{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Safe #-}
module Control.Monad.Free
  ( MonadFree(..)
  , Free(..)
  , retract
  , liftF
  , iter
  , iterA
  , iterM
  , hoistFree
  , foldFree
  , toFreeT
  , cutoff
  , unfold
  , unfoldM
  , _Pure, _Free
  ) where
import Control.Applicative
import Control.Arrow ((>>>))
import Control.Monad (liftM, MonadPlus(..), (>=>))
import Control.Monad.Fix
import Control.Monad.Trans.Class
import qualified Control.Monad.Trans.Free as FreeT
import Control.Monad.Free.Class
import Control.Monad.Reader.Class
import Control.Monad.Writer.Class
import Control.Monad.State.Class
import Control.Monad.Error.Class
import Control.Monad.Cont.Class
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.WithIndex
import Data.Foldable
import Data.Foldable.WithIndex
import Data.Profunctor
import Data.Traversable
import Data.Traversable.WithIndex
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Data.Data
import GHC.Generics
import Prelude hiding (foldr)
data Free f a = Pure a | Free (f (Free f a))
  deriving (forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (f :: * -> *) a x. Rep (Free f a) x -> Free f a
forall (f :: * -> *) a x. Free f a -> Rep (Free f a) x
$cto :: forall (f :: * -> *) a x. Rep (Free f a) x -> Free f a
$cfrom :: forall (f :: * -> *) a x. Free f a -> Rep (Free f a) x
Generic, forall k (f :: k -> *).
(forall (a :: k). f a -> Rep1 f a)
-> (forall (a :: k). Rep1 f a -> f a) -> Generic1 f
forall (f :: * -> *) a. Functor f => Rep1 (Free f) a -> Free f a
forall (f :: * -> *) a. Functor f => Free f a -> Rep1 (Free f) a
$cto1 :: forall (f :: * -> *) a. Functor f => Rep1 (Free f) a -> Free f a
$cfrom1 :: forall (f :: * -> *) a. Functor f => Free f a -> Rep1 (Free f) a
Generic1)
deriving instance (Typeable f, Data (f (Free f a)), Data a) => Data (Free f a)
instance Eq1 f => Eq1 (Free f) where
  liftEq :: forall a b. (a -> b -> Bool) -> Free f a -> Free f b -> Bool
liftEq a -> b -> Bool
eq = forall {f :: * -> *}. Eq1 f => Free f a -> Free f b -> Bool
go
    where
      go :: Free f a -> Free f b -> Bool
go (Pure a
a)  (Pure b
b)  = a -> b -> Bool
eq a
a b
b
      go (Free f (Free f a)
fa) (Free f (Free f b)
fb) = forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq Free f a -> Free f b -> Bool
go f (Free f a)
fa f (Free f b)
fb
      go Free f a
_ Free f b
_                 = Bool
False
instance (Eq1 f, Eq a) => Eq (Free f a) where
  == :: Free f a -> Free f a -> Bool
(==) = forall (f :: * -> *) a. (Eq1 f, Eq a) => f a -> f a -> Bool
eq1
instance Ord1 f => Ord1 (Free f) where
  liftCompare :: forall a b.
