{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE TypeFamilies #-}

module Futhark.CodeGen.ImpGen.GPU.Base
  ( KernelConstants (..),
    keyWithEntryPoint,
    CallKernelGen,
    InKernelGen,
    Locks (..),
    HostEnv (..),
    Target (..),
    KernelEnv (..),
    computeThreadChunkSize,
    groupReduce,
    groupScan,
    isActive,
    sKernelThread,
    sKernelGroup,
    sReplicate,
    sIota,
    sCopy,
    compileThreadResult,
    compileGroupResult,
    virtualiseGroups,
    groupLoop,
    kernelLoop,
    groupCoverSpace,
    precomputeSegOpIDs,
    atomicUpdateLocking,
    AtomicBinOp,
    Locking (..),
    AtomicUpdate (..),
    DoAtomicUpdate,
  )
where

import Control.Monad.Except
import Data.List (zip4)
import qualified Data.Map.Strict as M
import Data.Maybe
import qualified Data.Set as S
import qualified Futhark.CodeGen.ImpCode.GPU as Imp
import Futhark.CodeGen.ImpGen
import Futhark.Error
import Futhark.IR.GPUMem
import qualified Futhark.IR.Mem.IxFun as IxFun
import Futhark.MonadFreshNames
import Futhark.Transform.Rename
import Futhark.Util (chunks, dropLast, mapAccumLM, nubOrd, takeLast)
import Futhark.Util.IntegralExp (divUp, quot, rem)
import Prelude hiding (quot, rem)

-- | Which target are we ultimately generating code for?  While most
-- of the kernels code is the same, there are some cases where we
-- generate special code based on the ultimate low-level API we are
-- targeting.
data Target = CUDA | OpenCL

-- | Information about the locks available for accumulators.
data Locks = Locks
  { Locks -> VName
locksArray :: VName,
    Locks -> Int
locksCount :: Int
  }

data HostEnv = HostEnv
  { HostEnv -> AtomicBinOp
hostAtomics :: AtomicBinOp,
    HostEnv -> Target
hostTarget :: Target,
    HostEnv -> Map VName Locks
hostLocks :: M.Map VName Locks
  }

data KernelEnv = KernelEnv
  { KernelEnv -> AtomicBinOp
kernelAtomics :: AtomicBinOp,
    KernelEnv -> KernelConstants
kernelConstants :: KernelConstants,
    KernelEnv -> Map VName Locks
kernelLocks :: M.Map VName Locks
  }

type CallKernelGen = ImpM GPUMem HostEnv Imp.HostOp

type InKernelGen = ImpM GPUMem KernelEnv Imp.KernelOp

data KernelConstants = KernelConstants
  { KernelConstants -> TExp Int32
kernelGlobalThreadId :: Imp.TExp Int32,
    KernelConstants -> TExp Int32
kernelLocalThreadId :: Imp.TExp Int32,
    KernelConstants -> TExp Int32
kernelGroupId :: Imp.TExp Int32,
    KernelConstants -> VName
kernelGlobalThreadIdVar :: VName,
    KernelConstants -> VName
kernelLocalThreadIdVar :: VName,
    KernelConstants -> VName
kernelGroupIdVar :: VName,
    KernelConstants -> TExp Int64
kernelNumGroups :: Imp.TExp Int64,
    KernelConstants -> TExp Int64
kernelGroupSize :: Imp.TExp Int64,
    KernelConstants -> TExp Int32
kernelNumThreads :: Imp.TExp Int32,
    KernelConstants -> TExp Int32
kernelWaveSize :: Imp.TExp Int32,
    KernelConstants -> TExp Bool
kernelThreadActive :: Imp.TExp Bool,
    -- | A mapping from dimensions of nested SegOps to already
    -- computed local thread IDs.
    KernelConstants -> Map [SubExp] [TExp Int32]
kernelLocalIdMap :: M.Map [SubExp] [Imp.TExp Int32]
  }

segOpSizes :: Stms GPUMem -> S.Set [SubExp]
segOpSizes :: Stms GPUMem -> Set [SubExp]
segOpSizes = Stms GPUMem -> Set [SubExp]
onStms
  where
    onStms :: Stms GPUMem -> Set [SubExp]
onStms = (Stm GPUMem -> Set [SubExp]) -> Stms GPUMem -> Set [SubExp]
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (Exp GPUMem -> Set [SubExp]
onExp (Exp GPUMem -> Set [SubExp])
-> (Stm GPUMem -> Exp GPUMem) -> Stm GPUMem -> Set [SubExp]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Stm GPUMem -> Exp GPUMem
forall rep. Stm rep -> Exp rep
stmExp)
    onExp :: Exp GPUMem -> Set [SubExp]
onExp (Op (Inner (SegOp SegOp SegLevel GPUMem
op))) =
      [SubExp] -> Set [SubExp]
forall a. a -> Set a
S.singleton ([SubExp] -> Set [SubExp]) -> [SubExp] -> Set [SubExp]
forall a b. (a -> b) -> a -> b
$ ((VName, SubExp) -> SubExp) -> [(VName, SubExp)] -> [SubExp]
forall a b. (a -> b) -> [a] -> [b]
map (VName, SubExp) -> SubExp
forall a b. (a, b) -> b
snd ([(VName, SubExp)] -> [SubExp]) -> [(VName, SubExp)] -> [SubExp]
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace (SegSpace -> [(VName, SubExp)]) -> SegSpace -> [(VName, SubExp)]
forall a b. (a -> b) -> a -> b
$ SegOp SegLevel GPUMem -> SegSpace
forall lvl rep. SegOp lvl rep -> SegSpace
segSpace SegOp SegLevel GPUMem
op
    onExp (If SubExp
_ BodyT GPUMem
tbranch BodyT GPUMem
fbranch IfDec (BranchType GPUMem)
_) =
      Stms GPUMem -> Set [SubExp]
onStms (BodyT GPUMem -> Stms GPUMem
forall rep. BodyT rep -> Stms rep
bodyStms BodyT GPUMem
tbranch) Set [SubExp] -> Set [SubExp] -> Set [SubExp]
forall a. Semigroup a => a -> a -> a
<> Stms GPUMem -> Set [SubExp]
onStms (BodyT GPUMem -> Stms GPUMem
forall rep. BodyT rep -> Stms rep
bodyStms BodyT GPUMem
fbranch)
    onExp (DoLoop [(FParam GPUMem, SubExp)]
_ [(FParam GPUMem, SubExp)]
_ LoopForm GPUMem
_ BodyT GPUMem
body) =
      Stms GPUMem -> Set [SubExp]
onStms (BodyT GPUMem -> Stms GPUMem
forall rep. BodyT rep -> Stms rep
bodyStms BodyT GPUMem
body)
    onExp Exp GPUMem
_ = Set [SubExp]
forall a. Monoid a => a
mempty

precomputeSegOpIDs :: Stms GPUMem -> InKernelGen a -> InKernelGen a
precomputeSegOpIDs :: forall a. Stms GPUMem -> InKernelGen a -> InKernelGen a
precomputeSegOpIDs Stms GPUMem
stms InKernelGen a
m = do
  TExp Int32
ltid <- KernelConstants -> TExp Int32
kernelLocalThreadId (KernelConstants -> TExp Int32)
-> (KernelEnv -> KernelConstants) -> KernelEnv -> TExp Int32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> TExp Int32)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp (TExp Int32)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  Map [SubExp] [TExp Int32]
new_ids <- [([SubExp], [TExp Int32])] -> Map [SubExp] [TExp Int32]
forall k a. Ord k => [(k, a)] -> Map k a
M.fromList ([([SubExp], [TExp Int32])] -> Map [SubExp] [TExp Int32])
-> ImpM GPUMem KernelEnv KernelOp [([SubExp], [TExp Int32])]
-> ImpM GPUMem KernelEnv KernelOp (Map [SubExp] [TExp Int32])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([SubExp]
 -> ImpM GPUMem KernelEnv KernelOp ([SubExp], [TExp Int32]))
-> [[SubExp]]
-> ImpM GPUMem KernelEnv KernelOp [([SubExp], [TExp Int32])]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (TExp Int32
-> [SubExp]
-> ImpM GPUMem KernelEnv KernelOp ([SubExp], [TExp Int32])
forall {a} {rep} {r} {op}.
ToExp a =>
TExp Int32 -> [a] -> ImpM rep r op ([a], [TExp Int32])
mkMap TExp Int32
ltid) (Set [SubExp] -> [[SubExp]]
forall a. Set a -> [a]
S.toList (Stms GPUMem -> Set [SubExp]
segOpSizes Stms GPUMem
stms))
  let f :: KernelEnv -> KernelEnv
f KernelEnv
env =
        KernelEnv
env
          { kernelConstants :: KernelConstants
kernelConstants =
              (KernelEnv -> KernelConstants
kernelConstants KernelEnv
env) {kernelLocalIdMap :: Map [SubExp] [TExp Int32]
kernelLocalIdMap = Map [SubExp] [TExp Int32]
new_ids}
          }
  (KernelEnv -> KernelEnv) -> InKernelGen a -> InKernelGen a
forall r rep op a. (r -> r) -> ImpM rep r op a -> ImpM rep r op a
localEnv KernelEnv -> KernelEnv
f InKernelGen a
m
  where
    mkMap :: TExp Int32 -> [a] -> ImpM rep r op ([a], [TExp Int32])
mkMap TExp Int32
ltid [a]
dims = do
      let dims' :: [TExp Int32]
dims' = (a -> TExp Int32) -> [a] -> [TExp Int32]
forall a b. (a -> b) -> [a] -> [b]
map (TExp Int64 -> TExp Int32
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (TExp Int64 -> TExp Int32) -> (a -> TExp Int64) -> a -> TExp Int32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp) [a]
dims
      [TExp Int32]
ids' <- (TExp Int32 -> ImpM rep r op (TExp Int32))
-> [TExp Int32] -> ImpM rep r op [TExp Int32]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (String -> TExp Int32 -> ImpM rep r op (TExp Int32)
forall t rep r op. String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"ltid_pre") ([TExp Int32] -> ImpM rep r op [TExp Int32])
-> [TExp Int32] -> ImpM rep r op [TExp Int32]
forall a b. (a -> b) -> a -> b
$ [TExp Int32] -> TExp Int32 -> [TExp Int32]
forall num. IntegralExp num => [num] -> num -> [num]
unflattenIndex [TExp Int32]
dims' TExp Int32
ltid
      ([a], [TExp Int32]) -> ImpM rep r op ([a], [TExp Int32])
forall (m :: * -> *) a. Monad m => a -> m a
return ([a]
dims, [TExp Int32]
ids')

keyWithEntryPoint :: Maybe Name -> Name -> Name
keyWithEntryPoint :: Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname Name
key =
  String -> Name
nameFromString (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$ String -> (Name -> String) -> Maybe Name -> String
forall b a. b -> (a -> b) -> Maybe a -> b
maybe String
"" ((String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
".") (String -> String) -> (Name -> String) -> Name -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> String
nameToString) Maybe Name
fname String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name -> String
nameToString Name
key

allocLocal :: AllocCompiler GPUMem r Imp.KernelOp
allocLocal :: forall r. AllocCompiler GPUMem r KernelOp
allocLocal VName
mem Count Bytes (TExp Int64)
size =
  KernelOp -> ImpM GPUMem r KernelOp ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> ImpM GPUMem r KernelOp ())
-> KernelOp -> ImpM GPUMem r KernelOp ()
forall a b. (a -> b) -> a -> b
$ VName -> Count Bytes (TExp Int64) -> KernelOp
Imp.LocalAlloc VName
mem Count Bytes (TExp Int64)
size

kernelAlloc ::
  Pattern GPUMem ->
  SubExp ->
  Space ->
  InKernelGen ()
kernelAlloc :: Pattern GPUMem -> SubExp -> Space -> InKernelGen ()
kernelAlloc (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
_]) SubExp
_ ScalarSpace {} =
  -- Handled by the declaration of the memory block, which is then
  -- translated to an actual scalar variable during C code generation.
  () -> InKernelGen ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
kernelAlloc (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
mem]) SubExp
size (Space String
"local") =
  AllocCompiler GPUMem KernelEnv KernelOp
forall r. AllocCompiler GPUMem r KernelOp
allocLocal (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
mem) (Count Bytes (TExp Int64) -> InKernelGen ())
-> Count Bytes (TExp Int64) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ TExp Int64 -> Count Bytes (TExp Int64)
forall a. a -> Count Bytes a
Imp.bytes (TExp Int64 -> Count Bytes (TExp Int64))
-> TExp Int64 -> Count Bytes (TExp Int64)
forall a b. (a -> b) -> a -> b
$ SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
size
kernelAlloc (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
mem]) SubExp
_ Space
_ =
  String -> InKernelGen ()
forall a. String -> a
compilerLimitationS (String -> InKernelGen ()) -> String -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ String
"Cannot allocate memory block " String -> String -> String
forall a. [a] -> [a] -> [a]
++ PatElemT LParamMem -> String
forall a. Pretty a => a -> String
pretty PatElemT (LetDec GPUMem)
PatElemT LParamMem
mem String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" in kernel."
kernelAlloc Pattern GPUMem
dest SubExp
_ Space
_ =
  String -> InKernelGen ()
forall a. HasCallStack => String -> a
error (String -> InKernelGen ()) -> String -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ String
"Invalid target for in-kernel allocation: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ PatternT LParamMem -> String
forall a. Show a => a -> String
show Pattern GPUMem
PatternT LParamMem
dest

splitSpace ::
  (ToExp w, ToExp i, ToExp elems_per_thread) =>
  Pattern GPUMem ->
  SplitOrdering ->
  w ->
  i ->
  elems_per_thread ->
  ImpM rep r op ()
splitSpace :: forall w i elems_per_thread rep r op.
(ToExp w, ToExp i, ToExp elems_per_thread) =>
Pattern GPUMem
-> SplitOrdering -> w -> i -> elems_per_thread -> ImpM rep r op ()
splitSpace (Pattern [] [PatElemT (LetDec GPUMem)
size]) SplitOrdering
o w
w i
i elems_per_thread
elems_per_thread = do
  Count Elements (TExp Int64)
num_elements <- TExp Int64 -> Count Elements (TExp Int64)
forall a. a -> Count Elements a
Imp.elements (TExp Int64 -> Count Elements (TExp Int64))
-> (PrimExp ExpLeaf -> TExp Int64)
-> PrimExp ExpLeaf
-> Count Elements (TExp Int64)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PrimExp ExpLeaf -> TExp Int64
forall t v. PrimExp v -> TPrimExp t v
TPrimExp (PrimExp ExpLeaf -> Count Elements (TExp Int64))
-> ImpM rep r op (PrimExp ExpLeaf)
-> ImpM rep r op (Count Elements (TExp Int64))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> w -> ImpM rep r op (PrimExp ExpLeaf)
forall a rep r op. ToExp a => a -> ImpM rep r op (PrimExp ExpLeaf)
toExp w
w
  let i' :: TExp Int64
i' = i -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp i
i
  Count Elements (TExp Int64)
elems_per_thread' <- TExp Int64 -> Count Elements (TExp Int64)
forall a. a -> Count Elements a
Imp.elements (TExp Int64 -> Count Elements (TExp Int64))
-> (PrimExp ExpLeaf -> TExp Int64)
-> PrimExp ExpLeaf
-> Count Elements (TExp Int64)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PrimExp ExpLeaf -> TExp Int64
forall t v. PrimExp v -> TPrimExp t v
TPrimExp (PrimExp ExpLeaf -> Count Elements (TExp Int64))
-> ImpM rep r op (PrimExp ExpLeaf)
-> ImpM rep r op (Count Elements (TExp Int64))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> elems_per_thread -> ImpM rep r op (PrimExp ExpLeaf)
forall a rep r op. ToExp a => a -> ImpM rep r op (PrimExp ExpLeaf)
toExp elems_per_thread
elems_per_thread
  SplitOrdering
-> TExp Int64
-> Count Elements (TExp Int64)
-> Count Elements (TExp Int64)
-> TV Int64
-> ImpM rep r op ()
forall rep r op.
SplitOrdering
-> TExp Int64
-> Count Elements (TExp Int64)
-> Count Elements (TExp Int64)
-> TV Int64
-> ImpM rep r op ()
computeThreadChunkSize SplitOrdering
o TExp Int64
i' Count Elements (TExp Int64)
elems_per_thread' Count Elements (TExp Int64)
num_elements (VName -> PrimType -> TV Int64
forall t. VName -> PrimType -> TV t
mkTV (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
size) PrimType
int64)
splitSpace Pattern GPUMem
pat SplitOrdering
_ w
_ i
_ elems_per_thread
_ =
  String -> ImpM rep r op ()
forall a. HasCallStack => String -> a
error (String -> ImpM rep r op ()) -> String -> ImpM rep r op ()
forall a b. (a -> b) -> a -> b
$ String
"Invalid target for splitSpace: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ PatternT LParamMem -> String
forall a. Pretty a => a -> String
pretty Pattern GPUMem
PatternT LParamMem
pat

