Portability | MPTCs, fundeps |
---|---|
Stability | provisional |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Safe Haskell | None |
The free monad transformer
- data FreeF f a b
- newtype FreeT f m a = FreeT {}
- class Monad m => MonadFree f m | m -> f where
- wrap :: f (m a) -> m a
- liftF :: (Functor f, Monad m) => f a -> FreeT f m a
- hoistFreeT :: (Monad m, Functor f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b
- transFreeT :: (Monad m, Functor g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b
Documentation
The base functor for a free monad.
Typeable1 f => Typeable2 (FreeF f) | |
Traversable f => Bitraversable (FreeF f) | |
Functor f => Bifunctor (FreeF f) | |
Foldable f => Bifoldable (FreeF f) | |
Functor f => Functor (FreeF f a) | |
Foldable f => Foldable (FreeF f a) | |
Traversable f => Traversable (FreeF f a) | |
(Eq a, Eq (f b)) => Eq (FreeF f a b) | |
(Typeable1 f, Typeable a, Typeable b, Data a, Data (f b), Data b) => Data (FreeF f a b) | |
(Ord a, Ord (f b)) => Ord (FreeF f a b) | |
(Read a, Read (f b)) => Read (FreeF f a b) | |
(Show a, Show (f b)) => Show (FreeF f a b) |
The "free monad transformer" for a functor f
.
(Functor f, Monad m) => MonadFree f (FreeT f m) | |
MonadTrans (FreeT f) | |
(Functor f, Monad m) => Monad (FreeT f m) | |
(Functor f, Monad m) => Functor (FreeT f m) | |
(Typeable1 f, Typeable1 w) => Typeable1 (FreeT f w) | |
(Functor f, MonadPlus m) => MonadPlus (FreeT f m) | |
(Functor f, Monad m) => Applicative (FreeT f m) | |
(Foldable m, Foldable f) => Foldable (FreeT f m) | |
(Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) | |
(Functor f, MonadPlus m) => Alternative (FreeT f m) | |
(Functor f, MonadIO m) => MonadIO (FreeT f m) | |
Eq (m (FreeF f a (FreeT f m a))) => Eq (FreeT f m a) | |
(Typeable1 f, Typeable1 w, Typeable a, Data (w (FreeF f a (FreeT f w a))), Data a) => Data (FreeT f w a) | |
Ord (m (FreeF f a (FreeT f m a))) => Ord (FreeT f m a) | |
Read (m (FreeF f a (FreeT f m a))) => Read (FreeT f m a) | |
Show (m (FreeF f a (FreeT f m a))) => Show (FreeT f m a) |
class Monad m => MonadFree f m | m -> f whereSource
Monads provide substitution (fmap
) and renormalization (join
):
m>>=
f =join
.fmap
f m
A free Monad
is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[]
is not a free Monad
(in this sense) because
smashes the lists flat.
join
[[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonad
Tree wherereturn
= Tip Tip a>>=
f = f a Bin l r>>=
f = Bin (l>>=
f) (r>>=
f)
This Monad
is the free Monad
of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree
for it directly:
instanceMonadFree
Pair Tree wherewrap
(Pair l r) = Bin l r
Or we could choose to program with
instead of Free
PairTree
and thereby avoid having to define our own Monad
instance.
Moreover, the kan-extensions
package provides MonadFree
instances that can
improve the asymptotic complexity of code that constructors free monads by
effectively reassociating the use of (>>=
).
See Free
for a more formal definition of the free Monad
for a Functor
.
(Functor f, MonadFree f m) => MonadFree f (ListT m) | |
(Functor f, MonadFree f m) => MonadFree f (IdentityT m) | |
(Functor f, MonadFree f m) => MonadFree f (MaybeT m) | |
Functor f => MonadFree f (Free f) | |
Functor f => MonadFree f (Free f) | |
Functor f => MonadFree f (F f) | |
(Functor f, MonadFree f m, Error e) => MonadFree f (ErrorT e m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) | |
(Functor f, MonadFree f m) => MonadFree f (ContT r m) | |
(Functor f, MonadFree f m) => MonadFree f (StateT s m) | |
(Functor f, MonadFree f m) => MonadFree f (StateT s m) | |
(Functor f, MonadFree f m) => MonadFree f (ReaderT e m) | |
(Functor f, Monad m) => MonadFree f (FreeT f m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) |
liftF :: (Functor f, Monad m) => f a -> FreeT f m aSource
FreeT is a functor from the category of functors to the category of monads.
This provides the mapping.