(a -> b -> Ordering) -> Free f a -> Free f b -> Ordering
liftCompare a -> b -> Ordering
cmp = forall {f :: * -> *}. Ord1 f => Free f a -> Free f b -> Ordering
go
    where
      go :: Free f a -> Free f b -> Ordering
go (Pure a
a)  (Pure b
b)  = a -> b -> Ordering
cmp a
a b
b
      go (Pure a
_)  (Free f (Free f b)
_)  = Ordering
LT
      go (Free f (Free f a)
_)  (Pure b
_)  = Ordering
GT
      go (Free f (Free f a)
fa) (Free f (Free f b)
fb) = forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare Free f a -> Free f b -> Ordering
go f (Free f a)
fa f (Free f b)
fb
instance (Ord1 f, Ord a) => Ord (Free f a) where
  compare :: Free f a -> Free f a -> Ordering
compare = forall (f :: * -> *) a. (Ord1 f, Ord a) => f a -> f a -> Ordering
compare1
instance Show1 f => Show1 (Free f) where
  liftShowsPrec :: forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Free f a -> ShowS
liftShowsPrec Int -> a -> ShowS
sp [a] -> ShowS
sl = forall {f :: * -> *}. Show1 f => Int -> Free f a -> ShowS
go
    where
      go :: Int -> Free f a -> ShowS
go Int
d (Pure a
a) = forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith Int -> a -> ShowS
sp String
"Pure" Int
d a
a
      go Int
d (Free f (Free f a)
fa) = forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith (forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> Free f a -> ShowS
go (forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [f a] -> ShowS
liftShowList Int -> a -> ShowS
sp [a] -> ShowS
sl)) String
"Free" Int
d f (Free f a)
fa
instance (Show1 f, Show a) => Show (Free f a) where
  showsPrec :: Int -> Free f a -> ShowS
showsPrec = forall (f :: * -> *) a. (Show1 f, Show a) => Int -> f a -> ShowS
showsPrec1
instance Read1 f => Read1 (Free f) where
  liftReadsPrec :: forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Free f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = Int -> ReadS (Free f a)
go
    where
      go :: Int -> ReadS (Free f a)
go = forall a. (String -> ReadS a) -> Int -> ReadS a
readsData forall a b. (a -> b) -> a -> b
$
        forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith Int -> ReadS a
rp String
"Pure" forall (f :: * -> *) a. a -> Free f a
Pure forall a. Monoid a => a -> a -> a
`mappend`
        forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith (forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS (Free f a)
go (forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Int -> ReadS a
rp ReadS [a]
rl)) String
"Free" forall (f :: * -> *) a. f (Free f a) -> Free f a
Free
instance (Read1 f, Read a) => Read (Free f a) where
  readsPrec :: Int -> ReadS (Free f a)
readsPrec = forall (f :: * -> *) a. (Read1 f, Read a) => Int -> ReadS (f a)
readsPrec1
instance Functor f => Functor (Free f) where
  fmap :: forall a b. (a -> b) -> Free f a -> Free f b
fmap a -> b
f = forall {f :: * -> *}. Functor f => Free f a -> Free f b
go where
    go :: Free f a -> Free f b
go (Pure a
a)  = forall (f :: * -> *) a. a -> Free f a
Pure (a -> b
f a
a)
    go (Free f (Free f a)
fa) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (Free f a -> Free f b
go forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
fa)
  {-# INLINE fmap #-}
instance Functor f => Apply (Free f) where
  Pure a -> b
a  <.> :: forall a b. Free f (a -> b) -> Free f a -> Free f b
<.> Pure a
b = forall (f :: * -> *) a. a -> Free f a
Pure (a -> b
a a
b)
  Pure a -> b
a  <.> Free f (Free f a)
fb = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
fb
  Free f (Free f (a -> b))
fa <.> Free f a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ (forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> Free f a
b) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f (a -> b))
fa
instance Functor f => Applicative (Free f) where
  pure :: forall a. a -> Free f a
pure = forall (f :: * -> *) a. a -> Free f a
Pure
  {-# INLINE pure #-}
  Pure a -> b
a <*> :: forall a b. Free f (a -> b) -> Free f a -> Free f b
<*> Pure a
b = forall (f :: * -> *) a. a -> Free f a
Pure forall a b. (a -> b) -> a -> b
$ a -> b
a a
b
  Pure a -> b
a <*> Free f (Free f a)
mb = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
mb
  Free f (Free f (a -> b))
ma <*> Free f a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ (forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Free f a
b) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f (a -> b))
ma
instance Functor f => Bind (Free f) where
  Pure a
a >>- :: forall a b. Free f a -> (a -> Free f b) -> Free f b
>>- a -> Free f b
f = a -> Free f b
f a
a
  Free f (Free f a)
m >>- a -> Free f b
f = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- a -> Free f b
f) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)
instance Functor f => Monad (Free f) where
  return :: forall a. a -> Free f a
return = forall (f :: * -> *) a. Applicative f => a -> f a
pure
  {-# INLINE return #-}
  Pure a
a >>= :: forall a b. Free f a -> (a -> Free f b) -> Free f b
>>= a -> Free f b
f = a -> Free f b
f a
a
  Free f (Free f a)
m >>= a -> Free f b
f = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> Free f b
f) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)
instance Functor f => MonadFix (Free f) where
  mfix :: forall a. (a -> Free f a) -> Free f a
mfix a -> Free f a
f = Free f a
a where a :: Free f a
a = a -> Free f a
f (forall {f :: * -> *} {a}. Free f a -> a
impure Free f a
a); impure :: Free f a -> a
impure (Pure a
x) = a
x; impure (Free f (Free f a)
_) = forall a. HasCallStack => String -> a
error String
"mfix (Free f): Free"
instance Alternative v => Alternative (Free v) where
  empty :: forall a. Free v a
empty = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (f :: * -> *) a. Alternative f => f a
empty
  {-# INLINE empty #-}
  Free v a
a <|> :: forall a. Free v a -> Free v a -> Free v a
<|> Free v a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (forall (f :: * -> *) a. Applicative f => a -> f a
pure Free v a
a forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall (f :: * -> *) a. Applicative f => a -> f a
pure Free v a
b)
  {-# INLINE (<|>) #-}
instance MonadPlus v => MonadPlus (Free v) where
  mzero :: forall a. Free v a
mzero = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (m :: * -> *) a. MonadPlus m => m a
mzero
  {-# INLINE mzero #-}
  Free v a
a mplus :: forall a. Free v a -> Free v a -> Free v a
`mplus` Free v a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (forall (m :: * -> *) a. Monad m => a -> m a
return Free v a
a forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` forall (m :: * -> *) a. Monad m => a -> m a
return Free v a
b)
  {-# INLINE mplus #-}
instance MonadTrans Free where
  lift :: forall (m :: * -> *) a. Monad m => m a -> Free m a
lift = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM forall (f :: * -> *) a. a -> Free f a
Pure
  {-# INLINE lift #-}
instance Foldable f => Foldable (Free f) where
  foldMap :: forall m a. Monoid m => (a -> m) -> Free f a -> m
foldMap a -> m
f = forall {t :: * -> *}. Foldable t => Free t a -> m
go where
    go :: Free t a -> m
go (Pure a
a) = a -> m
f a
a
    go (Free t (Free t a)
fa) = forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Free t a -> m
go t (Free t a)
fa
  {-# INLINE foldMap #-}
  foldr :: forall a b. (a -> b -> b) -> b -> Free f a -> b
foldr a -> b -> b
f = forall {t :: * -> *}. Foldable t => b -> Free t a -> b
go where
    go :: b -> Free t a -> b
go b
r Free t a
free =
      case Free t a
free of
        Pure a
a -> a -> b -> b
f a
a b
r
        Free t (Free t a)
fa -> forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (forall a b c. (a -> b -> c) -> b -> a -> c
flip b -> Free t a -> b
go) b
r t (Free t a)
fa
  {-# INLINE foldr #-}
  foldl' :: forall b a. (b -> a -> b) -> b -> Free f a -> b
foldl' b -> a -> b
f = forall {t :: * -> *}. Foldable t => b -> Free t a -> b
go where
    go :: b -> Free t a -> b
go b
r Free t a
free =
      case Free t a
free of
        Pure a
a -> b -> a -> b
f b
r a
a
        Free t (Free t a)
fa -> forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' b -> Free t a -> b
go b
r t (Free t a)
fa
  {-# INLINE foldl' #-}
instance Foldable1 f => Foldable1 (Free f) where
  foldMap1 :: forall m a. Semigroup m => (a -> m) -> Free f a -> m
foldMap1 a -> m
f = forall {t :: * -> *}. Foldable1 t => Free t a -> m
go where
    go :: Free t a -> m
go (Pure a
a) = a -> m
f a
a
    go (Free t (Free t a)
fa) = forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
foldMap1 Free t a -> m
go t (Free t a)
fa
  {-# INLINE foldMap1 #-}
instance Traversable f => Traversable (Free f) where
  traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Free f a -> f (Free f b)
traverse a -> f b
f = forall {f :: * -> *}. Traversable f => Free f a -> f (Free f b)
go where
    go :: Free f a -> f (Free f b)
go (Pure a
a) = forall (f :: * -> *) a. a -> Free f a
Pure forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
    go (Free f (Free f a)
fa) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Free f a -> f (Free f b)
go f (Free f a)
fa
  {-# INLINE traverse #-}
instance Traversable1 f => Traversable1 (Free f) where
  traverse1 :: forall (f :: * -> *) a b.