updateAcc :: VName -> [SubExp] -> [SubExp] -> InKernelGen ()
updateAcc :: VName -> [SubExp] -> [SubExp] -> InKernelGen ()
updateAcc VName
acc [SubExp]
is [SubExp]
vs = String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"UpdateAcc" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
  -- See the ImpGen implementation of UpdateAcc for general notes.
  let is' :: [TExp Int64]
is' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
is
  (VName
c, Space
space, [VName]
arrs, [TExp Int64]
dims, Maybe (Lambda GPUMem)
op) <- VName
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, [VName], [TExp Int64], Maybe (Lambda GPUMem))
forall rep r op.
VName
-> [TExp Int64]
-> ImpM
     rep r op (VName, Space, [VName], [TExp Int64], Maybe (Lambda rep))
lookupAcc VName
acc [TExp Int64]
is'
  TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (Slice (TExp Int64) -> [TExp Int64] -> TExp Bool
inBounds ((TExp Int64 -> DimIndex (TExp Int64))
-> [TExp Int64] -> Slice (TExp Int64)
forall a b. (a -> b) -> [a] -> [b]
map TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix [TExp Int64]
is') [TExp Int64]
dims) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    case Maybe (Lambda GPUMem)
op of
      Maybe (Lambda GPUMem)
Nothing ->
        [(VName, SubExp)]
-> ((VName, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([VName] -> [SubExp] -> [(VName, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
arrs [SubExp]
vs) (((VName, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((VName, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
arr, SubExp
v) -> VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix VName
arr [TExp Int64]
is' SubExp
v []
      Just Lambda GPUMem
lam -> do
        [LParam GPUMem] -> InKernelGen ()
forall rep r op. Mem rep => [LParam rep] -> ImpM rep r op ()
dLParams ([LParam GPUMem] -> InKernelGen ())
-> [LParam GPUMem] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam
        let ([VName]
_x_params, [VName]
y_params) =
              Int -> [VName] -> ([VName], [VName])
forall a. Int -> [a] -> ([a], [a])
splitAt ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
vs) ([VName] -> ([VName], [VName])) -> [VName] -> ([VName], [VName])
forall a b. (a -> b) -> a -> b
$ (Param LParamMem -> VName) -> [Param LParamMem] -> [VName]
forall a b. (a -> b) -> [a] -> [b]
map Param LParamMem -> VName
forall dec. Param dec -> VName
paramName ([Param LParamMem] -> [VName]) -> [Param LParamMem] -> [VName]
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam
        [(VName, SubExp)]
-> ((VName, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([VName] -> [SubExp] -> [(VName, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
y_params [SubExp]
vs) (((VName, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((VName, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
yp, SubExp
v) -> VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM VName
yp [] SubExp
v []
        AtomicBinOp
atomics <- KernelEnv -> AtomicBinOp
kernelAtomics (KernelEnv -> AtomicBinOp)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp AtomicBinOp
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
        case AtomicBinOp -> Lambda GPUMem -> AtomicUpdate GPUMem KernelEnv
atomicUpdateLocking AtomicBinOp
atomics Lambda GPUMem
lam of
          AtomicPrim DoAtomicUpdate GPUMem KernelEnv
f -> DoAtomicUpdate GPUMem KernelEnv
f Space
space [VName]
arrs [TExp Int64]
is'
          AtomicCAS DoAtomicUpdate GPUMem KernelEnv
f -> DoAtomicUpdate GPUMem KernelEnv
f Space
space [VName]
arrs [TExp Int64]
is'
          AtomicLocking Locking -> DoAtomicUpdate GPUMem KernelEnv
f -> do
            Maybe Locks
c_locks <- VName -> Map VName Locks -> Maybe Locks
forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup VName
c (Map VName Locks -> Maybe Locks)
-> (KernelEnv -> Map VName Locks) -> KernelEnv -> Maybe Locks
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> Map VName Locks
kernelLocks (KernelEnv -> Maybe Locks)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp (Maybe Locks)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
            case Maybe Locks
c_locks of
              Just (Locks VName
locks Int
num_locks) -> do
                let locking :: Locking
locking =
                      VName
-> TExp Int32
-> TExp Int32
-> TExp Int32
-> ([TExp Int64] -> [TExp Int64])
-> Locking
Locking VName
locks TExp Int32
0 TExp Int32
1 TExp Int32
0 (([TExp Int64] -> [TExp Int64]) -> Locking)
-> ([TExp Int64] -> [TExp Int64]) -> Locking
forall a b. (a -> b) -> a -> b
$
                        TExp Int64 -> [TExp Int64]
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TExp Int64 -> [TExp Int64])
-> ([TExp Int64] -> TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`rem` Int -> TExp Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
num_locks) (TExp Int64 -> TExp Int64)
-> ([TExp Int64] -> TExp Int64) -> [TExp Int64] -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [TExp Int64] -> [TExp Int64] -> TExp Int64
forall num. IntegralExp num => [num] -> [num] -> num
flattenIndex [TExp Int64]
dims
                Locking -> DoAtomicUpdate GPUMem KernelEnv
f Locking
locking Space
space [VName]
arrs [TExp Int64]
is'
              Maybe Locks
Nothing ->
                String -> InKernelGen ()
forall a. HasCallStack => String -> a
error (String -> InKernelGen ()) -> String -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ String
"Missing locks for " String -> String -> String
forall a. [a] -> [a] -> [a]
++ VName -> String
forall a. Pretty a => a -> String
pretty VName
acc

compileThreadExp :: ExpCompiler GPUMem KernelEnv Imp.KernelOp
compileThreadExp :: ExpCompiler GPUMem KernelEnv KernelOp
compileThreadExp (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
dest]) (BasicOp (ArrayLit [SubExp]
es TypeBase (ShapeBase SubExp) NoUniqueness
_)) =
  [(Int64, SubExp)]
-> ((Int64, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Int64] -> [SubExp] -> [(Int64, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Int64
0 ..] [SubExp]
es) (((Int64, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((Int64, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Int64
i, SubExp
e) ->
    VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
dest) [Int64 -> TExp Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int64
i :: Int64)] SubExp
e []
compileThreadExp Pattern GPUMem
_ (BasicOp (UpdateAcc VName
acc [SubExp]
is [SubExp]
vs)) =
  VName -> [SubExp] -> [SubExp] -> InKernelGen ()
updateAcc VName
acc [SubExp]
is [SubExp]
vs
compileThreadExp Pattern GPUMem
dest Exp GPUMem
e =
  ExpCompiler GPUMem KernelEnv KernelOp
forall rep r op.
Mem rep =>
Pattern rep -> Exp rep -> ImpM rep r op ()
defCompileExp Pattern GPUMem
dest Exp GPUMem
e

-- | Assign iterations of a for-loop to all threads in the kernel.
-- The passed-in function is invoked with the (symbolic) iteration.
-- 'threadOperations' will be in effect in the body.  For
-- multidimensional loops, use 'groupCoverSpace'.
kernelLoop ::
  IntExp t =>
  Imp.TExp t ->
  Imp.TExp t ->
  Imp.TExp t ->
  (Imp.TExp t -> InKernelGen ()) ->
  InKernelGen ()
kernelLoop :: forall t.
IntExp t =>
TExp t
-> TExp t -> TExp t -> (TExp t -> InKernelGen ()) -> InKernelGen ()
kernelLoop TExp t
tid TExp t
num_threads TExp t
n TExp t -> InKernelGen ()
f =
  Operations GPUMem KernelEnv KernelOp
-> InKernelGen () -> InKernelGen ()
forall rep r op a.
Operations rep r op -> ImpM rep r op a -> ImpM rep r op a
localOps Operations GPUMem KernelEnv KernelOp
threadOperations (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    if TExp t
n TExp t -> TExp t -> Bool
forall a. Eq a => a -> a -> Bool
== TExp t
num_threads
      then TExp t -> InKernelGen ()
f TExp t
tid
      else do
        -- Compute how many elements this thread is responsible for.
        -- Formula: (n - tid) / num_threads (rounded up).
        let elems_for_this :: TExp t
elems_for_this = (TExp t
n TExp t -> TExp t -> TExp t
forall a. Num a => a -> a -> a
- TExp t
tid) TExp t -> TExp t -> TExp t
forall e. IntegralExp e => e -> e -> e
`divUp` TExp t
num_threads

        String -> TExp t -> (TExp t -> InKernelGen ()) -> InKernelGen ()
forall t rep r op.
String
-> TExp t -> (TExp t -> ImpM rep r op ()) -> ImpM rep r op ()
sFor String
"i" TExp t
elems_for_this ((TExp t -> InKernelGen ()) -> InKernelGen ())
-> (TExp t -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TExp t
i -> TExp t -> InKernelGen ()
f (TExp t -> InKernelGen ()) -> TExp t -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ TExp t
i TExp t -> TExp t -> TExp t
forall a. Num a => a -> a -> a
* TExp t
num_threads TExp t -> TExp t -> TExp t
forall a. Num a => a -> a -> a
+ TExp t
tid

-- | Assign iterations of a for-loop to threads in the workgroup.  The
-- passed-in function is invoked with the (symbolic) iteration.  For
-- multidimensional loops, use 'groupCoverSpace'.
groupLoop ::
  Imp.TExp Int64 ->
  (Imp.TExp Int64 -> InKernelGen ()) ->
  InKernelGen ()
groupLoop :: TExp Int64 -> (TExp Int64 -> InKernelGen ()) -> InKernelGen ()
groupLoop TExp Int64
n TExp Int64 -> InKernelGen ()
f = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  TExp Int64
-> TExp Int64
-> TExp Int64
-> (TExp Int64 -> InKernelGen ())
-> InKernelGen ()
forall t.
IntExp t =>
TExp t
-> TExp t -> TExp t -> (TExp t -> InKernelGen ()) -> InKernelGen ()
kernelLoop
    (TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
kernelLocalThreadId KernelConstants
constants)
    (KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants)
    TExp Int64
n
    TExp Int64 -> InKernelGen ()
f

-- | Iterate collectively though a multidimensional space, such that
-- all threads in the group participate.  The passed-in function is
-- invoked with a (symbolic) point in the index space.
groupCoverSpace ::
  [Imp.TExp Int64] ->
  ([Imp.TExp Int64] -> InKernelGen ()) ->
  InKernelGen ()
groupCoverSpace :: [TExp Int64] -> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
groupCoverSpace [TExp Int64]
ds [TExp Int64] -> InKernelGen ()
f =
  TExp Int64 -> (TExp Int64 -> InKernelGen ()) -> InKernelGen ()
groupLoop ([TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
ds) ((TExp Int64 -> InKernelGen ()) -> InKernelGen ())
-> (TExp Int64 -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ [TExp Int64] -> InKernelGen ()
f ([TExp Int64] -> InKernelGen ())
-> (TExp Int64 -> [TExp Int64]) -> TExp Int64 -> InKernelGen ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [TExp Int64] -> TExp Int64 -> [TExp Int64]
forall num. IntegralExp num => [num] -> num -> [num]
unflattenIndex [TExp Int64]
ds

compileGroupExp :: ExpCompiler GPUMem KernelEnv Imp.KernelOp
-- The static arrays stuff does not work inside kernels.
compileGroupExp :: ExpCompiler GPUMem KernelEnv KernelOp
compileGroupExp (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
dest]) (BasicOp (ArrayLit [SubExp]
es TypeBase (ShapeBase SubExp) NoUniqueness
_)) =
  [(Int64, SubExp)]
-> ((Int64, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Int64] -> [SubExp] -> [(Int64, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Int64
0 ..] [SubExp]
es) (((Int64, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((Int64, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Int64
i, SubExp
e) ->
    VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
dest) [Int64 -> TExp Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int64
i :: Int64)] SubExp
e []
compileGroupExp Pattern GPUMem
_ (BasicOp (UpdateAcc VName
acc [SubExp]
is [SubExp]
vs)) =
  VName -> [SubExp] -> [SubExp] -> InKernelGen ()
updateAcc VName
acc [SubExp]
is [SubExp]
vs
compileGroupExp (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
dest]) (BasicOp (Replicate ShapeBase SubExp
ds SubExp
se)) = do
  let ds' :: [TExp Int64]
ds' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp ([SubExp] -> [TExp Int64]) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> a -> b
$ ShapeBase SubExp -> [SubExp]
forall d. ShapeBase d -> [d]
shapeDims ShapeBase SubExp
ds
  [TExp Int64] -> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
groupCoverSpace [TExp Int64]
ds' (([TExp Int64] -> InKernelGen ()) -> InKernelGen ())
-> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TExp Int64]
is ->
    VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
dest) [TExp Int64]
is SubExp
se (Int -> [TExp Int64] -> [TExp Int64]
forall a. Int -> [a] -> [a]
drop (ShapeBase SubExp -> Int
forall a. ArrayShape a => a -> Int
shapeRank ShapeBase SubExp
ds) [TExp Int64]
is)
  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal
compileGroupExp (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
dest]) (BasicOp (Iota SubExp
n SubExp
e SubExp
s IntType
it)) = do
  PrimExp ExpLeaf
n' <- SubExp -> ImpM GPUMem KernelEnv KernelOp (PrimExp ExpLeaf)
forall a rep r op. ToExp a => a -> ImpM rep r op (PrimExp ExpLeaf)
toExp SubExp
n
  PrimExp ExpLeaf
e' <- SubExp -> ImpM GPUMem KernelEnv KernelOp (PrimExp ExpLeaf)
forall a rep r op. ToExp a => a -> ImpM rep r op (PrimExp ExpLeaf)
toExp SubExp
e
  PrimExp ExpLeaf
s' <- SubExp -> ImpM GPUMem KernelEnv KernelOp (PrimExp ExpLeaf)
forall a rep r op. ToExp a => a -> ImpM rep r op (PrimExp ExpLeaf)
toExp SubExp
s
  TExp Int64 -> (TExp Int64 -> InKernelGen ()) -> InKernelGen ()
groupLoop (PrimExp ExpLeaf -> TExp Int64
forall t v. PrimExp v -> TPrimExp t v
TPrimExp PrimExp ExpLeaf
n') ((TExp Int64 -> InKernelGen ()) -> InKernelGen ())
-> (TExp Int64 -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TExp Int64
i' -> do
    TV Any
x <-
      String -> TExp Any -> ImpM GPUMem KernelEnv KernelOp (TV Any)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"x" (TExp Any -> ImpM GPUMem KernelEnv KernelOp (TV Any))
-> TExp Any -> ImpM GPUMem KernelEnv KernelOp (TV Any)
forall a b. (a -> b) -> a -> b
$
        PrimExp ExpLeaf -> TExp Any
forall t v. PrimExp v -> TPrimExp t v
TPrimExp (PrimExp ExpLeaf -> TExp Any) -> PrimExp ExpLeaf -> TExp Any
forall a b. (a -> b) -> a -> b
$
          BinOp -> PrimExp ExpLeaf -> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall v. BinOp -> PrimExp v -> PrimExp v -> PrimExp v
BinOpExp (IntType -> Overflow -> BinOp
Add IntType
it Overflow
OverflowUndef) PrimExp ExpLeaf
e' (PrimExp ExpLeaf -> PrimExp ExpLeaf)
-> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$
            BinOp -> PrimExp ExpLeaf -> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall v. BinOp -> PrimExp v -> PrimExp v -> PrimExp v
BinOpExp (IntType -> Overflow -> BinOp
Mul IntType
it Overflow
OverflowUndef) (TExp Int64 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped TExp Int64
i') PrimExp ExpLeaf
s'
    VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
dest) [TExp Int64
i'] (VName -> SubExp
Var (TV Any -> VName
forall t. TV t -> VName
tvVar TV Any
x)) []
  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal

-- When generating code for a scalar in-place update, we must make
-- sure that only one thread performs the write.  When writing an
-- array, the group-level copy code will take care of doing the right
-- thing.
compileGroupExp (Pattern [PatElemT (LetDec GPUMem)]
_ [PatElemT (LetDec GPUMem)
pe]) (BasicOp (Update VName
_ Slice SubExp
slice SubExp
se))
  | [SubExp] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([SubExp] -> Bool) -> [SubExp] -> Bool
forall a b. (a -> b) -> a -> b
$ Slice SubExp -> [SubExp]
forall d. Slice d -> [d]
sliceDims Slice SubExp
slice = do
    KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal
    TExp Int32
ltid <- KernelConstants -> TExp Int32
kernelLocalThreadId (KernelConstants -> TExp Int32)
-> (KernelEnv -> KernelConstants) -> KernelEnv -> TExp Int32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> TExp Int32)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp (TExp Int32)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Int32
ltid TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) ((DimIndex SubExp -> DimIndex (TExp Int64))
-> Slice SubExp -> Slice (TExp Int64)
forall a b. (a -> b) -> [a] -> [b]
map ((SubExp -> TExp Int64) -> DimIndex SubExp -> DimIndex (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp) Slice SubExp
slice) SubExp
se []
    KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal
compileGroupExp Pattern GPUMem
dest Exp GPUMem
e =
  ExpCompiler GPUMem KernelEnv KernelOp
forall rep r op.
Mem rep =>
Pattern rep -> Exp rep -> ImpM rep r op ()
defCompileExp Pattern GPUMem
dest Exp GPUMem
e

sanityCheckLevel :: SegLevel -> InKernelGen ()
sanityCheckLevel :: SegLevel -> InKernelGen ()
sanityCheckLevel SegThread {} = () -> InKernelGen ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
sanityCheckLevel SegGroup {} =
  String -> InKernelGen ()
forall a. HasCallStack => String -> a
error String
"compileGroupOp: unexpected group-level SegOp."

localThreadIDs :: [SubExp] -> InKernelGen [Imp.TExp Int64]
localThreadIDs :: [SubExp] -> InKernelGen [TExp Int64]
localThreadIDs [SubExp]
dims = do
  TExp Int64
ltid <- TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64)
-> (KernelEnv -> TExp Int32) -> KernelEnv -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelConstants -> TExp Int32
kernelLocalThreadId (KernelConstants -> TExp Int32)
-> (KernelEnv -> KernelConstants) -> KernelEnv -> TExp Int32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> TExp Int64)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  let dims' :: [TExp Int64]
dims' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
dims
  [TExp Int64]
-> ([TExp Int32] -> [TExp Int64])
-> Maybe [TExp Int32]
-> [TExp Int64]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([TExp Int64] -> TExp Int64 -> [TExp Int64]
forall num. IntegralExp num => [num] -> num -> [num]
unflattenIndex [TExp Int64]
dims' TExp Int64
ltid) ((TExp Int32 -> TExp Int64) -> [TExp Int32] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64)
    (Maybe [TExp Int32] -> [TExp Int64])
-> (KernelEnv -> Maybe [TExp Int32]) -> KernelEnv -> [TExp Int64]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [SubExp] -> Map [SubExp] [TExp Int32] -> Maybe [TExp Int32]
forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup [SubExp]
dims
    (Map [SubExp] [TExp Int32] -> Maybe [TExp Int32])
-> (KernelEnv -> Map [SubExp] [TExp Int32])
-> KernelEnv
-> Maybe [TExp Int32]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelConstants -> Map [SubExp] [TExp Int32]
kernelLocalIdMap
    (KernelConstants -> Map [SubExp] [TExp Int32])
-> (KernelEnv -> KernelConstants)
-> KernelEnv
-> Map [SubExp] [TExp Int32]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants
    (KernelEnv -> [TExp Int64])
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> InKernelGen [TExp Int64]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv

compileGroupSpace :: SegLevel -> SegSpace -> InKernelGen ()
compileGroupSpace :: SegLevel -> SegSpace -> InKernelGen ()
compileGroupSpace SegLevel
lvl SegSpace
space = do
  SegLevel -> InKernelGen ()
sanityCheckLevel SegLevel
lvl
  let ([VName]
ltids, [SubExp]
dims) = [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(VName, SubExp)] -> ([VName], [SubExp]))
-> [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
  (VName -> TExp Int64 -> InKernelGen ())
-> [VName] -> [TExp Int64] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ VName -> TExp Int64 -> InKernelGen ()
forall t rep r op. VName -> TExp t -> ImpM rep r op ()
dPrimV_ [VName]
ltids ([TExp Int64] -> InKernelGen ())
-> InKernelGen [TExp Int64] -> InKernelGen ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< [SubExp] -> InKernelGen [TExp Int64]
localThreadIDs [SubExp]
dims
  TExp Int32
ltid <- KernelConstants -> TExp Int32
kernelLocalThreadId (KernelConstants -> TExp Int32)
-> (KernelEnv -> KernelConstants) -> KernelEnv -> TExp Int32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> TExp Int32)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp (TExp Int32)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  VName -> TExp Int32 -> InKernelGen ()
forall t rep r op. VName -> TExp t -> ImpM rep r op ()
dPrimV_ (SegSpace -> VName
segFlat SegSpace
space) TExp Int32
ltid

