| Copyright | (c) 2011 Conal Elliott |
|---|---|
| Maintainer | conal@conal.net |
| Stability | experimental |
| Safe Haskell | Safe-Inferred |
| Language | Haskell98 |
Data.FTree.BottomUp
Description
Top-down, depth-typed functor trees. In other words, right-associated n-ary functor composition. See http://conal.net/blog/posts/a-trie-for-length-typed-vectors/.
Documentation
data T :: (* -> *) -> * -> * -> * where Source
Instances
| Functor f => Functor ((:^) f n) | |
| (IsNat n, Applicative f) => Applicative ((:^) f n) | |
| (Functor f, Foldable f) => Foldable ((:^) f n) | |
| Traversable f => Traversable ((:^) f n) | |
| (Functor f, ShowF f) => ShowF ((:^) f n) | |
| (Foldable f, Applicative f, IsNat n, Eq a) => Eq ((:^) f n a) | |
| (Foldable f, Applicative f, IsNat n, Ord a) => Ord ((:^) f n a) | |
| (Functor f, ShowF f, Show a) => Show ((:^) f n a) | |
| (IsNat n, Applicative f, Monoid m) => Monoid ((:^) f n m) |
inT :: (a -> b) -> (forall n. IsNat n => (f :^ n) (f a) -> (f :^ n) (f b)) -> forall n. (f :^ n) a -> (f :^ n) b Source