Apply f =>
(a -> f b) -> Free f a -> f (Free f b)
traverse1 a -> f b
f = forall {f :: * -> *}. Traversable1 f => Free f a -> f (Free f b)
go where
    go :: Free f a -> f (Free f b)
go (Pure a
a) = forall (f :: * -> *) a. a -> Free f a
Pure forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
    go (Free f (Free f a)
fa) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
traverse1 Free f a -> f (Free f b)
go f (Free f a)
fa
  {-# INLINE traverse1 #-}
instance FunctorWithIndex i f => FunctorWithIndex [i] (Free f) where
  imap :: forall a b. ([i] -> a -> b) -> Free f a -> Free f b
imap [i] -> a -> b
f (Pure a
a) = forall (f :: * -> *) a. a -> Free f a
Pure forall a b. (a -> b) -> a -> b
$ [i] -> a -> b
f [] a
a
  imap [i] -> a -> b
f (Free f (Free f a)
s) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall i (f :: * -> *) a b.
FunctorWithIndex i f =>
(i -> a -> b) -> f a -> f b
imap (\i
i -> forall i (f :: * -> *) a b.
FunctorWithIndex i f =>
(i -> a -> b) -> f a -> f b
imap ([i] -> a -> b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (:) i
i)) f (Free f a)
s
  {-# INLINE imap #-}
instance FoldableWithIndex i f => FoldableWithIndex [i] (Free f) where
  ifoldMap :: forall m a. Monoid m => ([i] -> a -> m) -> Free f a -> m
ifoldMap [i] -> a -> m
f (Pure a
a) = [i] -> a -> m
f [] a
a
  ifoldMap [i] -> a -> m
f (Free f (Free f a)
s) = forall i (f :: * -> *) m a.
(FoldableWithIndex i f, Monoid m) =>
(i -> a -> m) -> f a -> m
ifoldMap (\i
i -> forall i (f :: * -> *) m a.
(FoldableWithIndex i f, Monoid m) =>
(i -> a -> m) -> f a -> m
ifoldMap ([i] -> a -> m
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (:) i
i)) f (Free f a)
s
  {-# INLINE ifoldMap #-}
instance TraversableWithIndex i f => TraversableWithIndex [i] (Free f) where
  itraverse :: forall (f :: * -> *) a b.
Applicative f =>
([i] -> a -> f b) -> Free f a -> f (Free f b)
itraverse [i] -> a -> f b
f (Pure a
a) = forall (f :: * -> *) a. a -> Free f a
Pure forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [i] -> a -> f b
f [] a
a
  itraverse [i] -> a -> f b
f (Free f (Free f a)
s) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (t :: * -> *) (f :: * -> *) a b.
(TraversableWithIndex i t, Applicative f) =>
(i -> a -> f b) -> t a -> f (t b)
itraverse (\i
i -> forall i (t :: * -> *) (f :: * -> *) a b.
(TraversableWithIndex i t, Applicative f) =>
(i -> a -> f b) -> t a -> f (t b)
itraverse ([i] -> a -> f b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (:) i
i)) f (Free f a)
s
  {-# INLINE itraverse #-}
instance MonadWriter e m => MonadWriter e (Free m) where
  tell :: e -> Free m ()
tell = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell
  {-# INLINE tell #-}
  listen :: forall a. Free m a -> Free m (a, e)
listen = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall w (m :: * -> *) a. MonadWriter w m => m a -> m (a, w)
listen forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
  {-# INLINE listen #-}
  pass :: forall a. Free m (a, e -> e) -> Free m a
pass = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall w (m :: * -> *) a. MonadWriter w m => m (a, w -> w) -> m a
pass forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
  {-# INLINE pass #-}
instance MonadReader e m => MonadReader e (Free m) where
  ask :: Free m e
ask = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall r (m :: * -> *). MonadReader r m => m r
ask
  {-# INLINE ask #-}
  local :: forall a. (e -> e) -> Free m a -> Free m a
local e -> e
f = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall r (m :: * -> *) a. MonadReader r m => (r -> r) -> m a -> m a
local e -> e
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
  {-# INLINE local #-}
instance MonadState s m => MonadState s (Free m) where
  get :: Free m s
get = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall s (m :: * -> *). MonadState s m => m s
get
  {-# INLINE get #-}
  put :: s -> Free m ()
put s
s = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (forall s (m :: * -> *). MonadState s m => s -> m ()
put s
s)
  {-# INLINE put #-}
instance MonadError e m => MonadError e (Free m) where
  throwError :: forall a. e -> Free m a