-- Construct the necessary lock arrays for an intra-group histogram.
prepareIntraGroupSegHist ::
  Count GroupSize SubExp ->
  [HistOp GPUMem] ->
  InKernelGen [[Imp.TExp Int64] -> InKernelGen ()]
prepareIntraGroupSegHist :: Count GroupSize SubExp
-> [HistOp GPUMem] -> InKernelGen [[TExp Int64] -> InKernelGen ()]
prepareIntraGroupSegHist Count GroupSize SubExp
group_size =
  ((Maybe Locking, [[TExp Int64] -> InKernelGen ()])
 -> [[TExp Int64] -> InKernelGen ()])
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [[TExp Int64] -> InKernelGen ()])
-> InKernelGen [[TExp Int64] -> InKernelGen ()]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Maybe Locking, [[TExp Int64] -> InKernelGen ()])
-> [[TExp Int64] -> InKernelGen ()]
forall a b. (a, b) -> b
snd (ImpM
   GPUMem
   KernelEnv
   KernelOp
   (Maybe Locking, [[TExp Int64] -> InKernelGen ()])
 -> InKernelGen [[TExp Int64] -> InKernelGen ()])
-> ([HistOp GPUMem]
    -> ImpM
         GPUMem
         KernelEnv
         KernelOp
         (Maybe Locking, [[TExp Int64] -> InKernelGen ()]))
-> [HistOp GPUMem]
-> InKernelGen [[TExp Int64] -> InKernelGen ()]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Maybe Locking
 -> HistOp GPUMem
 -> ImpM
      GPUMem
      KernelEnv
      KernelOp
      (Maybe Locking, [TExp Int64] -> InKernelGen ()))
-> Maybe Locking
-> [HistOp GPUMem]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [[TExp Int64] -> InKernelGen ()])
forall (m :: * -> *) acc x y.
Monad m =>
(acc -> x -> m (acc, y)) -> acc -> [x] -> m (acc, [y])
mapAccumLM Maybe Locking
-> HistOp GPUMem
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [TExp Int64] -> InKernelGen ())
onOp Maybe Locking
forall a. Maybe a
Nothing
  where
    onOp :: Maybe Locking
-> HistOp GPUMem
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [TExp Int64] -> InKernelGen ())
onOp Maybe Locking
l HistOp GPUMem
op = do
      KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
      AtomicBinOp
atomicBinOp <- KernelEnv -> AtomicBinOp
kernelAtomics (KernelEnv -> AtomicBinOp)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp AtomicBinOp
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv

      let local_subhistos :: [VName]
local_subhistos = HistOp GPUMem -> [VName]
forall rep. HistOp rep -> [VName]
histDest HistOp GPUMem
op

      case (Maybe Locking
l, AtomicBinOp -> Lambda GPUMem -> AtomicUpdate GPUMem KernelEnv
atomicUpdateLocking AtomicBinOp
atomicBinOp (Lambda GPUMem -> AtomicUpdate GPUMem KernelEnv)
-> Lambda GPUMem -> AtomicUpdate GPUMem KernelEnv
forall a b. (a -> b) -> a -> b
$ HistOp GPUMem -> Lambda GPUMem
forall rep. HistOp rep -> Lambda rep
histOp HistOp GPUMem
op) of
        (Maybe Locking
_, AtomicPrim DoAtomicUpdate GPUMem KernelEnv
f) -> (Maybe Locking, [TExp Int64] -> InKernelGen ())
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [TExp Int64] -> InKernelGen ())
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe Locking
l, DoAtomicUpdate GPUMem KernelEnv
f (String -> Space
Space String
"local") [VName]
local_subhistos)
        (Maybe Locking
_, AtomicCAS DoAtomicUpdate GPUMem KernelEnv
f) -> (Maybe Locking, [TExp Int64] -> InKernelGen ())
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [TExp Int64] -> InKernelGen ())
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe Locking
l, DoAtomicUpdate GPUMem KernelEnv
f (String -> Space
Space String
"local") [VName]
local_subhistos)
        (Just Locking
l', AtomicLocking Locking -> DoAtomicUpdate GPUMem KernelEnv
f) -> (Maybe Locking, [TExp Int64] -> InKernelGen ())
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [TExp Int64] -> InKernelGen ())
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe Locking
l, Locking -> DoAtomicUpdate GPUMem KernelEnv
f Locking
l' (String -> Space
Space String
"local") [VName]
local_subhistos)
        (Maybe Locking
Nothing, AtomicLocking Locking -> DoAtomicUpdate GPUMem KernelEnv
f) -> do
          VName
locks <- String -> ImpM GPUMem KernelEnv KernelOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"locks"

          let num_locks :: TExp Int64
num_locks = SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp (SubExp -> TExp Int64) -> SubExp -> TExp Int64
forall a b. (a -> b) -> a -> b
$ Count GroupSize SubExp -> SubExp
forall u e. Count u e -> e
unCount Count GroupSize SubExp
group_size
              dims :: [TExp Int64]
dims = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp ([SubExp] -> [TExp Int64]) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> a -> b
$ ShapeBase SubExp -> [SubExp]
forall d. ShapeBase d -> [d]
shapeDims (HistOp GPUMem -> ShapeBase SubExp
forall rep. HistOp rep -> ShapeBase SubExp
histShape HistOp GPUMem
op) [SubExp] -> [SubExp] -> [SubExp]
forall a. [a] -> [a] -> [a]
++ [HistOp GPUMem -> SubExp
forall rep. HistOp rep -> SubExp
histWidth HistOp GPUMem
op]
              l' :: Locking
l' = VName
-> TExp Int32
-> TExp Int32
-> TExp Int32
-> ([TExp Int64] -> [TExp Int64])
-> Locking
Locking VName
locks TExp Int32
0 TExp Int32
1 TExp Int32
0 (TExp Int64 -> [TExp Int64]
forall (f :: * -> *) a. Applicative f => a -> f a
pure (TExp Int64 -> [TExp Int64])
-> ([TExp Int64] -> TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`rem` TExp Int64
num_locks) (TExp Int64 -> TExp Int64)
-> ([TExp Int64] -> TExp Int64) -> [TExp Int64] -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [TExp Int64] -> [TExp Int64] -> TExp Int64
forall num. IntegralExp num => [num] -> [num] -> num
flattenIndex [TExp Int64]
dims)
              locks_t :: TypeBase (ShapeBase SubExp) NoUniqueness
locks_t = PrimType
-> ShapeBase SubExp
-> NoUniqueness
-> TypeBase (ShapeBase SubExp) NoUniqueness
forall shape u. PrimType -> shape -> u -> TypeBase shape u
Array PrimType
int32 ([SubExp] -> ShapeBase SubExp
forall d. [d] -> ShapeBase d
Shape [Count GroupSize SubExp -> SubExp
forall u e. Count u e -> e
unCount Count GroupSize SubExp
group_size]) NoUniqueness
NoUniqueness

          VName
locks_mem <- String
-> Count Bytes (TExp Int64)
-> Space
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String -> Count Bytes (TExp Int64) -> Space -> ImpM rep r op VName
sAlloc String
"locks_mem" (TypeBase (ShapeBase SubExp) NoUniqueness
-> Count Bytes (TExp Int64)
typeSize TypeBase (ShapeBase SubExp) NoUniqueness
locks_t) (Space -> ImpM GPUMem KernelEnv KernelOp VName)
-> Space -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$ String -> Space
Space String
"local"
          VName -> PrimType -> ShapeBase SubExp -> MemBind -> InKernelGen ()
forall rep r op.
VName
-> PrimType -> ShapeBase SubExp -> MemBind -> ImpM rep r op ()
dArray VName
locks PrimType
int32 (TypeBase (ShapeBase SubExp) NoUniqueness -> ShapeBase SubExp
forall shape u. ArrayShape shape => TypeBase shape u -> shape
arrayShape TypeBase (ShapeBase SubExp) NoUniqueness
locks_t) (MemBind -> InKernelGen ()) -> MemBind -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            VName -> IxFun -> MemBind
ArrayIn VName
locks_mem (IxFun -> MemBind) -> IxFun -> MemBind
forall a b. (a -> b) -> a -> b
$
              Shape (TPrimExp Int64 VName) -> IxFun
forall num. IntegralExp num => Shape num -> IxFun num
IxFun.iota (Shape (TPrimExp Int64 VName) -> IxFun)
-> Shape (TPrimExp Int64 VName) -> IxFun
forall a b. (a -> b) -> a -> b
$
                (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 ([SubExp] -> Shape (TPrimExp Int64 VName))
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$ TypeBase (ShapeBase SubExp) NoUniqueness -> [SubExp]
forall u. TypeBase (ShapeBase SubExp) u -> [SubExp]
arrayDims TypeBase (ShapeBase SubExp) NoUniqueness
locks_t

          String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"All locks start out unlocked" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            [TExp Int64] -> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
groupCoverSpace [KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants] (([TExp Int64] -> InKernelGen ()) -> InKernelGen ())
-> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TExp Int64]
is ->
              VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix VName
locks [TExp Int64]
is (IntType -> Integer -> SubExp
intConst IntType
Int32 Integer
0) []

          (Maybe Locking, [TExp Int64] -> InKernelGen ())
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (Maybe Locking, [TExp Int64] -> InKernelGen ())
forall (m :: * -> *) a. Monad m => a -> m a
return (Locking -> Maybe Locking
forall a. a -> Maybe a
Just Locking
l', Locking -> DoAtomicUpdate GPUMem KernelEnv
f Locking
l' (String -> Space
Space String
"local") [VName]
local_subhistos)

whenActive :: SegLevel -> SegSpace -> InKernelGen () -> InKernelGen ()
whenActive :: SegLevel -> SegSpace -> InKernelGen () -> InKernelGen ()
whenActive SegLevel
lvl SegSpace
space InKernelGen ()
m
  | SegVirt
SegNoVirtFull <- SegLevel -> SegVirt
segVirt SegLevel
lvl = InKernelGen ()
m
  | Bool
otherwise = do
    TExp Int64
group_size <- KernelConstants -> TExp Int64
kernelGroupSize (KernelConstants -> TExp Int64)
-> (KernelEnv -> KernelConstants) -> KernelEnv -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> TExp Int64)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
    -- XXX: the following check is too naive - we should also handle
    -- the multi-dimensional case.
    if [TExp Int64
group_size] [TExp Int64] -> [TExp Int64] -> Bool
forall a. Eq a => a -> a -> Bool
== ((VName, SubExp) -> TExp Int64)
-> [(VName, SubExp)] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map (SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp (SubExp -> TExp Int64)
-> ((VName, SubExp) -> SubExp) -> (VName, SubExp) -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (VName, SubExp) -> SubExp
forall a b. (a, b) -> b
snd) (SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space)
      then InKernelGen ()
m
      else TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen ([(VName, SubExp)] -> TExp Bool
isActive ([(VName, SubExp)] -> TExp Bool) -> [(VName, SubExp)] -> TExp Bool
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space) InKernelGen ()
m

compileGroupOp :: OpCompiler GPUMem KernelEnv Imp.KernelOp
compileGroupOp :: OpCompiler GPUMem KernelEnv KernelOp
compileGroupOp Pattern GPUMem
pat (Alloc SubExp
size Space
space) =
  Pattern GPUMem -> SubExp -> Space -> InKernelGen ()
kernelAlloc Pattern GPUMem
pat SubExp
size Space
space
compileGroupOp Pattern GPUMem
pat (Inner (SizeOp (SplitSpace SplitOrdering
o SubExp
w SubExp
i SubExp
elems_per_thread))) =
  Pattern GPUMem
-> SplitOrdering -> SubExp -> SubExp -> SubExp -> InKernelGen ()
forall w i elems_per_thread rep r op.
(ToExp w, ToExp i, ToExp elems_per_thread) =>
Pattern GPUMem
-> SplitOrdering -> w -> i -> elems_per_thread -> ImpM rep r op ()
splitSpace Pattern GPUMem
pat SplitOrdering
o SubExp
w SubExp
i SubExp
elems_per_thread
compileGroupOp Pattern GPUMem
pat (Inner (SegOp (SegMap SegLevel
lvl SegSpace
space [TypeBase (ShapeBase SubExp) NoUniqueness]
_ KernelBody GPUMem
body))) = do
  InKernelGen () -> InKernelGen ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ SegLevel -> SegSpace -> InKernelGen ()
compileGroupSpace SegLevel
lvl SegSpace
space

  SegLevel -> SegSpace -> InKernelGen () -> InKernelGen ()
whenActive SegLevel
lvl SegSpace
space (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    Operations GPUMem KernelEnv KernelOp
-> InKernelGen () -> InKernelGen ()
forall rep r op a.
Operations rep r op -> ImpM rep r op a -> ImpM rep r op a
localOps Operations GPUMem KernelEnv KernelOp
threadOperations (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms Names
forall a. Monoid a => a
mempty (KernelBody GPUMem -> Stms GPUMem
forall rep. KernelBody rep -> Stms rep
kernelBodyStms KernelBody GPUMem
body) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        (PatElemT LParamMem -> KernelResult -> InKernelGen ())
-> [PatElemT LParamMem] -> [KernelResult] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ (SegSpace
-> PatElemT (LetDec GPUMem) -> KernelResult -> InKernelGen ()
compileThreadResult SegSpace
space) (PatternT LParamMem -> [PatElemT LParamMem]
forall dec. PatternT dec -> [PatElemT dec]
patternElements Pattern GPUMem
PatternT LParamMem
pat) ([KernelResult] -> InKernelGen ())
-> [KernelResult] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          KernelBody GPUMem -> [KernelResult]
forall rep. KernelBody rep -> [KernelResult]
kernelBodyResult KernelBody GPUMem
body

  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal
compileGroupOp Pattern GPUMem
pat (Inner (SegOp (SegScan SegLevel
lvl SegSpace
space [SegBinOp GPUMem]
scans [TypeBase (ShapeBase SubExp) NoUniqueness]
_ KernelBody GPUMem
body))) = do
  SegLevel -> SegSpace -> InKernelGen ()
compileGroupSpace SegLevel
lvl SegSpace
space
  let ([VName]
ltids, [SubExp]
dims) = [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(VName, SubExp)] -> ([VName], [SubExp]))
-> [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
      dims' :: [TExp Int64]
dims' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
dims

  SegLevel -> SegSpace -> InKernelGen () -> InKernelGen ()
whenActive SegLevel
lvl SegSpace
space (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms Names
forall a. Monoid a => a
mempty (KernelBody GPUMem -> Stms GPUMem
forall rep. KernelBody rep -> Stms rep
kernelBodyStms KernelBody GPUMem
body) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      [(VName, KernelResult)]
-> ((VName, KernelResult) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([VName] -> [KernelResult] -> [(VName, KernelResult)]
forall a b. [a] -> [b] -> [(a, b)]
zip (PatternT LParamMem -> [VName]
forall dec. PatternT dec -> [VName]
patternNames Pattern GPUMem
PatternT LParamMem
pat) ([KernelResult] -> [(VName, KernelResult)])
-> [KernelResult] -> [(VName, KernelResult)]
forall a b. (a -> b) -> a -> b
$ KernelBody GPUMem -> [KernelResult]
forall rep. KernelBody rep -> [KernelResult]
kernelBodyResult KernelBody GPUMem
body) (((VName, KernelResult) -> InKernelGen ()) -> InKernelGen ())
-> ((VName, KernelResult) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
dest, KernelResult
res) ->
        VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix
          VName
dest
          ((VName -> TExp Int64) -> [VName] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map VName -> TExp Int64
Imp.vi64 [VName]
ltids)
          (KernelResult -> SubExp
kernelResultSubExp KernelResult
res)
          []

  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal

  let segment_size :: TExp Int64
segment_size = [TExp Int64] -> TExp Int64
forall a. [a] -> a
last [TExp Int64]
dims'
      crossesSegment :: TExp Int32 -> TExp Int32 -> TExp Bool
crossesSegment TExp Int32
from TExp Int32
to =
        (TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
to TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
from) TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.>. (TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
to TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`rem` TExp Int64
segment_size)

  -- groupScan needs to treat the scan output as a one-dimensional
  -- array of scan elements, so we invent some new flattened arrays
  -- here.  XXX: this assumes that the original index function is just
  -- row-major, but does not actually verify it.
  TV Int64
dims_flat <- String -> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"dims_flat" (TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64))
-> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64)
forall a b. (a -> b) -> a -> b
$ [TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
dims'
  let flattened :: PatElemT LParamMem -> ImpM GPUMem KernelEnv KernelOp VName
flattened PatElemT LParamMem
pe = do
        MemLocation VName
mem [SubExp]
_ IxFun (TExp Int64)
_ <-
          ArrayEntry -> MemLocation
entryArrayLocation (ArrayEntry -> MemLocation)
-> ImpM GPUMem KernelEnv KernelOp ArrayEntry
-> ImpM GPUMem KernelEnv KernelOp MemLocation
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName -> ImpM GPUMem KernelEnv KernelOp ArrayEntry
forall rep r op. VName -> ImpM rep r op ArrayEntry
lookupArray (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT LParamMem
pe)
        let pe_t :: TypeBase (ShapeBase SubExp) NoUniqueness
pe_t = PatElemT LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall t. Typed t => t -> TypeBase (ShapeBase SubExp) NoUniqueness
typeOf PatElemT LParamMem
pe
            arr_dims :: [SubExp]
arr_dims = VName -> SubExp
Var (TV Int64 -> VName
forall t. TV t -> VName
tvVar TV Int64
dims_flat) SubExp -> [SubExp] -> [SubExp]
forall a. a -> [a] -> [a]
: Int -> [SubExp] -> [SubExp]
forall a. Int -> [a] -> [a]
drop ([TExp Int64] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [TExp Int64]
dims') (TypeBase (ShapeBase SubExp) NoUniqueness -> [SubExp]
forall u. TypeBase (ShapeBase SubExp) u -> [SubExp]
arrayDims TypeBase (ShapeBase SubExp) NoUniqueness
pe_t)
        String
-> PrimType
-> ShapeBase SubExp
-> MemBind
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String
-> PrimType -> ShapeBase SubExp -> MemBind -> ImpM rep r op VName
sArray
          (VName -> String
baseString (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT LParamMem
pe) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"_flat")
          (TypeBase (ShapeBase SubExp) NoUniqueness -> PrimType
forall shape u. TypeBase shape u -> PrimType
elemType TypeBase (ShapeBase SubExp) NoUniqueness
pe_t)
          ([SubExp] -> ShapeBase SubExp
forall d. [d] -> ShapeBase d
Shape [SubExp]
arr_dims)
          (MemBind -> ImpM GPUMem KernelEnv KernelOp VName)
-> MemBind -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$ VName -> IxFun -> MemBind
ArrayIn VName
mem (IxFun -> MemBind) -> IxFun -> MemBind
forall a b. (a -> b) -> a -> b
$ Shape (TPrimExp Int64 VName) -> IxFun
forall num. IntegralExp num => Shape num -> IxFun num
IxFun.iota (Shape (TPrimExp Int64 VName) -> IxFun)
-> Shape (TPrimExp Int64 VName) -> IxFun
forall a b. (a -> b) -> a -> b
$ (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 [SubExp]
arr_dims

      num_scan_results :: Int
num_scan_results = [Int] -> Int
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ([Int] -> Int) -> [Int] -> Int
forall a b. (a -> b) -> a -> b
$ (SegBinOp GPUMem -> Int) -> [SegBinOp GPUMem] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([SubExp] -> Int)
-> (SegBinOp GPUMem -> [SubExp]) -> SegBinOp GPUMem -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> [SubExp]
forall rep. SegBinOp rep -> [SubExp]
segBinOpNeutral) [SegBinOp GPUMem]
scans

