite a n -> Finite a n -> [Finite a n] #

Ix a => Ix (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

range :: (Finite a n, Finite a n) -> [Finite a n] #

index :: (Finite a n, Finite a n) -> Finite a n -> Int #

unsafeIndex :: (Finite a n, Finite a n) -> Finite a n -> Int #

inRange :: (Finite a n, Finite a n) -> Finite a n -> Bool #

rangeSize :: (Finite a n, Finite a n) -> Int #

unsafeRangeSize :: (Finite a n, Finite a n) -> Int #

(SaneIntegral a, KnownIntegral a n) => Num (Finite a n) Source #

+, -, and * implement arithmetic modulo n. The fromInteger function raises an error for inputs outside of bounds.

Instance details

Defined in Data.Finite.Internal.Integral

Methods

(+) :: Finite a n -> Finite a n -> Finite a n #

(-) :: Finite a n -> Finite a n -> Finite a n #

(*) :: Finite a n -> Finite a n -> Finite a n #

negate :: Finite a n -> Finite a n #

abs :: Finite a n -> Finite a n #

signum :: Finite a n -> Finite a n #

fromInteger :: Integer -> Finite a n #

(Read a, SaneIntegral a, KnownIntegral a n) => Read (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

(SaneIntegral a, KnownIntegral a n) => Integral (Finite a n) Source #

quot and rem are the same as div and mod and they implement regular division of numbers in the range [0, n), not modular inverses.

Instance details

Defined in Data.Finite.Internal.Integral

Methods

quot :: Finite a n -> Finite a n -> Finite a n #

rem :: Finite a n -> Finite a n -> Finite a n #

div :: Finite a n -> Finite a n -> Finite a n #

mod :: Finite a n -> Finite a n -> Finite a n #

quotRem :: Finite a n -> Finite a n -> (Finite a n, Finite a n) #

divMod :: Finite a n -> Finite a n -> (Finite a n, Finite a n) #

toInteger :: Finite a n -> Integer #

(SaneIntegral a, KnownIntegral a n) => Real (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

toRational :: Finite a n -> Rational #

Show a => Show (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

showsPrec :: Int -> Finite a n -> ShowS #

show :: Finite a n -> String #

showList :: [Finite a n] -> ShowS #

NFData a => NFData (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

rnf :: Finite a n -> () #

Eq a => Eq (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

(==) :: Finite a n -> Finite a n -> Bool #

(/=) :: Finite a n -> Finite a n -> Bool #

Ord a => Ord (Finite a n) Source # 
Instance details

Defined in Data.Finite.Internal.Integral

Methods

compare :: Finite a n -> Finite a n -> Ordering #

(<) :: Finite a n -> Finite a n -> Bool #

(<=) :: Finite a n -> Finite a n -> Bool #

(>) :: Finite a n -> Finite a n -> Bool #

(>=) :: Finite a n -> Finite a n -> Bool #

max :: Finite a n -> Finite a n -> Finite a n #

min :: Finite a n -> Finite a n -> Finite a n #

finite :: forall n a. (SaneIntegral a, KnownIntegral a n) => a -> Finite a n Source #

Convert an a into a Finite a, throwing an error if the input is out of bounds.

getFinite :: forall n a. Finite a n -> a Source #

Convert a Finite a into the corresponding a.