throwError = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError
  {-# INLINE throwError #-}
  catchError :: forall a. Free m a -> (e -> Free m a) -> Free m a
catchError Free m a
as e -> Free m a
f = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
catchError (forall (f :: * -> *) a. Monad f => Free f a -> f a
retract Free m a
as) (forall (f :: * -> *) a. Monad f => Free f a -> f a
retract forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> Free m a
f))
  {-# INLINE catchError #-}
instance MonadCont m => MonadCont (Free m) where
  callCC :: forall a b. ((a -> Free m b) -> Free m a) -> Free m a
callCC (a -> Free m b) -> Free m a
f = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (forall (m :: * -> *) a b. MonadCont m => ((a -> m b) -> m a) -> m a
callCC (forall (f :: * -> *) a. Monad f => Free f a -> f a
retract forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Free m b) -> Free m a
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift))
  {-# INLINE callCC #-}
instance Functor f => MonadFree f (Free f) where
  wrap :: forall a. f (Free f a) -> Free f a
wrap = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free
  {-# INLINE wrap #-}
retract :: Monad f => Free f a -> f a
retract :: forall (f :: * -> *) a. Monad f => Free f a -> f a
retract (Pure a
a) = forall (m :: * -> *) a. Monad m => a -> m a
return a
a
retract (Free f (Free f a)
as) = f (Free f a)
as forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
iter :: Functor f => (f a -> a) -> Free f a -> a
iter :: forall (f :: * -> *) a. Functor f => (f a -> a) -> Free f a -> a
iter f a -> a
_ (Pure a
a) = a
a
iter f a -> a
phi (Free f (Free f a)
m) = f a -> a
phi (forall (f :: * -> *) a. Functor f => (f a -> a) -> Free f a -> a
iter f a -> a
phi forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)
iterA :: (Applicative p, Functor f) => (f (p a) -> p a) -> Free f a -> p a
iterA :: forall (p :: * -> *) (f :: * -> *) a.
(Applicative p, Functor f) =>
(f (p a) -> p a) -> Free f a -> p a
iterA f (p a) -> p a
_   (Pure a
x) = forall (f :: * -> *) a. Applicative f => a -> f a
pure a
x
iterA f (p a) -> p a
phi (Free f (Free f a)
f) = f (p a) -> p a
phi (forall (p :: * -> *) (f :: * -> *) a.
(Applicative p, Functor f) =>
(f (p a) -> p a) -> Free f a -> p a
iterA f (p a) -> p a
phi forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
f)
iterM :: (Monad m, Functor f) => (f (m a) -> m a) -> Free f a -> m a
iterM :: forall (m :: * -> *) (f :: * -> *) a.
(Monad m, Functor f) =>
(f (m a) -> m a) -> Free f a -> m a
iterM f (m a) -> m a
_   (Pure a
x) = forall (m :: * -> *) a. Monad m => a -> m a
return a
x
iterM f (m a) -> m a
phi (Free f (Free f a)
f) = f (m a) -> m a
phi (forall (m :: * -> *) (f :: * -> *) a.
(Monad m, Functor f) =>
(f (m a) -> m a) -> Free f a -> m a
iterM f (m a) -> m a
phi forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
f)
hoistFree :: Functor g => (forall a. f a -> g a) -> Free f b -> Free g b
hoistFree :: forall (g :: * -> *) (f :: * -> *) b.
Functor g =>
(forall a. f a -> g a) -> Free f b -> Free g b
hoistFree forall a. f a -> g a
_ (Pure b
a)  = forall (f :: * -> *) a. a -> Free f a
Pure b
a
hoistFree forall a. f a -> g a
f (Free f (Free f b)
as) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (forall (g :: * -> *) (f :: * -> *) b.
Functor g =>
(forall a. f a -> g a) -> Free f b -> Free g b
hoistFree forall a. f a -> g a
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. f a -> g a
f f (Free f b)
as)
foldFree :: Monad m => (forall x . f x -> m x) -> Free f a -> m a
foldFree :: forall (m :: * -> *) (f :: * -> *) a.
Monad m =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree forall x. f x -> m x
_ (Pure a
a)  = forall (m :: * -> *) a. Monad m => a -> m a
return a
a
foldFree forall x. f x -> m x
f (Free f (Free f a)
as) = forall x. f x -> m x
f f (Free f a)
as forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) (f :: * -> *) a.
Monad m =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree forall x. f x -> m x
f
toFreeT :: (Functor f, Monad m) => Free f a -> FreeT.FreeT f m a
toFreeT :: forall (f :: * -> *) (m :: * -> *) a.