  [VName]
arrs_flat <- (PatElemT LParamMem -> ImpM GPUMem KernelEnv KernelOp VName)
-> [PatElemT LParamMem] -> ImpM GPUMem KernelEnv KernelOp [VName]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM PatElemT LParamMem -> ImpM GPUMem KernelEnv KernelOp VName
flattened ([PatElemT LParamMem] -> ImpM GPUMem KernelEnv KernelOp [VName])
-> [PatElemT LParamMem] -> ImpM GPUMem KernelEnv KernelOp [VName]
forall a b. (a -> b) -> a -> b
$ Int -> [PatElemT LParamMem] -> [PatElemT LParamMem]
forall a. Int -> [a] -> [a]
take Int
num_scan_results ([PatElemT LParamMem] -> [PatElemT LParamMem])
-> [PatElemT LParamMem] -> [PatElemT LParamMem]
forall a b. (a -> b) -> a -> b
$ PatternT LParamMem -> [PatElemT LParamMem]
forall dec. PatternT dec -> [PatElemT dec]
patternElements Pattern GPUMem
PatternT LParamMem
pat

  [SegBinOp GPUMem]
-> (SegBinOp GPUMem -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [SegBinOp GPUMem]
scans ((SegBinOp GPUMem -> InKernelGen ()) -> InKernelGen ())
-> (SegBinOp GPUMem -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \SegBinOp GPUMem
scan -> do
    let scan_op :: Lambda GPUMem
scan_op = SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda SegBinOp GPUMem
scan
    Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Int64
-> TExp Int64
-> Lambda GPUMem
-> [VName]
-> InKernelGen ()
groupScan ((TExp Int32 -> TExp Int32 -> TExp Bool)
-> Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
forall a. a -> Maybe a
Just TExp Int32 -> TExp Int32 -> TExp Bool
crossesSegment) ([TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
dims') ([TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
dims') Lambda GPUMem
scan_op [VName]
arrs_flat
compileGroupOp Pattern GPUMem
pat (Inner (SegOp (SegRed SegLevel
lvl SegSpace
space [SegBinOp GPUMem]
ops [TypeBase (ShapeBase SubExp) NoUniqueness]
_ KernelBody GPUMem
body))) = do
  SegLevel -> SegSpace -> InKernelGen ()
compileGroupSpace SegLevel
lvl SegSpace
space

  let ([VName]
ltids, [SubExp]
dims) = [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(VName, SubExp)] -> ([VName], [SubExp]))
-> [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
      ([PatElemT LParamMem]
red_pes, [PatElemT LParamMem]
map_pes) =
        Int
-> [PatElemT LParamMem]
-> ([PatElemT LParamMem], [PatElemT LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([SegBinOp GPUMem] -> Int
forall rep. [SegBinOp rep] -> Int
segBinOpResults [SegBinOp GPUMem]
ops) ([PatElemT LParamMem]
 -> ([PatElemT LParamMem], [PatElemT LParamMem]))
-> [PatElemT LParamMem]
-> ([PatElemT LParamMem], [PatElemT LParamMem])
forall a b. (a -> b) -> a -> b
$ PatternT LParamMem -> [PatElemT LParamMem]
forall dec. PatternT dec -> [PatElemT dec]
patternElements Pattern GPUMem
PatternT LParamMem
pat

      dims' :: [TExp Int64]
dims' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
dims

      mkTempArr :: TypeBase (ShapeBase SubExp) NoUniqueness
-> ImpM GPUMem KernelEnv KernelOp VName
mkTempArr TypeBase (ShapeBase SubExp) NoUniqueness
t =
        String
-> PrimType
-> ShapeBase SubExp
-> Space
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String
-> PrimType -> ShapeBase SubExp -> Space -> ImpM rep r op VName
sAllocArray String
"red_arr" (TypeBase (ShapeBase SubExp) NoUniqueness -> PrimType
forall shape u. TypeBase shape u -> PrimType
elemType TypeBase (ShapeBase SubExp) NoUniqueness
t) ([SubExp] -> ShapeBase SubExp
forall d. [d] -> ShapeBase d
Shape [SubExp]
dims ShapeBase SubExp -> ShapeBase SubExp -> ShapeBase SubExp
forall a. Semigroup a => a -> a -> a
<> TypeBase (ShapeBase SubExp) NoUniqueness -> ShapeBase SubExp
forall shape u. ArrayShape shape => TypeBase shape u -> shape
arrayShape TypeBase (ShapeBase SubExp) NoUniqueness
t) (Space -> ImpM GPUMem KernelEnv KernelOp VName)
-> Space -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$ String -> Space
Space String
"local"

  [VName]
tmp_arrs <- (TypeBase (ShapeBase SubExp) NoUniqueness
 -> ImpM GPUMem KernelEnv KernelOp VName)
-> [TypeBase (ShapeBase SubExp) NoUniqueness]
-> ImpM GPUMem KernelEnv KernelOp [VName]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM TypeBase (ShapeBase SubExp) NoUniqueness
-> ImpM GPUMem KernelEnv KernelOp VName
mkTempArr ([TypeBase (ShapeBase SubExp) NoUniqueness]
 -> ImpM GPUMem KernelEnv KernelOp [VName])
-> [TypeBase (ShapeBase SubExp) NoUniqueness]
-> ImpM GPUMem KernelEnv KernelOp [VName]
forall a b. (a -> b) -> a -> b
$ (SegBinOp GPUMem -> [TypeBase (ShapeBase SubExp) NoUniqueness])
-> [SegBinOp GPUMem] -> [TypeBase (ShapeBase SubExp) NoUniqueness]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Lambda GPUMem -> [TypeBase (ShapeBase SubExp) NoUniqueness]
forall rep.
LambdaT rep -> [TypeBase (ShapeBase SubExp) NoUniqueness]
lambdaReturnType (Lambda GPUMem -> [TypeBase (ShapeBase SubExp) NoUniqueness])
-> (SegBinOp GPUMem -> Lambda GPUMem)
-> SegBinOp GPUMem
-> [TypeBase (ShapeBase SubExp) NoUniqueness]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda) [SegBinOp GPUMem]
ops
  let tmps_for_ops :: [[VName]]
tmps_for_ops = [Int] -> [VName] -> [[VName]]
forall a. [Int] -> [a] -> [[a]]
chunks ((SegBinOp GPUMem -> Int) -> [SegBinOp GPUMem] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([SubExp] -> Int)
-> (SegBinOp GPUMem -> [SubExp]) -> SegBinOp GPUMem -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SegBinOp GPUMem -> [SubExp]
forall rep. SegBinOp rep -> [SubExp]
segBinOpNeutral) [SegBinOp GPUMem]
ops) [VName]
tmp_arrs

  SegLevel -> SegSpace -> InKernelGen () -> InKernelGen ()
whenActive SegLevel
lvl SegSpace
space (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms Names
forall a. Monoid a => a
mempty (KernelBody GPUMem -> Stms GPUMem
forall rep. KernelBody rep -> Stms rep
kernelBodyStms KernelBody GPUMem
body) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      let ([KernelResult]
red_res, [KernelResult]
map_res) =
            Int -> [KernelResult] -> ([KernelResult], [KernelResult])
forall a. Int -> [a] -> ([a], [a])
splitAt ([SegBinOp GPUMem] -> Int
forall rep. [SegBinOp rep] -> Int
segBinOpResults [SegBinOp GPUMem]
ops) ([KernelResult] -> ([KernelResult], [KernelResult]))
-> [KernelResult] -> ([KernelResult], [KernelResult])
forall a b. (a -> b) -> a -> b
$ KernelBody GPUMem -> [KernelResult]
forall rep. KernelBody rep -> [KernelResult]
kernelBodyResult KernelBody GPUMem
body
      [(VName, KernelResult)]
-> ((VName, KernelResult) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([VName] -> [KernelResult] -> [(VName, KernelResult)]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
tmp_arrs [KernelResult]
red_res) (((VName, KernelResult) -> InKernelGen ()) -> InKernelGen ())
-> ((VName, KernelResult) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
dest, KernelResult
res) ->
        VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix VName
dest ((VName -> TExp Int64) -> [VName] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map VName -> TExp Int64
Imp.vi64 [VName]
ltids) (KernelResult -> SubExp
kernelResultSubExp KernelResult
res) []
      (PatElemT LParamMem -> KernelResult -> InKernelGen ())
-> [PatElemT LParamMem] -> [KernelResult] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ (SegSpace
-> PatElemT (LetDec GPUMem) -> KernelResult -> InKernelGen ()
compileThreadResult SegSpace
space) [PatElemT LParamMem]
map_pes [KernelResult]
map_res

  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal

  case [TExp Int64]
dims' of
    -- Nonsegmented case (or rather, a single segment) - this we can
    -- handle directly with a group-level reduction.
    [TExp Int64
dim'] -> do
      [(SegBinOp GPUMem, [VName])]
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOp GPUMem] -> [[VName]] -> [(SegBinOp GPUMem, [VName])]
forall a b. [a] -> [b] -> [(a, b)]
zip [SegBinOp GPUMem]
ops [[VName]]
tmps_for_ops) (((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ())
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(SegBinOp GPUMem
op, [VName]
tmps) ->
        TExp Int32 -> Lambda GPUMem -> [VName] -> InKernelGen ()
groupReduce (TExp Int64 -> TExp Int32
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 TExp Int64
dim') (SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda SegBinOp GPUMem
op) [VName]
tmps

      KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal

      [(PatElemT LParamMem, VName)]
-> ((PatElemT LParamMem, VName) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([PatElemT LParamMem] -> [VName] -> [(PatElemT LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [PatElemT LParamMem]
red_pes [VName]
tmp_arrs) (((PatElemT LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((PatElemT LParamMem, VName) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(PatElemT LParamMem
pe, VName
arr) ->
        VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT LParamMem
pe) [] (VName -> SubExp
Var VName
arr) [TExp Int64
0]
    [TExp Int64]
_ -> do
      -- Segmented intra-group reductions are turned into (regular)
      -- segmented scans.  It is possible that this can be done
      -- better, but at least this approach is simple.

      -- groupScan operates on flattened arrays.  This does not
      -- involve copying anything; merely playing with the index
      -- function.
      TV Int64
dims_flat <- String -> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"dims_flat" (TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64))
-> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64)
forall a b. (a -> b) -> a -> b
$ [TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
dims'
      let flatten :: VName -> ImpM GPUMem KernelEnv KernelOp VName
flatten VName
arr = do
            ArrayEntry MemLocation
arr_loc PrimType
pt <- VName -> ImpM GPUMem KernelEnv KernelOp ArrayEntry
forall rep r op. VName -> ImpM rep r op ArrayEntry
lookupArray VName
arr
            let flat_shape :: ShapeBase SubExp
flat_shape =
                  [SubExp] -> ShapeBase SubExp
forall d. [d] -> ShapeBase d
Shape ([SubExp] -> ShapeBase SubExp) -> [SubExp] -> ShapeBase SubExp
forall a b. (a -> b) -> a -> b
$
                    VName -> SubExp
Var (TV Int64 -> VName
forall t. TV t -> VName
tvVar TV Int64
dims_flat) SubExp -> [SubExp] -> [SubExp]
forall a. a -> [a] -> [a]
:
                    Int -> [SubExp] -> [SubExp]
forall a. Int -> [a] -> [a]
drop ([VName] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [VName]
ltids) (MemLocation -> [SubExp]
memLocationShape MemLocation
arr_loc)
            String
-> PrimType
-> ShapeBase SubExp
-> MemBind
-> ImpM GPUMem KernelEnv KernelOp VName
forall rep r op.
String
-> PrimType -> ShapeBase SubExp -> MemBind -> ImpM rep r op VName
sArray String
"red_arr_flat" PrimType
pt ShapeBase SubExp
flat_shape (MemBind -> ImpM GPUMem KernelEnv KernelOp VName)
-> MemBind -> ImpM GPUMem KernelEnv KernelOp VName
forall a b. (a -> b) -> a -> b
$
              VName -> IxFun -> MemBind
ArrayIn (MemLocation -> VName
memLocationName MemLocation
arr_loc) (IxFun -> MemBind) -> IxFun -> MemBind
forall a b. (a -> b) -> a -> b
$
                Shape (TPrimExp Int64 VName) -> IxFun
forall num. IntegralExp num => Shape num -> IxFun num
IxFun.iota (Shape (TPrimExp Int64 VName) -> IxFun)
-> Shape (TPrimExp Int64 VName) -> IxFun
forall a b. (a -> b) -> a -> b
$ (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 ([SubExp] -> Shape (TPrimExp Int64 VName))
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$ ShapeBase SubExp -> [SubExp]
forall d. ShapeBase d -> [d]
shapeDims ShapeBase SubExp
flat_shape

      let segment_size :: TExp Int64
segment_size = [TExp Int64] -> TExp Int64
forall a. [a] -> a
last [TExp Int64]
dims'
          crossesSegment :: TExp Int32 -> TExp Int32 -> TExp Bool
crossesSegment TExp Int32
from TExp Int32
to =
            (TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
to TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
from) TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.>. (TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
to TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`rem` TExp Int64 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int64
segment_size)

      [(SegBinOp GPUMem, [VName])]
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SegBinOp GPUMem] -> [[VName]] -> [(SegBinOp GPUMem, [VName])]
forall a b. [a] -> [b] -> [(a, b)]
zip [SegBinOp GPUMem]
ops [[VName]]
tmps_for_ops) (((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ())
-> ((SegBinOp GPUMem, [VName]) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(SegBinOp GPUMem
op, [VName]
tmps) -> do
        [VName]
tmps_flat <- (VName -> ImpM GPUMem KernelEnv KernelOp VName)
-> [VName] -> ImpM GPUMem KernelEnv KernelOp [VName]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM VName -> ImpM GPUMem KernelEnv KernelOp VName
flatten [VName]
tmps
        Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Int64
-> TExp Int64
-> Lambda GPUMem
-> [VName]
-> InKernelGen ()
groupScan
          ((TExp Int32 -> TExp Int32 -> TExp Bool)
-> Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
forall a. a -> Maybe a
Just TExp Int32 -> TExp Int32 -> TExp Bool
crossesSegment)
          ([TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
dims')
          ([TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
dims')
          (SegBinOp GPUMem -> Lambda GPUMem
forall rep. SegBinOp rep -> Lambda rep
segBinOpLambda SegBinOp GPUMem
op)
          [VName]
tmps_flat

      KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal

      [(PatElemT LParamMem, VName)]
-> ((PatElemT LParamMem, VName) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([PatElemT LParamMem] -> [VName] -> [(PatElemT LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [PatElemT LParamMem]
red_pes [VName]
tmp_arrs) (((PatElemT LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((PatElemT LParamMem, VName) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(PatElemT LParamMem
pe, VName
arr) ->
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM
          (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT LParamMem
pe)
          []
          (VName -> SubExp
Var VName
arr)
          ((TExp Int64 -> DimIndex (TExp Int64))
-> [TExp Int64] -> Slice (TExp Int64)
forall a b. (a -> b) -> [a] -> [b]
map (TExp Int64 -> TExp Int64 -> DimIndex (TExp Int64)
forall d. Num d => d -> d -> DimIndex d
unitSlice TExp Int64
0) ([TExp Int64] -> [TExp Int64]
forall a. [a] -> [a]
init [TExp Int64]
dims') Slice (TExp Int64) -> Slice (TExp Int64) -> Slice (TExp Int64)
forall a. [a] -> [a] -> [a]
++ [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ [TExp Int64] -> TExp Int64
forall a. [a] -> a
last [TExp Int64]
dims' TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
-TExp Int64
1])

      KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal
compileGroupOp Pattern GPUMem
pat (Inner (SegOp (SegHist SegLevel
lvl SegSpace
space [HistOp GPUMem]
ops [TypeBase (ShapeBase SubExp) NoUniqueness]
_ KernelBody GPUMem
kbody))) = do
  SegLevel -> SegSpace -> InKernelGen ()
compileGroupSpace SegLevel
lvl SegSpace
space
  let ltids :: [VName]
ltids = ((VName, SubExp) -> VName) -> [(VName, SubExp)] -> [VName]
forall a b. (a -> b) -> [a] -> [b]
map (VName, SubExp) -> VName
forall a b. (a, b) -> a
fst ([(VName, SubExp)] -> [VName]) -> [(VName, SubExp)] -> [VName]
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space

  -- We don't need the red_pes, because it is guaranteed by our type
  -- rules that they occupy the same memory as the destinations for
  -- the ops.
  let num_red_res :: Int
num_red_res = [HistOp GPUMem] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [HistOp GPUMem]
ops Int -> Int -> Int
forall a. Num a => a -> a -> a
+ [Int] -> Int
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ((HistOp GPUMem -> Int) -> [HistOp GPUMem] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([SubExp] -> Int)
-> (HistOp GPUMem -> [SubExp]) -> HistOp GPUMem -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HistOp GPUMem -> [SubExp]
forall rep. HistOp rep -> [SubExp]
histNeutral) [HistOp GPUMem]
ops)
      ([PatElemT LParamMem]
_red_pes, [PatElemT LParamMem]
map_pes) =
        Int
-> [PatElemT LParamMem]
-> ([PatElemT LParamMem], [PatElemT LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
num_red_res ([PatElemT LParamMem]
 -> ([PatElemT LParamMem], [PatElemT LParamMem]))
-> [PatElemT LParamMem]
-> ([PatElemT LParamMem], [PatElemT LParamMem])
forall a b. (a -> b) -> a -> b
$ PatternT LParamMem -> [PatElemT LParamMem]
forall dec. PatternT dec -> [PatElemT dec]
patternElements Pattern GPUMem
PatternT LParamMem
pat

  [[TExp Int64] -> InKernelGen ()]
ops' <- Count GroupSize SubExp
-> [HistOp GPUMem] -> InKernelGen [[TExp Int64] -> InKernelGen ()]
prepareIntraGroupSegHist (SegLevel -> Count GroupSize SubExp
segGroupSize SegLevel
lvl) [HistOp GPUMem]
ops

  -- Ensure that all locks have been initialised.
  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal

  SegLevel -> SegSpace -> InKernelGen () -> InKernelGen ()
whenActive SegLevel
lvl SegSpace
space (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms Names
forall a. Monoid a => a
mempty (KernelBody GPUMem -> Stms GPUMem
forall rep. KernelBody rep -> Stms rep
kernelBodyStms KernelBody GPUMem
kbody) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      let ([KernelResult]
red_res, [KernelResult]
map_res) = Int -> [KernelResult] -> ([KernelResult], [KernelResult])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
num_red_res ([KernelResult] -> ([KernelResult], [KernelResult]))
-> [KernelResult] -> ([KernelResult], [KernelResult])
forall a b. (a -> b) -> a -> b
$ KernelBody GPUMem -> [KernelResult]
forall rep. KernelBody rep -> [KernelResult]
kernelBodyResult KernelBody GPUMem
kbody
          ([SubExp]
red_is, [SubExp]
red_vs) = Int -> [SubExp] -> ([SubExp], [SubExp])
forall a. Int -> [a] -> ([a], [a])
splitAt ([HistOp GPUMem] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [HistOp GPUMem]
ops) ([SubExp] -> ([SubExp], [SubExp]))
-> [SubExp] -> ([SubExp], [SubExp])
forall a b. (a -> b) -> a -> b
$ (KernelResult -> SubExp) -> [KernelResult] -> [SubExp]
forall a b. (a -> b) -> [a] -> [b]
map KernelResult -> SubExp
kernelResultSubExp [KernelResult]
red_res
      (PatElemT LParamMem -> KernelResult -> InKernelGen ())
-> [PatElemT LParamMem] -> [KernelResult] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ (SegSpace
-> PatElemT (LetDec GPUMem) -> KernelResult -> InKernelGen ()
compileThreadResult SegSpace
space) [PatElemT LParamMem]
map_pes [KernelResult]
map_res

      let vs_per_op :: [[SubExp]]
vs_per_op = [Int] -> [SubExp] -> [[SubExp]]
forall a. [Int] -> [a] -> [[a]]
chunks ((HistOp GPUMem -> Int) -> [HistOp GPUMem] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ([VName] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([VName] -> Int)
-> (HistOp GPUMem -> [VName]) -> HistOp GPUMem -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HistOp GPUMem -> [VName]
forall rep. HistOp rep -> [VName]
histDest) [HistOp GPUMem]
ops) [SubExp]
red_vs

      [(SubExp, [SubExp], [TExp Int64] -> InKernelGen (), HistOp GPUMem)]
-> ((SubExp, [SubExp], [TExp Int64] -> InKernelGen (),
     HistOp GPUMem)
    -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([SubExp]
-> [[SubExp]]
-> [[TExp Int64] -> InKernelGen ()]
-> [HistOp GPUMem]
-> [(SubExp, [SubExp], [TExp Int64] -> InKernelGen (),
     HistOp GPUMem)]
forall a b c d. [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)]
zip4 [SubExp]
red_is [[SubExp]]
vs_per_op [[TExp Int64] -> InKernelGen ()]
ops' [HistOp GPUMem]
ops) (((SubExp, [SubExp], [TExp Int64] -> InKernelGen (), HistOp GPUMem)
  -> InKernelGen ())
 -> InKernelGen ())
-> ((SubExp, [SubExp], [TExp Int64] -> InKernelGen (),
     HistOp GPUMem)
    -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        \(SubExp
bin, [SubExp]
op_vs, [TExp Int64] -> InKernelGen ()
do_op, HistOp SubExp
dest_w SubExp
_ [VName]
_ [SubExp]
_ ShapeBase SubExp
shape Lambda GPUMem
lam) -> do
          let bin' :: TExp Int64
bin' = SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
bin
              dest_w' :: TExp Int64
dest_w' = SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
dest_w
              bin_in_bounds :: TExp Bool
bin_in_bounds = TExp Int64
0 TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TExp Int64
bin' TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Int64
bin' TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int64
dest_w'
              bin_is :: [TExp Int64]
bin_is = (VName -> TExp Int64) -> [VName] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map VName -> TExp Int64
Imp.vi64 ([VName] -> [VName]
forall a. [a] -> [a]
init [VName]
ltids) [TExp Int64] -> [TExp Int64] -> [TExp Int64]
forall a. [a] -> [a] -> [a]
++ [TExp Int64
bin']
              vs_params :: [Param LParamMem]
vs_params = Int -> [Param LParamMem] -> [Param LParamMem]
forall a. Int -> [a] -> [a]
takeLast ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
op_vs) ([Param LParamMem] -> [Param LParamMem])
-> [Param LParamMem] -> [Param LParamMem]
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam

          String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"perform atomic updates" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
bin_in_bounds (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
              [LParam GPUMem] -> InKernelGen ()
forall rep r op. Mem rep => [LParam rep] -> ImpM rep r op ()
dLParams ([LParam GPUMem] -> InKernelGen ())
-> [LParam GPUMem] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam
              ShapeBase SubExp
-> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
forall rep r op.
ShapeBase SubExp
-> ([TExp Int64] -> ImpM rep r op ()) -> ImpM rep r op ()
sLoopNest ShapeBase SubExp
shape (([TExp Int64] -> InKernelGen ()) -> InKernelGen ())
-> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TExp Int64]
is -> do
                [(Param LParamMem, SubExp)]
-> ((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [SubExp] -> [(Param LParamMem, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
vs_params [SubExp]
op_vs) (((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, SubExp
v) ->
                  VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] SubExp
v [TExp Int64]
is
                [TExp Int64] -> InKernelGen ()
do_op ([TExp Int64]
bin_is [TExp Int64] -> [TExp Int64] -> [TExp Int64]
forall a. [a] -> [a] -> [a]
++ [TExp Int64]
is)

  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.ErrorSync Fence
Imp.FenceLocal
compileGroupOp Pattern GPUMem
pat Op GPUMem
_ =
  String -> InKernelGen ()
forall a. String -> a
compilerBugS (String -> InKernelGen ()) -> String -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ String
"compileGroupOp: cannot compile rhs of binding " String -> String -> String
forall a. [a] -> [a] -> [a]
++ PatternT LParamMem -> String
forall a. Pretty a => a -> String
pretty Pattern GPUMem
PatternT LParamMem
pat

compileThreadOp :: OpCompiler GPUMem KernelEnv Imp.KernelOp
compileThreadOp :: OpCompiler GPUMem KernelEnv KernelOp
compileThreadOp Pattern GPUMem
pat (Alloc SubExp
size Space
space) =
  Pattern GPUMem -> SubExp -> Space -> InKernelGen ()
kernelAlloc Pattern GPUMem
pat SubExp
size Space
space
compileThreadOp Pattern GPUMem
pat (Inner (SizeOp (SplitSpace SplitOrdering
o SubExp
w SubExp
i SubExp
elems_per_thread))) =
  Pattern GPUMem
-> SplitOrdering -> SubExp -> SubExp -> SubExp -> InKernelGen ()
forall w i elems_per_thread rep r op.
(ToExp w, ToExp i, ToExp elems_per_thread) =>
Pattern GPUMem
-> SplitOrdering -> w -> i -> elems_per_thread -> ImpM rep r op ()
splitSpace Pattern GPUMem
pat SplitOrdering
o SubExp
w SubExp
i SubExp
elems_per_thread
compileThreadOp Pattern GPUMem
pat Op GPUMem
_ =
  String -> InKernelGen ()
forall a. String -> a
compilerBugS (String -> InKernelGen ()) -> String -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ String
"compileThreadOp: cannot compile rhs of binding " String -> String -> String
forall a. [a] -> [a] -> [a]
++ PatternT LParamMem -> String
forall a. Pretty a => a -> String
pretty Pattern GPUMem
PatternT LParamMem
pat

-- | Locking strategy used for an atomic update.
data Locking = Locking
  { -- | Array containing the lock.
    Locking -> VName
lockingArray :: VName,
    -- | Value for us to consider the lock free.
    Locking -> TExp Int32
lockingIsUnlocked :: Imp.TExp Int32,
    -- | What to write when we lock it.
    Locking -> TExp Int32
lockingToLock :: Imp.TExp Int32,
    -- | What to write when we unlock it.
    Locking -> TExp Int32
lockingToUnlock :: Imp.TExp Int32,
    -- | A transformation from the logical lock index to the
    -- physical position in the array.  This can also be used
    -- to make the lock array smaller.
    Locking -> [TExp Int64] -> [TExp Int64]
lockingMapping :: [Imp.TExp Int64] -> [Imp.TExp Int64]
  }

-- | A function for generating code for an atomic update.  Assumes
-- that the bucket is in-bounds.
type DoAtomicUpdate rep r =
  Space -> [VName] -> [Imp.TExp Int64] -> ImpM rep r Imp.KernelOp ()

-- | The mechanism that will be used for performing the atomic update.
-- Approximates how efficient it will be.  Ordered from most to least
-- efficient.
data AtomicUpdate rep r
  = -- | Supported directly by primitive.
    AtomicPrim (DoAtomicUpdate rep r)
  | -- | Can be done by efficient swaps.
    AtomicCAS (DoAtomicUpdate rep r)
  | -- | Requires explicit locking.
    AtomicLocking (Locking -> DoAtomicUpdate rep r)

-- | Is there an atomic t'BinOp' corresponding to this t'BinOp'?
type AtomicBinOp =
  BinOp ->
  Maybe (VName -> VName -> Count Imp.Elements (Imp.TExp Int64) -> Imp.Exp -> Imp.AtomicOp)

-- | Do an atomic update corresponding to a binary operator lambda.
atomicUpdateLocking ::
  AtomicBinOp ->
  Lambda GPUMem ->
  AtomicUpdate GPUMem KernelEnv
atomicUpdateLocking :: AtomicBinOp -> Lambda GPUMem -> AtomicUpdate GPUMem KernelEnv
atomicUpdateLocking AtomicBinOp
atomicBinOp Lambda GPUMem
lam
  | Just [(BinOp, PrimType, VName, VName)]
ops_and_ts <- Lambda GPUMem -> Maybe [(BinOp, PrimType, VName, VName)]
forall rep.
ASTRep rep =>
Lambda rep -> Maybe [(BinOp, PrimType, VName, VName)]
lamIsBinOp Lambda GPUMem
lam,
    ((BinOp, PrimType, VName, VName) -> Bool)
-> [(BinOp, PrimType, VName, VName)] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (\(BinOp
_, PrimType
t, VName
_, VName
_) -> PrimType -> Int
primBitSize PrimType
t Int -> [Int] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Int
32, Int
64]) [(BinOp, PrimType, VName, VName)]
ops_and_ts =
    [(BinOp, PrimType, VName, VName)]
-> DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv
primOrCas [(BinOp, PrimType, VName, VName)]
ops_and_ts (DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv)
-> DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv
forall a b. (a -> b) -> a -> b
$ \Space
space [VName]
arrs [TExp Int64]
bucket ->
      -- If the operator is a vectorised binary operator on 32/64-bit
      -- values, we can use a particularly efficient
      -- implementation. If the operator has an atomic implementation
      -- we use that, otherwise it is still a binary operator which
      -- can be implemented by atomic compare-and-swap if 32/64 bits.
      [(VName, (BinOp, PrimType, VName, VName))]
-> ((VName, (BinOp, PrimType, VName, VName)) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([VName]
-> [(BinOp, PrimType, VName, VName)]
-> [(VName, (BinOp, PrimType, VName, VName))]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
arrs [(BinOp, PrimType, VName, VName)]
ops_and_ts) (((VName, (BinOp, PrimType, VName, VName)) -> InKernelGen ())
 -> InKernelGen ())
-> ((VName, (BinOp, PrimType, VName, VName)) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(VName
a, (BinOp
op, PrimType
t, VName
x, VName
y)) -> do
        -- Common variables.
        TV Any
old <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Any)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"old" PrimType
t

        (VName
arr', Space
_a_space, Count Elements (TExp Int64)
bucket_offset) <- VName
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall rep r op.
VName
-> [TExp Int64]
-> ImpM rep r op (VName, Space, Count Elements (TExp Int64))
fullyIndexArray VName
a [TExp Int64]
bucket

        case Space
-> VName
-> VName
-> Count Elements (TExp Int64)
-> BinOp
-> Maybe (PrimExp ExpLeaf -> KernelOp)
opHasAtomicSupport Space
space (TV Any -> VName
forall t. TV t -> VName
tvVar TV Any
old) VName
arr' Count Elements (TExp Int64)
bucket_offset BinOp
op of
          Just PrimExp ExpLeaf -> KernelOp
f -> KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ PrimExp ExpLeaf -> KernelOp
f (PrimExp ExpLeaf -> KernelOp) -> PrimExp ExpLeaf -> KernelOp
forall a b. (a -> b) -> a -> b
$ VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
y PrimType
t
          Maybe (PrimExp ExpLeaf -> KernelOp)
Nothing ->
            Space
-> PrimType
-> VName
-> VName
-> [TExp Int64]
-> VName
-> InKernelGen ()
-> InKernelGen ()
atomicUpdateCAS Space
space PrimType
t VName
a (TV Any -> VName
forall t. TV t -> VName
tvVar TV Any
old) [TExp Int64]
bucket VName
x (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
              VName
x VName -> PrimExp ExpLeaf -> InKernelGen ()
forall rep r op. VName -> PrimExp ExpLeaf -> ImpM rep r op ()
<~~ BinOp -> PrimExp ExpLeaf -> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall v. BinOp -> PrimExp v -> PrimExp v -> PrimExp v
Imp.BinOpExp BinOp
op (VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
x PrimType
t) (VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
y PrimType
t)
  where
    opHasAtomicSupport :: Space
-> VName
-> VName
-> Count Elements (TExp Int64)
-> BinOp
-> Maybe (PrimExp ExpLeaf -> KernelOp)
opHasAtomicSupport Space
space VName
old VName
arr' Count Elements (TExp Int64)
bucket' BinOp
bop = do
      let atomic :: (VName
 -> VName
 -> Count Elements (TExp Int64)
 -> PrimExp ExpLeaf
 -> AtomicOp)
-> PrimExp ExpLeaf -> KernelOp
atomic VName
-> VName
-> Count Elements (TExp Int64)
-> PrimExp ExpLeaf
-> AtomicOp
f = Space -> AtomicOp -> KernelOp
Imp.Atomic Space
space (AtomicOp -> KernelOp)
-> (PrimExp ExpLeaf -> AtomicOp) -> PrimExp ExpLeaf -> KernelOp
forall b c a. (b -> c) -> (a -> b) -> a -> c
. VName
-> VName
-> Count Elements (TExp Int64)
-> PrimExp ExpLeaf
-> AtomicOp
f VName
old VName
arr' Count Elements (TExp Int64)
bucket'
      (VName
 -> VName
 -> Count Elements (TExp Int64)
 -> PrimExp ExpLeaf
 -> AtomicOp)
-> PrimExp ExpLeaf -> KernelOp
atomic ((VName
  -> VName
  -> Count Elements (TExp Int64)
  -> PrimExp ExpLeaf
  -> AtomicOp)
 -> PrimExp ExpLeaf -> KernelOp)
-> Maybe
     (VName
      -> VName
      -> Count Elements (TExp Int64)
      -> PrimExp ExpLeaf
      -> AtomicOp)
-> Maybe (PrimExp ExpLeaf -> KernelOp)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> AtomicBinOp
atomicBinOp BinOp
bop

    primOrCas :: [(BinOp, PrimType, VName, VName)]
-> DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv
primOrCas [(BinOp, PrimType, VName, VName)]
ops
      | ((BinOp, PrimType, VName, VName) -> Bool)
-> [(BinOp, PrimType, VName, VName)] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (BinOp, PrimType, VName, VName) -> Bool
isPrim [(BinOp, PrimType, VName, VName)]
ops = DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv
forall rep r. DoAtomicUpdate rep r -> AtomicUpdate rep r
AtomicPrim
      | Bool
otherwise = DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv
forall rep r. DoAtomicUpdate rep r -> AtomicUpdate rep r
AtomicCAS

    isPrim :: (BinOp, PrimType, VName, VName) -> Bool
isPrim (BinOp
op, PrimType
_, VName
_, VName
_) = Maybe
  (VName
   -> VName
   -> Count Elements (TExp Int64)
   -> PrimExp ExpLeaf
   -> AtomicOp)
-> Bool
forall a. Maybe a -> Bool
isJust (Maybe
   (VName
    -> VName
    -> Count Elements (TExp Int64)
    -> PrimExp ExpLeaf
    -> AtomicOp)
 -> Bool)
-> Maybe
     (VName
      -> VName
      -> Count Elements (TExp Int64)
      -> PrimExp ExpLeaf
      -> AtomicOp)
-> Bool
forall a b. (a -> b) -> a -> b
$ AtomicBinOp
atomicBinOp BinOp
op

-- If the operator functions purely on single 32/64-bit values, we can
-- use an implementation based on CAS, no matter what the operator
-- does.
atomicUpdateLocking AtomicBinOp
_ Lambda GPUMem
op
  | [Prim PrimType
t] <- Lambda GPUMem -> [TypeBase (ShapeBase SubExp) NoUniqueness]
forall rep.
LambdaT rep -> [TypeBase (ShapeBase SubExp) NoUniqueness]
lambdaReturnType Lambda GPUMem
op,
    [LParam GPUMem
xp, LParam GPUMem
_] <- Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
op,
    PrimType -> Int
primBitSize PrimType
t Int -> [Int] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Int
32, Int
64] = DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv
forall rep r. DoAtomicUpdate rep r -> AtomicUpdate rep r
AtomicCAS (DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv)
-> DoAtomicUpdate GPUMem KernelEnv -> AtomicUpdate GPUMem KernelEnv
forall a b. (a -> b) -> a -> b
$ \Space
space [VName
arr] [TExp Int64]
bucket -> do
    TV Any
old <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Any)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"old" PrimType
t
    Space
-> PrimType
-> VName
-> VName
-> [TExp Int64]
-> VName
-> InKernelGen ()
-> InKernelGen ()
atomicUpdateCAS Space
space PrimType
t VName
arr (TV Any -> VName
forall t. TV t -> VName
tvVar TV Any
old) [TExp Int64]
bucket (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName LParam GPUMem
Param LParamMem
xp) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      [Param LParamMem] -> BodyT GPUMem -> InKernelGen ()
forall dec rep r op. [Param dec] -> Body rep -> ImpM rep r op ()
compileBody' [LParam GPUMem
Param LParamMem
xp] (BodyT GPUMem -> InKernelGen ()) -> BodyT GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> BodyT GPUMem
forall rep. LambdaT rep -> BodyT rep
lambdaBody Lambda GPUMem
op
atomicUpdateLocking AtomicBinOp
_ Lambda GPUMem
op = (Locking -> DoAtomicUpdate GPUMem KernelEnv)
-> AtomicUpdate GPUMem KernelEnv
forall rep r.
(Locking -> DoAtomicUpdate rep r) -> AtomicUpdate rep r
AtomicLocking ((Locking -> DoAtomicUpdate GPUMem KernelEnv)
 -> AtomicUpdate GPUMem KernelEnv)
-> (Locking -> DoAtomicUpdate GPUMem KernelEnv)
-> AtomicUpdate GPUMem KernelEnv
forall a b. (a -> b) -> a -> b
$ \Locking
locking Space
space [VName]
arrs [TExp Int64]
bucket -> do
  TV Int32
old <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Int32)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"old" PrimType
int32
  TV Bool
continue <- String
-> PrimType
-> TExp Bool
-> ImpM GPUMem KernelEnv KernelOp (TV Bool)
forall t rep r op.
String -> PrimType -> TExp t -> ImpM rep r op (TV t)
dPrimVol String
"continue" PrimType
Bool TExp Bool
forall v. TPrimExp Bool v
true

