| Copyright | (C) 2008-2013 Edward Kmett |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Stability | provisional |
| Portability | MPTCs, fundeps |
| Safe Haskell | Safe |
| Language | Haskell2010 |
Control.Monad.Trans.Free
Description
The free monad transformer
Synopsis
- data FreeF f a b
- newtype FreeT f m a = FreeT {}
- type Free f = FreeT f Identity
- free :: FreeF f a (Free f a) -> Free f a
- runFree :: Free f a -> FreeF f a (Free f a)
- liftF :: (Functor f, MonadFree f m) => f a -> m a
- iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a
- iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a
- hoistFreeT :: (Functor m, Functor f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b
- foldFreeT :: (MonadTrans t, Monad (t m), Monad m) => (forall n x. Monad n => f x -> t n x) -> FreeT f m a -> t m a
- transFreeT :: (Monad m, Functor g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b
- joinFreeT :: (Monad m, Traversable f) => FreeT f m a -> m (Free f a)
- cutoff :: (Functor f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a)
- partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b
- intersperseT :: (Monad m, Functor f) => f a -> FreeT f m b -> FreeT f m b
- intercalateT :: (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b
- retractT :: (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a
- retract :: Monad f => Free f a -> f a
- iter :: Functor f => (f a -> a) -> Free f a -> a
- iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> Free f a -> m a
- class Monad m => MonadFree f m | m -> f where
- wrap :: f (m a) -> m a
The base functor
The base functor for a free monad.
Instances
| Generic1 (FreeF f a :: Type -> Type) Source # | |
| Foldable f => Bifoldable (FreeF f) Source # | |
| Functor f => Bifunctor (FreeF f) Source # | |
| Traversable f => Bitraversable (FreeF f) Source # | |
Defined in Control.Monad.Trans.Free Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> FreeF f a b -> f0 (FreeF f c d) # | |
| Eq1 f => Eq2 (FreeF f) Source # | |
| Ord1 f => Ord2 (FreeF f) Source # | |
Defined in Control.Monad.Trans.Free | |
| Read1 f => Read2 (FreeF f) Source # | |
Defined in Control.Monad.Trans.Free Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (FreeF f a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [FreeF f a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (FreeF f a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [FreeF f a b] # | |
| Show1 f => Show2 (FreeF f) Source # | |
| Foldable f => Foldable (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m => FreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # toList :: FreeF f a a0 -> [a0] # null :: FreeF f a a0 -> Bool # length :: FreeF f a a0 -> Int # elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool # maximum :: Ord a0 => FreeF f a a0 -> a0 # minimum :: Ord a0 => FreeF f a a0 -> a0 # | |
| (Eq1 f, Eq a) => Eq1 (FreeF f a) Source # | |
| (Ord1 f, Ord a) => Ord1 (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free | |
| (Read1 f, Read a) => Read1 (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (FreeF f a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [FreeF f a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (FreeF f a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [FreeF f a a0] # | |
| (Show1 f, Show a) => Show1 (FreeF f a) Source # | |
| Traversable f => Traversable (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free | |
| Functor f => Functor (FreeF f a) Source # | |
| (Typeable f, Typeable b, Data a, Data (f b)) => Data (FreeF f a b) Source # | |
Defined in Control.Monad.Trans.Free Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> FreeF f a b -> c (FreeF f a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FreeF f a b) # toConstr :: FreeF f a b -> Constr # dataTypeOf :: FreeF f a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FreeF f a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FreeF f a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> FreeF f a b -> FreeF f a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQ :: (forall d. Data d => d -> u) -> FreeF f a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FreeF f a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # | |
| Generic (FreeF f a b) Source # | |
| (Read a, Read (f b)) => Read (FreeF f a b) Source # | |
| (Show a, Show (f b)) => Show (FreeF f a b) Source # | |
| (Eq a, Eq (f b)) => Eq (FreeF f a b) Source # | |
| (Ord a, Ord (f b)) => Ord (FreeF f a b) Source # | |
Defined in Control.Monad.Trans.Free | |
| type Rep1 (FreeF f a :: Type -> Type) Source # | |
Defined in Control.Monad.Trans.Free type Rep1 (FreeF f a :: Type -> Type) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free" "free-5.2-8yEobwXBbzsEnejCWouYBv" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f))) | |
| type Rep (FreeF f a b) Source # | |
Defined in Control.Monad.Trans.Free type Rep (FreeF f a b) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free" "free-5.2-8yEobwXBbzsEnejCWouYBv" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f b)))) | |
The free monad transformer
The "free monad transformer" for a functor f
Instances
The free monad
runFree :: Free f a -> FreeF f a (Free f a) Source #
Evaluates the first layer out of a free monad value.
Operations
liftF :: (Functor f, MonadFree f m) => f a -> m a Source #
A version of lift that can be used with just a Functor for f.
iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a Source #
Tear down a free monad transformer using iteration.
iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a Source #
Tear down a free monad transformer using iteration over a transformer.
hoistFreeT :: (Functor m, Functor f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b Source #
foldFreeT :: (MonadTrans t, Monad (t m), Monad m) => (forall n x. Monad n => f x -> t n x) -> FreeT f m a -> t m a Source #
The very definition of a free monad transformer is that given a natural transformation you get a monad transformer homomorphism.
joinFreeT :: (Monad m, Traversable f) => FreeT f m a -> m (Free f a) Source #
Pull out and join m layers of .FreeT f m a
cutoff :: (Functor f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a) Source #
Cuts off a tree of computations at a given depth.
If the depth is 0 or less, no computation nor
monadic effects will take place.
Some examples (n ≥ 0):
cutoff0 _ ≡returnNothingcutoff(n+1).return≡return.Justcutoff(n+1).lift≡lift.liftMJustcutoff(n+1).wrap≡wrap.fmap(cutoffn)
Calling is always terminating, provided each of the
steps in the iteration is terminating.retract . cutoff n
partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b Source #
partialIterT n phi m interprets first n layers of m using phi.
This is sort of the opposite for .cutoff
Some examples (n ≥ 0):
partialIterT0 _ m ≡ mpartialIterT(n+1) phi.return≡returnpartialIterT(n+1) phi.lift≡liftpartialIterT(n+1) phi.wrap≡join.lift. phi
intercalateT :: (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b Source #
intercalateT f m inserts a layer f between every two layers in
m and then retracts the result.
intercalateTf ≡retractT.intersperseTf
retractT :: (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a Source #
Tear down a free monad transformer using Monad instance for t m.
Operations of free monad
iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> Free f a -> m a Source #
Like iter for monadic values.
Free Monads With Class
class Monad m => MonadFree f m | m -> f where Source #
Monads provide substitution (fmap) and renormalization (join):
m>>=f =join(fmapf m)
A free Monad is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[] is not a free Monad (in this sense) because smashes the lists flat.join [[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonadTree wherereturn= Tip Tip a>>=f = f a Bin l r>>=f = Bin (l>>=f) (r>>=f)
This Monad is the free Monad of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree for it directly:
instanceMonadFreePair Tree wherewrap(Pair l r) = Bin l r
Or we could choose to program with instead of Free PairTree
and thereby avoid having to define our own Monad instance.
Moreover, Control.Monad.Free.Church provides a MonadFree
instance that can improve the asymptotic complexity of code that
constructs free monads by effectively reassociating the use of
(>>=). You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
See Free for a more formal definition of the free Monad
for a Functor.
Minimal complete definition
Nothing