(Functor f, Monad m) =>
Free f a -> FreeT f m a
toFreeT (Pure a
a) = forall (f :: * -> *) (m :: * -> *) a.
m (FreeF f a (FreeT f m a)) -> FreeT f m a
FreeT.FreeT (forall (m :: * -> *) a. Monad m => a -> m a
return (forall (f :: * -> *) a b. a -> FreeF f a b
FreeT.Pure a
a))
toFreeT (Free f (Free f a)
f) = forall (f :: * -> *) (m :: * -> *) a.
m (FreeF f a (FreeT f m a)) -> FreeT f m a
FreeT.FreeT (forall (m :: * -> *) a. Monad m => a -> m a
return (forall (f :: * -> *) a b. f b -> FreeF f a b
FreeT.Free (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) (m :: * -> *) a.
(Functor f, Monad m) =>
Free f a -> FreeT f m a
toFreeT f (Free f a)
f)))
cutoff :: (Functor f) => Integer -> Free f a -> Free f (Maybe a)
cutoff :: forall (f :: * -> *) a.
Functor f =>
Integer -> Free f a -> Free f (Maybe a)
cutoff Integer
n Free f a
_ | Integer
n forall a. Ord a => a -> a -> Bool
<= Integer
0 = forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
cutoff Integer
n (Free f (Free f a)
f) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a.
Functor f =>
Integer -> Free f a -> Free f (Maybe a)
cutoff (Integer
n forall a. Num a => a -> a -> a
- Integer
1)) f (Free f a)
f
cutoff Integer
_ Free f a
m = forall a. a -> Maybe a
Just forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Free f a
m
unfold :: Functor f => (b -> Either a (f b)) -> b -> Free f a
unfold :: forall (f :: * -> *) b a.
Functor f =>
(b -> Either a (f b)) -> b -> Free f a
unfold b -> Either a (f b)
f = b -> Either a (f b)
f forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either forall (f :: * -> *) a. a -> Free f a
Pure (forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) b a.
Functor f =>
(b -> Either a (f b)) -> b -> Free f a
unfold b -> Either a (f b)
f))
unfoldM :: (Traversable f, Monad m) => (b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM :: forall (f :: * -> *) (m :: * -> *) b a.
(Traversable f, Monad m) =>
(b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM b -> m (Either a (f b))
f = b -> m (Either a (f b))
f forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure) (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (f :: * -> *) (m :: * -> *) b a.
(Traversable f, Monad m) =>
(b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM b -> m (Either a (f b))
f))
_Pure :: forall f m a p. (Choice p, Applicative m)
      => p a (m a) -> p (Free f a) (m (Free f a))
_Pure :: forall (f :: * -> *) (m :: * -> *) a (p :: * -> * -> *).
(Choice p, Applicative m) =>
p a (m a) -> p (Free f a) (m (Free f a))
_Pure = forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap forall {f :: * -> *} {b}. Free f b -> Either (Free f b) b
impure (forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a. a -> Free f a
Pure)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right'
 where
  impure :: Free f b -> Either (Free f b) b
impure (Pure b
x) = forall a b. b -> Either a b
Right b
x
  impure Free f b
x        = forall a b. a -> Either a b
Left Free f b
x
  {-# INLINE impure #-}
{-# INLINE _Pure #-}
_Free :: forall f g m a p. (Choice p, Applicative m)
      => p (f (Free f a)) (m (g (Free g a))) -> p (Free f a) (m (Free g a))
_Free :: forall (f :: * -> *) (g :: * -> *) (m :: * -> *) a
       (p :: * -> * -> *).
(Choice p, Applicative m) =>
p (f (Free f a)) (m (g (Free g a))) -> p (Free f a) (m (Free g a))
_Free = forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap forall {f :: * -> *} {a} {f :: * -> *}.
Free f a -> Either (Free f a) (f (Free f a))
unfree (forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a. f (Free f a) -> Free f a
Free)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right'
 where
  unfree :: Free f a -> Either (Free f a) (f (Free f a))
unfree (Free f (Free f a)
x) = forall a b. b -> Either a b
Right f (Free f a)
x
  unfree (Pure a
x) = forall a b. a -> Either a b
Left (forall (f :: * -> *) a. a -> Free f a
Pure a
x)
  {-# INLINE unfree #-}
{-# INLINE _Free #-}