  -- Correctly index into locks.
  (VName
locks', Space
_locks_space, Count Elements (TExp Int64)
locks_offset) <-
    VName
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall rep r op.
VName
-> [TExp Int64]
-> ImpM rep r op (VName, Space, Count Elements (TExp Int64))
fullyIndexArray (Locking -> VName
lockingArray Locking
locking) ([TExp Int64]
 -> ImpM
      GPUMem
      KernelEnv
      KernelOp
      (VName, Space, Count Elements (TExp Int64)))
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall a b. (a -> b) -> a -> b
$ Locking -> [TExp Int64] -> [TExp Int64]
lockingMapping Locking
locking [TExp Int64]
bucket

  -- Critical section
  let try_acquire_lock :: InKernelGen ()
try_acquire_lock =
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          Space -> AtomicOp -> KernelOp
Imp.Atomic Space
space (AtomicOp -> KernelOp) -> AtomicOp -> KernelOp
forall a b. (a -> b) -> a -> b
$
            PrimType
-> VName
-> VName
-> Count Elements (TExp Int64)
-> PrimExp ExpLeaf
-> PrimExp ExpLeaf
-> AtomicOp
Imp.AtomicCmpXchg
              PrimType
int32
              (TV Int32 -> VName
forall t. TV t -> VName
tvVar TV Int32
old)
              VName
locks'
              Count Elements (TExp Int64)
locks_offset
              (TExp Int32 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped (TExp Int32 -> PrimExp ExpLeaf) -> TExp Int32 -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ Locking -> TExp Int32
lockingIsUnlocked Locking
locking)
              (TExp Int32 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped (TExp Int32 -> PrimExp ExpLeaf) -> TExp Int32 -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ Locking -> TExp Int32
lockingToLock Locking
locking)
      lock_acquired :: TExp Bool
lock_acquired = TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
old TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. Locking -> TExp Int32
lockingIsUnlocked Locking
locking
      -- Even the releasing is done with an atomic rather than a
      -- simple write, for memory coherency reasons.
      release_lock :: InKernelGen ()
release_lock =
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          Space -> AtomicOp -> KernelOp
Imp.Atomic Space
space (AtomicOp -> KernelOp) -> AtomicOp -> KernelOp
forall a b. (a -> b) -> a -> b
$
            PrimType
-> VName
-> VName
-> Count Elements (TExp Int64)
-> PrimExp ExpLeaf
-> PrimExp ExpLeaf
-> AtomicOp
Imp.AtomicCmpXchg
              PrimType
int32
              (TV Int32 -> VName
forall t. TV t -> VName
tvVar TV Int32
old)
              VName
locks'
              Count Elements (TExp Int64)
locks_offset
              (TExp Int32 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped (TExp Int32 -> PrimExp ExpLeaf) -> TExp Int32 -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ Locking -> TExp Int32
lockingToLock Locking
locking)
              (TExp Int32 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped (TExp Int32 -> PrimExp ExpLeaf) -> TExp Int32 -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ Locking -> TExp Int32
lockingToUnlock Locking
locking)
      break_loop :: InKernelGen ()
break_loop = TV Bool
continue TV Bool -> TExp Bool -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TExp Bool
forall v. TPrimExp Bool v
false

  -- Preparing parameters. It is assumed that the caller has already
  -- filled the arr_params. We copy the current value to the
  -- accumulator parameters.
  --
  -- Note the use of 'everythingVolatile' when reading and writing the
  -- buckets.  This was necessary to ensure correct execution on a
  -- newer NVIDIA GPU (RTX 2080).  The 'volatile' modifiers likely
  -- make the writes pass through the (SM-local) L1 cache, which is
  -- necessary here, because we are really doing device-wide
  -- synchronisation without atomics (naughty!).
  let ([Param LParamMem]
acc_params, [Param LParamMem]
_arr_params) = Int -> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([VName] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [VName]
arrs) ([Param LParamMem] -> ([Param LParamMem], [Param LParamMem]))
-> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
op
      bind_acc_params :: InKernelGen ()
bind_acc_params =
        InKernelGen () -> InKernelGen ()
forall rep r op a. ImpM rep r op a -> ImpM rep r op a
everythingVolatile (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"bind lhs" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            [(Param LParamMem, VName)]
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [VName] -> [(Param LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
acc_params [VName]
arrs) (((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
acc_p, VName
arr) ->
              VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
acc_p) [] (VName -> SubExp
Var VName
arr) [TExp Int64]
bucket

  let op_body :: InKernelGen ()
op_body =
        String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"execute operation" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          [Param LParamMem] -> BodyT GPUMem -> InKernelGen ()
forall dec rep r op. [Param dec] -> Body rep -> ImpM rep r op ()
compileBody' [Param LParamMem]
acc_params (BodyT GPUMem -> InKernelGen ()) -> BodyT GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> BodyT GPUMem
forall rep. LambdaT rep -> BodyT rep
lambdaBody Lambda GPUMem
op

      do_hist :: InKernelGen ()
do_hist =
        InKernelGen () -> InKernelGen ()
forall rep r op a. ImpM rep r op a -> ImpM rep r op a
everythingVolatile (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"update global result" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            (VName -> SubExp -> InKernelGen ())
-> [VName] -> [SubExp] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ ([TExp Int64] -> VName -> SubExp -> InKernelGen ()
forall {rep} {r} {op}.
[TExp Int64] -> VName -> SubExp -> ImpM rep r op ()
writeArray [TExp Int64]
bucket) [VName]
arrs ([SubExp] -> InKernelGen ()) -> [SubExp] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ (Param LParamMem -> SubExp) -> [Param LParamMem] -> [SubExp]
forall a b. (a -> b) -> [a] -> [b]
map (VName -> SubExp
Var (VName -> SubExp)
-> (Param LParamMem -> VName) -> Param LParamMem -> SubExp
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Param LParamMem -> VName
forall dec. Param dec -> VName
paramName) [Param LParamMem]
acc_params

      fence :: InKernelGen ()
fence = case Space
space of
        Space String
"local" -> KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.MemFence Fence
Imp.FenceLocal
        Space
_ -> KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.MemFence Fence
Imp.FenceGlobal

  -- While-loop: Try to insert your value
  TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhile (TV Bool -> TExp Bool
forall t. TV t -> TExp t
tvExp TV Bool
continue) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    InKernelGen ()
try_acquire_lock
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
lock_acquired (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      [LParam GPUMem] -> InKernelGen ()
forall rep r op. Mem rep => [LParam rep] -> ImpM rep r op ()
dLParams [LParam GPUMem]
[Param LParamMem]
acc_params
      InKernelGen ()
bind_acc_params
      InKernelGen ()
op_body
      InKernelGen ()
do_hist
      InKernelGen ()
fence
      InKernelGen ()
release_lock
      InKernelGen ()
break_loop
    InKernelGen ()
fence
  where
    writeArray :: [TExp Int64] -> VName -> SubExp -> ImpM rep r op ()
writeArray [TExp Int64]
bucket VName
arr SubExp
val = VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix VName
arr [TExp Int64]
bucket SubExp
val []

atomicUpdateCAS ::
  Space ->
  PrimType ->
  VName ->
  VName ->
  [Imp.TExp Int64] ->
  VName ->
  InKernelGen () ->
  InKernelGen ()
atomicUpdateCAS :: Space
-> PrimType
-> VName
-> VName
-> [TExp Int64]
-> VName
-> InKernelGen ()
-> InKernelGen ()
atomicUpdateCAS Space
space PrimType
t VName
arr VName
old [TExp Int64]
bucket VName
x InKernelGen ()
do_op = do
  -- Code generation target:
  --
  -- old = d_his[idx];
  -- do {
  --   assumed = old;
  --   x = do_op(assumed, y);
  --   old = atomicCAS(&d_his[idx], assumed, tmp);
  -- } while(assumed != old);
  VName
assumed <- TV Any -> VName
forall t. TV t -> VName
tvVar (TV Any -> VName)
-> ImpM GPUMem KernelEnv KernelOp (TV Any)
-> ImpM GPUMem KernelEnv KernelOp VName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Any)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"assumed" PrimType
t
  TV Bool
run_loop <- String -> TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TV Bool)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"run_loop" TExp Bool
forall v. TPrimExp Bool v
true

  -- XXX: CUDA may generate really bad code if this is not a volatile
  -- read.  Unclear why.  The later reads are volatile, so maybe
  -- that's it.
  InKernelGen () -> InKernelGen ()
forall rep r op a. ImpM rep r op a -> ImpM rep r op a
everythingVolatile (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix VName
old [] (VName -> SubExp
Var VName
arr) [TExp Int64]
bucket

  (VName
arr', Space
_a_space, Count Elements (TExp Int64)
bucket_offset) <- VName
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall rep r op.
VName
-> [TExp Int64]
-> ImpM rep r op (VName, Space, Count Elements (TExp Int64))
fullyIndexArray VName
arr [TExp Int64]
bucket

  -- While-loop: Try to insert your value
  let (PrimExp ExpLeaf -> PrimExp ExpLeaf
toBits, PrimExp ExpLeaf -> PrimExp ExpLeaf
fromBits) =
        case PrimType
t of
          FloatType FloatType
Float32 ->
            ( \PrimExp ExpLeaf
v -> String -> [PrimExp ExpLeaf] -> PrimType -> PrimExp ExpLeaf
forall v. String -> [PrimExp v] -> PrimType -> PrimExp v
Imp.FunExp String
"to_bits32" [PrimExp ExpLeaf
v] PrimType
int32,
              \PrimExp ExpLeaf
v -> String -> [PrimExp ExpLeaf] -> PrimType -> PrimExp ExpLeaf
forall v. String -> [PrimExp v] -> PrimType -> PrimExp v
Imp.FunExp String
"from_bits32" [PrimExp ExpLeaf
v] PrimType
t
            )
          FloatType FloatType
Float64 ->
            ( \PrimExp ExpLeaf
v -> String -> [PrimExp ExpLeaf] -> PrimType -> PrimExp ExpLeaf
forall v. String -> [PrimExp v] -> PrimType -> PrimExp v
Imp.FunExp String
"to_bits64" [PrimExp ExpLeaf
v] PrimType
int64,
              \PrimExp ExpLeaf
v -> String -> [PrimExp ExpLeaf] -> PrimType -> PrimExp ExpLeaf
forall v. String -> [PrimExp v] -> PrimType -> PrimExp v
Imp.FunExp String
"from_bits64" [PrimExp ExpLeaf
v] PrimType
t
            )
          PrimType
_ -> (PrimExp ExpLeaf -> PrimExp ExpLeaf
forall a. a -> a
id, PrimExp ExpLeaf -> PrimExp ExpLeaf
forall a. a -> a
id)

      int :: PrimType
int
        | PrimType -> Int
primBitSize PrimType
t Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
32 = PrimType
int32
        | Bool
otherwise = PrimType
int64

  TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhile (TV Bool -> TExp Bool
forall t. TV t -> TExp t
tvExp TV Bool
run_loop) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    VName
assumed VName -> PrimExp ExpLeaf -> InKernelGen ()
forall rep r op. VName -> PrimExp ExpLeaf -> ImpM rep r op ()
<~~ VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
old PrimType
t
    VName
x VName -> PrimExp ExpLeaf -> InKernelGen ()
forall rep r op. VName -> PrimExp ExpLeaf -> ImpM rep r op ()
<~~ VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
assumed PrimType
t
    InKernelGen ()
do_op
    VName
old_bits_v <- String -> ImpM GPUMem KernelEnv KernelOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"old_bits"
    VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
old_bits_v PrimType
int
    let old_bits :: PrimExp ExpLeaf
old_bits = VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
old_bits_v PrimType
int
    KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      Space -> AtomicOp -> KernelOp
Imp.Atomic Space
space (AtomicOp -> KernelOp) -> AtomicOp -> KernelOp
forall a b. (a -> b) -> a -> b
$
        PrimType
-> VName
-> VName
-> Count Elements (TExp Int64)
-> PrimExp ExpLeaf
-> PrimExp ExpLeaf
-> AtomicOp
Imp.AtomicCmpXchg
          PrimType
int
          VName
old_bits_v
          VName
arr'
          Count Elements (TExp Int64)
bucket_offset
          (PrimExp ExpLeaf -> PrimExp ExpLeaf
toBits (VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
assumed PrimType
t))
          (PrimExp ExpLeaf -> PrimExp ExpLeaf
toBits (VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
x PrimType
t))
    VName
old VName -> PrimExp ExpLeaf -> InKernelGen ()
forall rep r op. VName -> PrimExp ExpLeaf -> ImpM rep r op ()
<~~ PrimExp ExpLeaf -> PrimExp ExpLeaf
fromBits PrimExp ExpLeaf
old_bits
    let won :: PrimExp ExpLeaf
won = CmpOp -> PrimExp ExpLeaf -> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall v. CmpOp -> PrimExp v -> PrimExp v -> PrimExp v
CmpOpExp (PrimType -> CmpOp
CmpEq PrimType
int) (PrimExp ExpLeaf -> PrimExp ExpLeaf
toBits (VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
assumed PrimType
t)) PrimExp ExpLeaf
old_bits
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (PrimExp ExpLeaf -> TExp Bool
forall v. PrimExp v -> TPrimExp Bool v
isBool PrimExp ExpLeaf
won) (TV Bool
run_loop TV Bool -> TExp Bool -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TExp Bool
forall v. TPrimExp Bool v
false)

computeKernelUses ::
  FreeIn a =>
  a ->
  [VName] ->
  CallKernelGen [Imp.KernelUse]
computeKernelUses :: forall a. FreeIn a => a -> [VName] -> CallKernelGen [KernelUse]
computeKernelUses a
kernel_body [VName]
bound_in_kernel = do
  let actually_free :: Names
actually_free = a -> Names
forall a. FreeIn a => a -> Names
freeIn a
kernel_body Names -> Names -> Names
`namesSubtract` [VName] -> Names
namesFromList [VName]
bound_in_kernel
  -- Compute the variables that we need to pass to the kernel.
  [KernelUse] -> [KernelUse]
forall a. Ord a => [a] -> [a]
nubOrd ([KernelUse] -> [KernelUse])
-> CallKernelGen [KernelUse] -> CallKernelGen [KernelUse]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Names -> CallKernelGen [KernelUse]
readsFromSet Names
actually_free

readsFromSet :: Names -> CallKernelGen [Imp.KernelUse]
readsFromSet :: Names -> CallKernelGen [KernelUse]
readsFromSet Names
free =
  ([Maybe KernelUse] -> [KernelUse])
-> ImpM GPUMem HostEnv HostOp [Maybe KernelUse]
-> CallKernelGen [KernelUse]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [Maybe KernelUse] -> [KernelUse]
forall a. [Maybe a] -> [a]
catMaybes (ImpM GPUMem HostEnv HostOp [Maybe KernelUse]
 -> CallKernelGen [KernelUse])
-> ImpM GPUMem HostEnv HostOp [Maybe KernelUse]
-> CallKernelGen [KernelUse]
forall a b. (a -> b) -> a -> b
$
    [VName]
-> (VName -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse))
-> ImpM GPUMem HostEnv HostOp [Maybe KernelUse]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM (Names -> [VName]
namesToList Names
free) ((VName -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse))
 -> ImpM GPUMem HostEnv HostOp [Maybe KernelUse])
-> (VName -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse))
-> ImpM GPUMem HostEnv HostOp [Maybe KernelUse]
forall a b. (a -> b) -> a -> b
$ \VName
var -> do
      TypeBase (ShapeBase SubExp) NoUniqueness
t <- VName
-> ImpM
     GPUMem HostEnv HostOp (TypeBase (ShapeBase SubExp) NoUniqueness)
forall rep (m :: * -> *).
HasScope rep m =>
VName -> m (TypeBase (ShapeBase SubExp) NoUniqueness)
lookupType VName
var
      VTable GPUMem
vtable <- ImpM GPUMem HostEnv HostOp (VTable GPUMem)
forall rep r op. ImpM rep r op (VTable rep)
getVTable
      case TypeBase (ShapeBase SubExp) NoUniqueness
t of
        Array {} -> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe KernelUse
forall a. Maybe a
Nothing
        Acc {} -> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe KernelUse
forall a. Maybe a
Nothing
        Mem (Space String
"local") -> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe KernelUse
forall a. Maybe a
Nothing
        Mem {} -> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse))
-> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall a b. (a -> b) -> a -> b
$ KernelUse -> Maybe KernelUse
forall a. a -> Maybe a
Just (KernelUse -> Maybe KernelUse) -> KernelUse -> Maybe KernelUse
forall a b. (a -> b) -> a -> b
$ VName -> KernelUse
Imp.MemoryUse VName
var
        Prim PrimType
bt ->
          VTable GPUMem
-> PrimExp ExpLeaf
-> ImpM GPUMem HostEnv HostOp (Maybe KernelConstExp)
forall rep r op.
VTable GPUMem
-> PrimExp ExpLeaf -> ImpM rep r op (Maybe KernelConstExp)
isConstExp VTable GPUMem
vtable (VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
var PrimType
bt) ImpM GPUMem HostEnv HostOp (Maybe KernelConstExp)
-> (Maybe KernelConstExp
    -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse))
-> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
            Just KernelConstExp
ce -> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse))
-> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall a b. (a -> b) -> a -> b
$ KernelUse -> Maybe KernelUse
forall a. a -> Maybe a
Just (KernelUse -> Maybe KernelUse) -> KernelUse -> Maybe KernelUse
forall a b. (a -> b) -> a -> b
$ VName -> KernelConstExp -> KernelUse
Imp.ConstUse VName
var KernelConstExp
ce
            Maybe KernelConstExp
Nothing -> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse))
-> Maybe KernelUse -> ImpM GPUMem HostEnv HostOp (Maybe KernelUse)
forall a b. (a -> b) -> a -> b
$ KernelUse -> Maybe KernelUse
forall a. a -> Maybe a
Just (KernelUse -> Maybe KernelUse) -> KernelUse -> Maybe KernelUse
forall a b. (a -> b) -> a -> b
$ VName -> PrimType -> KernelUse
Imp.ScalarUse VName
var PrimType
bt

isConstExp ::
  VTable GPUMem ->
  Imp.Exp ->
  ImpM rep r op (Maybe Imp.KernelConstExp)
isConstExp :: forall rep r op.
VTable GPUMem
-> PrimExp ExpLeaf -> ImpM rep r op (Maybe KernelConstExp)
isConstExp VTable GPUMem
vtable PrimExp ExpLeaf
size = do
  Maybe Name
fname <- ImpM rep r op (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
  let onLeaf :: ExpLeaf -> PrimType -> Maybe KernelConstExp
onLeaf (Imp.ScalarVar VName
name) PrimType
_ = VName -> Maybe KernelConstExp
lookupConstExp VName
name
      onLeaf Imp.Index {} PrimType
_ = Maybe KernelConstExp
forall a. Maybe a
Nothing
      lookupConstExp :: VName -> Maybe KernelConstExp
lookupConstExp VName
name =
        Exp GPUMem -> Maybe KernelConstExp
constExp (Exp GPUMem -> Maybe KernelConstExp)
-> Maybe (Exp GPUMem) -> Maybe KernelConstExp
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< VarEntry GPUMem -> Maybe (Exp GPUMem)
forall {rep}. VarEntry rep -> Maybe (Exp rep)
hasExp (VarEntry GPUMem -> Maybe (Exp GPUMem))
-> Maybe (VarEntry GPUMem) -> Maybe (Exp GPUMem)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< VName -> VTable GPUMem -> Maybe (VarEntry GPUMem)
forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup VName
name VTable GPUMem
vtable
      constExp :: Exp GPUMem -> Maybe KernelConstExp
constExp (Op (Inner (SizeOp (GetSize Name
key SizeClass
_)))) =
        KernelConstExp -> Maybe KernelConstExp
forall a. a -> Maybe a
Just (KernelConstExp -> Maybe KernelConstExp)
-> KernelConstExp -> Maybe KernelConstExp
forall a b. (a -> b) -> a -> b
$ KernelConst -> PrimType -> KernelConstExp
forall v. v -> PrimType -> PrimExp v
LeafExp (Name -> KernelConst
Imp.SizeConst (Name -> KernelConst) -> Name -> KernelConst
forall a b. (a -> b) -> a -> b
$ Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname Name
key) PrimType
int32
      constExp Exp GPUMem
e = (VName -> Maybe KernelConstExp)
-> Exp GPUMem -> Maybe KernelConstExp
forall (m :: * -> *) rep v.
(MonadFail m, RepTypes rep) =>
(VName -> m (PrimExp v)) -> Exp rep -> m (PrimExp v)
primExpFromExp VName -> Maybe KernelConstExp
lookupConstExp Exp GPUMem
e
  Maybe KernelConstExp -> ImpM rep r op (Maybe KernelConstExp)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe KernelConstExp -> ImpM rep r op (Maybe KernelConstExp))
-> Maybe KernelConstExp -> ImpM rep r op (Maybe KernelConstExp)
forall a b. (a -> b) -> a -> b
$ (ExpLeaf -> PrimType -> Maybe KernelConstExp)
-> PrimExp ExpLeaf -> Maybe KernelConstExp
forall (m :: * -> *) a b.
Monad m =>
(a -> PrimType -> m (PrimExp b)) -> PrimExp a -> m (PrimExp b)
replaceInPrimExpM ExpLeaf -> PrimType -> Maybe KernelConstExp
onLeaf PrimExp ExpLeaf
size
  where
    hasExp :: VarEntry rep -> Maybe (Exp rep)
hasExp (ArrayVar Maybe (Exp rep)
e ArrayEntry
_) = Maybe (Exp rep)
e
    hasExp (AccVar Maybe (Exp rep)
e (VName, ShapeBase SubExp,
 [TypeBase (ShapeBase SubExp) NoUniqueness])
_) = Maybe (Exp rep)
e
    hasExp (ScalarVar Maybe (Exp rep)
e ScalarEntry
_) = Maybe (Exp rep)
e
    hasExp (MemVar Maybe (Exp rep)
e MemEntry
_) = Maybe (Exp rep)
e

computeThreadChunkSize ::
  SplitOrdering ->
  Imp.TExp Int64 ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  Imp.Count Imp.Elements (Imp.TExp Int64) ->
  TV Int64 ->
  ImpM rep r op ()
computeThreadChunkSize :: forall rep r op.
SplitOrdering
-> TExp Int64
-> Count Elements (TExp Int64)
-> Count Elements (TExp Int64)
-> TV Int64
-> ImpM rep r op ()
computeThreadChunkSize (SplitStrided SubExp
stride) TExp Int64
thread_index Count Elements (TExp Int64)
elements_per_thread Count Elements (TExp Int64)
num_elements TV Int64
chunk_var =
  TV Int64
chunk_var
    TV Int64 -> TExp Int64 -> ImpM rep r op ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TExp Int64 -> TExp Int64 -> TExp Int64
forall v. TPrimExp Int64 v -> TPrimExp Int64 v -> TPrimExp Int64 v
sMin64
      (Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
elements_per_thread)
      ((Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
num_elements TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TExp Int64
thread_index) TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`divUp` SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
stride)
computeThreadChunkSize SplitOrdering
SplitContiguous TExp Int64
thread_index Count Elements (TExp Int64)
elements_per_thread Count Elements (TExp Int64)
num_elements TV Int64
chunk_var = do
  TV Int64
starting_point <-
    String -> TExp Int64 -> ImpM rep r op (TV Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"starting_point" (TExp Int64 -> ImpM rep r op (TV Int64))
-> TExp Int64 -> ImpM rep r op (TV Int64)
forall a b. (a -> b) -> a -> b
$
      TExp Int64
thread_index TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
elements_per_thread
  TV Int64
remaining_elements <-
    String -> TExp Int64 -> ImpM rep r op (TV Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"remaining_elements" (TExp Int64 -> ImpM rep r op (TV Int64))
-> TExp Int64 -> ImpM rep r op (TV Int64)
forall a b. (a -> b) -> a -> b
$
      Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
num_elements TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TV Int64 -> TExp Int64
forall t. TV t -> TExp t
tvExp TV Int64
starting_point

  let no_remaining_elements :: TExp Bool
no_remaining_elements = TV Int64 -> TExp Int64
forall t. TV t -> TExp t
tvExp TV Int64
remaining_elements TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TExp Int64
0
      beyond_bounds :: TExp Bool
beyond_bounds = Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
num_elements TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TV Int64 -> TExp Int64
forall t. TV t -> TExp t
tvExp TV Int64
starting_point

  TExp Bool
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
forall rep r op.
TExp Bool
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
sIf
    (TExp Bool
no_remaining_elements TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.||. TExp Bool
beyond_bounds)
    (TV Int64
chunk_var TV Int64 -> TExp Int64 -> ImpM rep r op ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TExp Int64
0)
    ( TExp Bool
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
forall rep r op.
TExp Bool
-> ImpM rep r op () -> ImpM rep r op () -> ImpM rep r op ()
sIf
        TExp Bool
is_last_thread
        (TV Int64
chunk_var TV Int64 -> TExp Int64 -> ImpM rep r op ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
last_thread_elements)
        (TV Int64
chunk_var TV Int64 -> TExp Int64 -> ImpM rep r op ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
elements_per_thread)
    )
  where
    last_thread_elements :: Count Elements (TExp Int64)
last_thread_elements =
      Count Elements (TExp Int64)
num_elements Count Elements (TExp Int64)
-> Count Elements (TExp Int64) -> Count Elements (TExp Int64)
forall a. Num a => a -> a -> a
- TExp Int64 -> Count Elements (TExp Int64)
forall a. a -> Count Elements a
Imp.elements TExp Int64
thread_index Count Elements (TExp Int64)
-> Count Elements (TExp Int64) -> Count Elements (TExp Int64)
forall a. Num a => a -> a -> a
* Count Elements (TExp Int64)
elements_per_thread
    is_last_thread :: TExp Bool
is_last_thread =
      Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
num_elements
        TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. (TExp Int64
thread_index TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
1) TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* Count Elements (TExp Int64) -> TExp Int64
forall u e. Count u e -> e
Imp.unCount Count Elements (TExp Int64)
elements_per_thread

kernelInitialisationSimple ::
  Count NumGroups (Imp.TExp Int64) ->
  Count GroupSize (Imp.TExp Int64) ->
  CallKernelGen (KernelConstants, InKernelGen ())
kernelInitialisationSimple :: Count NumGroups (TExp Int64)
-> Count GroupSize (TExp Int64)
-> CallKernelGen (KernelConstants, InKernelGen ())
kernelInitialisationSimple (Count TExp Int64
num_groups) (Count TExp Int64
group_size) = do
  VName
global_tid <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"global_tid"
  VName
local_tid <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"local_tid"
  VName
group_id <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"group_tid"
  VName
wave_size <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"wave_size"
  VName
inner_group_size <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"group_size"
  let constants :: KernelConstants
constants =
        TExp Int32
-> TExp Int32
-> TExp Int32
-> VName
-> VName
-> VName
-> TExp Int64
-> TExp Int64
-> TExp Int32
-> TExp Int32
-> TExp Bool
-> Map [SubExp] [TExp Int32]
-> KernelConstants
KernelConstants
          (VName -> TExp Int32
Imp.vi32 VName
global_tid)
          (VName -> TExp Int32
Imp.vi32 VName
local_tid)
          (VName -> TExp Int32
Imp.vi32 VName
group_id)
          VName
global_tid
          VName
local_tid
          VName
group_id
          TExp Int64
num_groups
          TExp Int64
group_size
          (TExp Int64 -> TExp Int32
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (TExp Int64
group_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* TExp Int64
num_groups))
          (VName -> TExp Int32
Imp.vi32 VName
wave_size)
          TExp Bool
forall v. TPrimExp Bool v
true
          Map [SubExp] [TExp Int32]
forall a. Monoid a => a
mempty

  let set_constants :: InKernelGen ()
set_constants = do
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
global_tid PrimType
int32
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
local_tid PrimType
int32
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
inner_group_size PrimType
int64
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
wave_size PrimType
int32
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
group_id PrimType
int32

        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> Int -> KernelOp
Imp.GetGlobalId VName
global_tid Int
0)
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> Int -> KernelOp
Imp.GetLocalId VName
local_tid Int
0)
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> Int -> KernelOp
Imp.GetLocalSize VName
inner_group_size Int
0)
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> KernelOp
Imp.GetLockstepWidth VName
wave_size)
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> Int -> KernelOp
Imp.GetGroupId VName
group_id Int
0)

  (KernelConstants, InKernelGen ())
-> CallKernelGen (KernelConstants, InKernelGen ())
forall (m :: * -> *) a. Monad m => a -> m a
return (KernelConstants
constants, InKernelGen ()
set_constants)

isActive :: [(VName, SubExp)] -> Imp.TExp Bool
isActive :: [(VName, SubExp)] -> TExp Bool
isActive [(VName, SubExp)]
limit = case [TExp Bool]
actives of
  [] -> TExp Bool
forall v. TPrimExp Bool v
true
  TExp Bool
x : [TExp Bool]
xs -> (TExp Bool -> TExp Bool -> TExp Bool)
-> TExp Bool -> [TExp Bool] -> TExp Bool
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
(.&&.) TExp Bool
x [TExp Bool]
xs
  where
    ([VName]
is, [SubExp]
ws) = [(VName, SubExp)] -> ([VName], [SubExp])
forall a b. [(a, b)] -> ([a], [b])
unzip [(VName, SubExp)]
limit
    actives :: [TExp Bool]
actives = (VName -> TExp Int64 -> TExp Bool)
-> [VName] -> [TExp Int64] -> [TExp Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith VName -> TExp Int64 -> TExp Bool
active [VName]
is ([TExp Int64] -> [TExp Bool]) -> [TExp Int64] -> [TExp Bool]
forall a b. (a -> b) -> a -> b
$ (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
ws
    active :: VName -> TExp Int64 -> TExp Bool
active VName
i = (VName -> TExp Int64
Imp.vi64 VName
i TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<.)

-- | Change every memory block to be in the global address space,
-- except those who are in the local memory space.  This only affects
-- generated code - we still need to make sure that the memory is
-- actually present on the device (and dared as variables in the
-- kernel).
makeAllMemoryGlobal :: CallKernelGen a -> CallKernelGen a
makeAllMemoryGlobal :: forall a. CallKernelGen a -> CallKernelGen a
makeAllMemoryGlobal =
  Space
-> ImpM GPUMem HostEnv HostOp a -> ImpM GPUMem HostEnv HostOp a
forall rep r op a. Space -> ImpM rep r op a -> ImpM rep r op a
localDefaultSpace (String -> Space
Imp.Space String
"global") (ImpM GPUMem HostEnv HostOp a -> ImpM GPUMem HostEnv HostOp a)
-> (ImpM GPUMem HostEnv HostOp a -> ImpM GPUMem HostEnv HostOp a)
-> ImpM GPUMem HostEnv HostOp a
-> ImpM GPUMem HostEnv HostOp a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (VTable GPUMem -> VTable GPUMem)
-> ImpM GPUMem HostEnv HostOp a -> ImpM GPUMem HostEnv HostOp a
forall rep r op a.
(VTable rep -> VTable rep) -> ImpM rep r op a -> ImpM rep r op a
localVTable ((VarEntry GPUMem -> VarEntry GPUMem)
-> VTable GPUMem -> VTable GPUMem
forall a b k. (a -> b) -> Map k a -> Map k b
M.map VarEntry GPUMem -> VarEntry GPUMem
forall {rep}. VarEntry rep -> VarEntry rep
globalMemory)
  where
    globalMemory :: VarEntry rep -> VarEntry rep
globalMemory (MemVar Maybe (Exp rep)
_ MemEntry
entry)
      | MemEntry -> Space
entryMemSpace MemEntry
entry Space -> Space -> Bool
forall a. Eq a => a -> a -> Bool
/= String -> Space
Space String
"local" =
        Maybe (Exp rep) -> MemEntry -> VarEntry rep
forall rep. Maybe (Exp rep) -> MemEntry -> VarEntry rep
MemVar Maybe (Exp rep)
forall a. Maybe a
Nothing MemEntry
entry {entryMemSpace :: Space
entryMemSpace = String -> Space
Imp.Space String
"global"}
    globalMemory VarEntry rep
entry =
      VarEntry rep
entry

groupReduce ::
  Imp.TExp Int32 ->
  Lambda GPUMem ->
  [VName] ->
  InKernelGen ()
groupReduce :: TExp Int32 -> Lambda GPUMem -> [VName] -> InKernelGen ()
groupReduce TExp Int32
w Lambda GPUMem
lam [VName]
arrs = do
  TV Int32
offset <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Int32)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"offset" PrimType
int32
  TV Int32
-> TExp Int32 -> Lambda GPUMem -> [VName] -> InKernelGen ()
groupReduceWithOffset TV Int32
offset TExp Int32
w Lambda GPUMem
lam [VName]
arrs

groupReduceWithOffset ::
  TV Int32 ->
  Imp.TExp Int32 ->
  Lambda GPUMem ->
  [VName] ->
  InKernelGen ()
groupReduceWithOffset :: TV Int32
-> TExp Int32 -> Lambda GPUMem -> [VName] -> InKernelGen ()
groupReduceWithOffset TV Int32
offset TExp Int32
w Lambda GPUMem
lam [VName]
arrs = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv

  let local_tid :: TExp Int32
local_tid = KernelConstants -> TExp Int32
kernelLocalThreadId KernelConstants
constants
      global_tid :: TExp Int32
global_tid = KernelConstants -> TExp Int32
kernelGlobalThreadId KernelConstants
constants

      barrier :: InKernelGen ()
barrier
        | (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> [TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType ([TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool)
-> [TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [TypeBase (ShapeBase SubExp) NoUniqueness]
forall rep.
LambdaT rep -> [TypeBase (ShapeBase SubExp) NoUniqueness]
lambdaReturnType Lambda GPUMem
lam = KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal
        | Bool
otherwise = KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceGlobal

      readReduceArgument :: Param LParamMem -> VName -> InKernelGen ()
readReduceArgument Param LParamMem
param VName
arr
        | Prim PrimType
_ <- Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
param = do
          let i :: TExp Int32
i = TExp Int32
local_tid TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
+ TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
offset
          VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
param) [] (VName -> SubExp
Var VName
arr) [TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
i]
        | Bool
otherwise = do
          let i :: TExp Int32
i = TExp Int32
global_tid TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
+ TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
offset
          VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
param) [] (VName -> SubExp
Var VName
arr) [TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
i]

      writeReduceOpResult :: Param LParamMem -> VName -> InKernelGen ()
writeReduceOpResult Param LParamMem
param VName
arr
        | Prim PrimType
_ <- Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
param =
          VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix VName
arr [TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
local_tid] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
param) []
        | Bool
otherwise =
          () -> InKernelGen ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

  let ([Param LParamMem]
reduce_acc_params, [Param LParamMem]
reduce_arr_params) = Int -> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([VName] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [VName]
arrs) ([Param LParamMem] -> ([Param LParamMem], [Param LParamMem]))
-> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam

  TV Int32
skip_waves <- String -> TExp Int32 -> ImpM GPUMem KernelEnv KernelOp (TV Int32)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"skip_waves" (TExp Int32
1 :: Imp.TExp Int32)
  [LParam GPUMem] -> InKernelGen ()
forall rep r op. Mem rep => [LParam rep] -> ImpM rep r op ()
dLParams ([LParam GPUMem] -> InKernelGen ())
-> [LParam GPUMem] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam

  TV Int32
offset TV Int32 -> TExp Int32 -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- (TExp Int32
0 :: Imp.TExp Int32)

  String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
comment String
"participating threads read initial accumulator" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Int32
local_tid TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int32
w) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      (Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem] -> [VName] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ Param LParamMem -> VName -> InKernelGen ()
readReduceArgument [Param LParamMem]
reduce_acc_params [VName]
arrs

  let do_reduce :: InKernelGen ()
do_reduce = do
        String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
comment String
"read array element" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          (Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem] -> [VName] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ Param LParamMem -> VName -> InKernelGen ()
readReduceArgument [Param LParamMem]
reduce_arr_params [VName]
arrs
        String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
comment String
"apply reduction operation" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          [Param LParamMem] -> BodyT GPUMem -> InKernelGen ()
forall dec rep r op. [Param dec] -> Body rep -> ImpM rep r op ()
compileBody' [Param LParamMem]
reduce_acc_params (BodyT GPUMem -> InKernelGen ()) -> BodyT GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> BodyT GPUMem
forall rep. LambdaT rep -> BodyT rep
lambdaBody Lambda GPUMem
lam
        String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
comment String
"write result of operation" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          (Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem] -> [VName] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ Param LParamMem -> VName -> InKernelGen ()
writeReduceOpResult [Param LParamMem]
reduce_acc_params [VName]
arrs
      in_wave_reduce :: InKernelGen ()
in_wave_reduce = InKernelGen () -> InKernelGen ()
forall rep r op a. ImpM rep r op a -> ImpM rep r op a
everythingVolatile InKernelGen ()
do_reduce

      wave_size :: TExp Int32
wave_size = KernelConstants -> TExp Int32
kernelWaveSize KernelConstants
constants
      group_size :: TExp Int64
group_size = KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants
      wave_id :: TExp Int32
wave_id = TExp Int32
local_tid TExp Int32 -> TExp Int32 -> TExp Int32
forall e. IntegralExp e => e -> e -> e
`quot` TExp Int32
wave_size
      in_wave_id :: TExp Int32
in_wave_id = TExp Int32
local_tid TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TExp Int32
wave_id TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
wave_size
      num_waves :: TExp Int32
num_waves = (TExp Int64 -> TExp Int32
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 TExp Int64
group_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
+ TExp Int32
wave_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TExp Int32
1) TExp Int32 -> TExp Int32 -> TExp Int32
forall e. IntegralExp e => e -> e -> e
`quot` TExp Int32
wave_size
      arg_in_bounds :: TExp Bool
arg_in_bounds = TExp Int32
local_tid TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
+ TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
offset TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int32
w

      doing_in_wave_reductions :: TExp Bool
doing_in_wave_reductions =
        TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
offset TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int32
wave_size
      apply_in_in_wave_iteration :: TExp Bool
apply_in_in_wave_iteration =
        (TExp Int32
in_wave_id TExp Int32 -> TExp Int32 -> TExp Int32
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp t v
.&. (TExp Int32
2 TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
offset TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TExp Int32
1)) TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
0
      in_wave_reductions :: InKernelGen ()
in_wave_reductions = do
        TV Int32
offset TV Int32 -> TExp Int32 -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- (TExp Int32
1 :: Imp.TExp Int32)
        TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhile TExp Bool
doing_in_wave_reductions (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
          TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen
            (TExp Bool
arg_in_bounds TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
apply_in_in_wave_iteration)
            InKernelGen ()
in_wave_reduce
          TV Int32
offset TV Int32 -> TExp Int32 -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
offset TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
2

      doing_cross_wave_reductions :: TExp Bool
doing_cross_wave_reductions =
        TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_waves TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int32
num_waves
      is_first_thread_in_wave :: TExp Bool
is_first_thread_in_wave =
        TExp Int32
in_wave_id TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
0
      wave_not_skipped :: TExp Bool
wave_not_skipped =
        (TExp Int32
wave_id TExp Int32 -> TExp Int32 -> TExp Int32
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp t v
.&. (TExp Int32
2 TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_waves TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TExp Int32
1)) TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
0
      apply_in_cross_wave_iteration :: TExp Bool
apply_in_cross_wave_iteration =
        TExp Bool
arg_in_bounds TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
is_first_thread_in_wave TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
wave_not_skipped
      cross_wave_reductions :: InKernelGen ()
cross_wave_reductions =
        TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhile TExp Bool
doing_cross_wave_reductions (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
          InKernelGen ()
barrier
          TV Int32
offset TV Int32 -> TExp Int32 -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_waves TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
wave_size
          TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen
            TExp Bool
apply_in_cross_wave_iteration
            InKernelGen ()
do_reduce
          TV Int32
skip_waves TV Int32 -> TExp Int32 -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_waves TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
2

  InKernelGen ()
in_wave_reductions
  InKernelGen ()
cross_wave_reductions

groupScan ::
  Maybe (Imp.TExp Int32 -> Imp.TExp Int32 -> Imp.TExp Bool) ->
  Imp.TExp Int64 ->
  Imp.TExp Int64 ->
  Lambda GPUMem ->
  [VName] ->
  InKernelGen ()
groupScan :: Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Int64
-> TExp Int64
-> Lambda GPUMem
-> [VName]
-> InKernelGen ()
groupScan Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag TExp Int64
arrs_full_size TExp Int64
w Lambda GPUMem
lam [VName]
arrs = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  Lambda GPUMem
renamed_lam <- Lambda GPUMem -> ImpM GPUMem KernelEnv KernelOp (Lambda GPUMem)
forall rep (m :: * -> *).
(Renameable rep, MonadFreshNames m) =>
Lambda rep -> m (Lambda rep)
renameLambda Lambda GPUMem
lam

  let ltid32 :: TExp Int32
ltid32 = KernelConstants -> TExp Int32
kernelLocalThreadId KernelConstants
constants
      ltid :: TExp Int64
ltid = TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
ltid32
      ([Param LParamMem]
x_params, [Param LParamMem]
y_params) = Int -> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([VName] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [VName]
arrs) ([Param LParamMem] -> ([Param LParamMem], [Param LParamMem]))
-> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam

  [LParam GPUMem] -> InKernelGen ()
forall rep r op. Mem rep => [LParam rep] -> ImpM rep r op ()
dLParams (Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam [Param LParamMem] -> [Param LParamMem] -> [Param LParamMem]
forall a. [a] -> [a] -> [a]
++ Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
renamed_lam)

  TExp Bool
ltid_in_bounds <- String -> TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool)
forall t rep r op. String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"ltid_in_bounds" (TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool))
-> TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool)
forall a b. (a -> b) -> a -> b
$ TExp Int64
ltid TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int64
w

  -- The scan works by splitting the group into blocks, which are
  -- scanned separately.  Typically, these blocks are smaller than
  -- the lockstep width, which enables barrier-free execution inside
  -- them.
  --
  -- We hardcode the block size here.  The only requirement is that
  -- it should not be less than the square root of the group size.
  -- With 32, we will work on groups of size 1024 or smaller, which
  -- fits every device Troels has seen.  Still, it would be nicer if
  -- it were a runtime parameter.  Some day.
  let block_size :: TExp Int32
block_size = TExp Int32
32
      simd_width :: TExp Int32
simd_width = KernelConstants -> TExp Int32
kernelWaveSize KernelConstants
constants
      block_id :: TExp Int32
block_id = TExp Int32
ltid32 TExp Int32 -> TExp Int32 -> TExp Int32
forall e. IntegralExp e => e -> e -> e
`quot` TExp Int32
block_size
      in_block_id :: TExp Int32
in_block_id = TExp Int32
ltid32 TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TExp Int32
block_id TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
block_size
      doInBlockScan :: Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Bool -> Lambda GPUMem -> InKernelGen ()
doInBlockScan Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag' TExp Bool
active =
        KernelConstants
-> Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Int64
-> TExp Int32
-> TExp Int32
-> TExp Bool
-> [VName]
-> InKernelGen ()
-> Lambda GPUMem
-> InKernelGen ()
inBlockScan
          KernelConstants
constants
          Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag'
          TExp Int64
arrs_full_size
          TExp Int32
simd_width
          TExp Int32
block_size
          TExp Bool
active
          [VName]
arrs
          InKernelGen ()
barrier
      array_scan :: Bool
array_scan = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> [TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType ([TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool)
-> [TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [TypeBase (ShapeBase SubExp) NoUniqueness]
forall rep.
LambdaT rep -> [TypeBase (ShapeBase SubExp) NoUniqueness]
lambdaReturnType Lambda GPUMem
lam
      barrier :: InKernelGen ()
barrier
        | Bool
array_scan =
          KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceGlobal
        | Bool
otherwise =
          KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal

      group_offset :: TExp Int64
group_offset = TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (KernelConstants -> TExp Int32
kernelGroupId KernelConstants
constants) TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants

      writeBlockResult :: Param LParamMem -> VName -> InKernelGen ()
writeBlockResult Param LParamMem
p VName
arr
        | TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
p =
          VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM VName
arr [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
block_id] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) []
        | Bool
otherwise =
          VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM VName
arr [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
group_offset TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
block_id] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) []

      readPrevBlockResult :: Param LParamMem -> VName -> InKernelGen ()
readPrevBlockResult Param LParamMem
p VName
arr
        | TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
p =
          VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
arr) [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
block_id TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TExp Int64
1]
        | Bool
otherwise =
          VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
arr) [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
group_offset TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
block_id TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TExp Int64
1]

  Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Bool -> Lambda GPUMem -> InKernelGen ()
doInBlockScan Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag TExp Bool
ltid_in_bounds Lambda GPUMem
lam
  InKernelGen ()
barrier

  let is_first_block :: TExp Bool
is_first_block = TExp Int32
block_id TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
0
  Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
array_scan (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"save correct values for first block" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
is_first_block (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        [(Param LParamMem, VName)]
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [VName] -> [(Param LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
x_params [VName]
arrs) (((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
x, VName
arr) ->
          Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
x) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM VName
arr [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
arrs_full_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
group_offset TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
block_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
ltid] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x) []

    InKernelGen ()
barrier

  let last_in_block :: TExp Bool
last_in_block = TExp Int32
in_block_id TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
block_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TExp Int32
1
  String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"last thread of block 'i' writes its result to offset 'i'" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Bool
last_in_block TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
ltid_in_bounds) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      InKernelGen () -> InKernelGen ()
forall rep r op a. ImpM rep r op a -> ImpM rep r op a
everythingVolatile (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        (Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem] -> [VName] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ Param LParamMem -> VName -> InKernelGen ()
writeBlockResult [Param LParamMem]
x_params [VName]
arrs

  InKernelGen ()
barrier

  let first_block_seg_flag :: Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
first_block_seg_flag = do
        TExp Int32 -> TExp Int32 -> TExp Bool
flag_true <- Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag
        (TExp Int32 -> TExp Int32 -> TExp Bool)
-> Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
forall a. a -> Maybe a
Just ((TExp Int32 -> TExp Int32 -> TExp Bool)
 -> Maybe (TExp Int32 -> TExp Int32 -> TExp Bool))
-> (TExp Int32 -> TExp Int32 -> TExp Bool)
-> Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
forall a b. (a -> b) -> a -> b
$ \TExp Int32
from TExp Int32
to ->
          TExp Int32 -> TExp Int32 -> TExp Bool
flag_true (TExp Int32
from TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
block_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
+ TExp Int32
block_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
-TExp Int32
1) (TExp Int32
to TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
block_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
+ TExp Int32
block_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
-TExp Int32
1)
  String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
comment
    String
"scan the first block, after which offset 'i' contains carry-in for block 'i+1'"
    (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Bool -> Lambda GPUMem -> InKernelGen ()
doInBlockScan Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
first_block_seg_flag (TExp Bool
is_first_block TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
ltid_in_bounds) Lambda GPUMem
renamed_lam

  InKernelGen ()
barrier

  Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
array_scan (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"move correct values for first block back a block" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
is_first_block (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        [(Param LParamMem, VName)]
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [VName] -> [(Param LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
x_params [VName]
arrs) (((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
x, VName
arr) ->
          Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
x) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM
              VName
arr
              [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
arrs_full_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
group_offset TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
ltid]
              (VName -> SubExp
Var VName
arr)
              [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
arrs_full_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
group_offset TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
block_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
ltid]

    InKernelGen ()
barrier

  let read_carry_in :: InKernelGen ()
read_carry_in = do
        [(Param LParamMem, Param LParamMem)]
-> ((Param LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem]
-> [Param LParamMem] -> [(Param LParamMem, Param LParamMem)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
x_params [Param LParamMem]
y_params) (((Param LParamMem, Param LParamMem) -> InKernelGen ())
 -> InKernelGen ())
-> ((Param LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
x, Param LParamMem
y) ->
          VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
y) [] (VName -> SubExp
Var (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x)) []
        (Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem] -> [VName] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ Param LParamMem -> VName -> InKernelGen ()
readPrevBlockResult [Param LParamMem]
x_params [VName]
arrs

      y_to_x :: InKernelGen ()
y_to_x = [(Param LParamMem, Param LParamMem)]
-> ((Param LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem]
-> [Param LParamMem] -> [(Param LParamMem, Param LParamMem)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
x_params [Param LParamMem]
y_params) (((Param LParamMem, Param LParamMem) -> InKernelGen ())
 -> InKernelGen ())
-> ((Param LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
x, Param LParamMem
y) ->
        Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
x)) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x) [] (VName -> SubExp
Var (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
y)) []

      op_to_x :: InKernelGen ()
op_to_x
        | Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
Nothing <- Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag =
          [Param LParamMem] -> BodyT GPUMem -> InKernelGen ()
forall dec rep r op. [Param dec] -> Body rep -> ImpM rep r op ()
compileBody' [Param LParamMem]
x_params (BodyT GPUMem -> InKernelGen ()) -> BodyT GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> BodyT GPUMem
forall rep. LambdaT rep -> BodyT rep
lambdaBody Lambda GPUMem
lam
        | Just TExp Int32 -> TExp Int32 -> TExp Bool
flag_true <- Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag = do
          TExp Bool
inactive <-
            String -> TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool)
forall t rep r op. String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"inactive" (TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool))
-> TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool)
forall a b. (a -> b) -> a -> b
$ TExp Int32 -> TExp Int32 -> TExp Bool
flag_true (TExp Int32
block_id TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
block_size TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
-TExp Int32
1) TExp Int32
ltid32
          TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
inactive InKernelGen ()
y_to_x
          Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
array_scan InKernelGen ()
barrier
          TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sUnless TExp Bool
inactive (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ [Param LParamMem] -> BodyT GPUMem -> InKernelGen ()
forall dec rep r op. [Param dec] -> Body rep -> ImpM rep r op ()
compileBody' [Param LParamMem]
x_params (BodyT GPUMem -> InKernelGen ()) -> BodyT GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> BodyT GPUMem
forall rep. LambdaT rep -> BodyT rep
lambdaBody Lambda GPUMem
lam

      write_final_result :: InKernelGen ()
write_final_result =
        [(Param LParamMem, VName)]
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem] -> [VName] -> [(Param LParamMem, VName)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
x_params [VName]
arrs) (((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ())
-> ((Param LParamMem, VName) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
p, VName
arr) ->
          Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
p) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM VName
arr [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix TExp Int64
ltid] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) []

  String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"carry-in for every block except the first" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sUnless (TExp Bool
is_first_block TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.||. TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v
bNot TExp Bool
ltid_in_bounds) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"read operands" InKernelGen ()
read_carry_in
      String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"perform operation" InKernelGen ()
op_to_x
      String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"write final result" InKernelGen ()
write_final_result

  InKernelGen ()
barrier

  String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"restore correct values for first block" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
is_first_block (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      [(Param LParamMem, Param LParamMem, VName)]
-> ((Param LParamMem, Param LParamMem, VName) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem]
-> [Param LParamMem]
-> [VName]
-> [(Param LParamMem, Param LParamMem, VName)]
forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Param LParamMem]
x_params [Param LParamMem]
y_params [VName]
arrs) (((Param LParamMem, Param LParamMem, VName) -> InKernelGen ())
 -> InKernelGen ())
-> ((Param LParamMem, Param LParamMem, VName) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
x, Param LParamMem
y, VName
arr) ->
        if TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
y)
          then VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM VName
arr [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix TExp Int64
ltid] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
y) []
          else VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x) [] (VName -> SubExp
Var VName
arr) [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
arrs_full_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
group_offset TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
ltid]

  InKernelGen ()
barrier

inBlockScan ::
  KernelConstants ->
  Maybe (Imp.TExp Int32 -> Imp.TExp Int32 -> Imp.TExp Bool) ->
  Imp.TExp Int64 ->
  Imp.TExp Int32 ->
  Imp.TExp Int32 ->
  Imp.TExp Bool ->
  [VName] ->
  InKernelGen () ->
  Lambda GPUMem ->
  InKernelGen ()
inBlockScan :: KernelConstants
-> Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
-> TExp Int64
-> TExp Int32
-> TExp Int32
-> TExp Bool
-> [VName]
-> InKernelGen ()
-> Lambda GPUMem
-> InKernelGen ()
inBlockScan KernelConstants
constants Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag TExp Int64
arrs_full_size TExp Int32
lockstep_width TExp Int32
block_size TExp Bool
active [VName]
arrs InKernelGen ()
barrier Lambda GPUMem
scan_lam = InKernelGen () -> InKernelGen ()
forall rep r op a. ImpM rep r op a -> ImpM rep r op a
everythingVolatile (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
  TV Int32
skip_threads <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Int32)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"skip_threads" PrimType
int32
  let in_block_thread_active :: TExp Bool
in_block_thread_active =
        TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_threads TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TExp Int32
in_block_id
      actual_params :: [LParam GPUMem]
actual_params = Lambda GPUMem -> [LParam GPUMem]
forall rep. LambdaT rep -> [LParam rep]
lambdaParams Lambda GPUMem
scan_lam
      ([Param LParamMem]
x_params, [Param LParamMem]
y_params) =
        Int -> [Param LParamMem] -> ([Param LParamMem], [Param LParamMem])
forall a. Int -> [a] -> ([a], [a])
splitAt ([Param LParamMem] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LParam GPUMem]
[Param LParamMem]
actual_params Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2) [LParam GPUMem]
[Param LParamMem]
actual_params
      y_to_x :: InKernelGen ()
y_to_x =
        [(Param LParamMem, Param LParamMem)]
-> ((Param LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Param LParamMem]
-> [Param LParamMem] -> [(Param LParamMem, Param LParamMem)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Param LParamMem]
x_params [Param LParamMem]
y_params) (((Param LParamMem, Param LParamMem) -> InKernelGen ())
 -> InKernelGen ())
-> ((Param LParamMem, Param LParamMem) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Param LParamMem
x, Param LParamMem
y) ->
          Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
x)) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x) [] (VName -> SubExp
Var (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
y)) []

  -- Set initial y values
  String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"read input for in-block scan" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
active (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      (Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem] -> [VName] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ Param LParamMem -> VName -> InKernelGen ()
readInitial [Param LParamMem]
y_params [VName]
arrs
      -- Since the final result is expected to be in x_params, we may
      -- need to copy it there for the first thread in the block.
      TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Int32
in_block_id TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
0) InKernelGen ()
y_to_x

  Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
array_scan InKernelGen ()
barrier

  let op_to_x :: InKernelGen ()
op_to_x
        | Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
Nothing <- Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag =
          [Param LParamMem] -> BodyT GPUMem -> InKernelGen ()
forall dec rep r op. [Param dec] -> Body rep -> ImpM rep r op ()
compileBody' [Param LParamMem]
x_params (BodyT GPUMem -> InKernelGen ()) -> BodyT GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> BodyT GPUMem
forall rep. LambdaT rep -> BodyT rep
lambdaBody Lambda GPUMem
scan_lam
        | Just TExp Int32 -> TExp Int32 -> TExp Bool
flag_true <- Maybe (TExp Int32 -> TExp Int32 -> TExp Bool)
seg_flag = do
          TExp Bool
inactive <-
            String -> TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool)
forall t rep r op. String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"inactive" (TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool))
-> TExp Bool -> ImpM GPUMem KernelEnv KernelOp (TExp Bool)
forall a b. (a -> b) -> a -> b
$
              TExp Int32 -> TExp Int32 -> TExp Bool
flag_true (TExp Int32
ltid32 TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_threads) TExp Int32
ltid32
          TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
inactive InKernelGen ()
y_to_x
          Bool -> InKernelGen () -> InKernelGen ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
array_scan InKernelGen ()
barrier
          TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sUnless TExp Bool
inactive (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ [Param LParamMem] -> BodyT GPUMem -> InKernelGen ()
forall dec rep r op. [Param dec] -> Body rep -> ImpM rep r op ()
compileBody' [Param LParamMem]
x_params (BodyT GPUMem -> InKernelGen ()) -> BodyT GPUMem -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> BodyT GPUMem
forall rep. LambdaT rep -> BodyT rep
lambdaBody Lambda GPUMem
scan_lam

      maybeBarrier :: InKernelGen ()
maybeBarrier =
        TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen
          (TExp Int32
lockstep_width TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_threads)
          InKernelGen ()
barrier

  String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"in-block scan (hopefully no barriers needed)" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
    TV Int32
skip_threads TV Int32 -> TExp Int32 -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TExp Int32
1
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhile (TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_threads TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int32
block_size) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Bool
in_block_thread_active TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
active) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
        String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"read operands" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          (Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem] -> [VName] -> InKernelGen ()
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ (TExp Int64 -> Param LParamMem -> VName -> InKernelGen ()
readParam (TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_threads)) [Param LParamMem]
x_params [VName]
arrs
        String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"perform operation" InKernelGen ()
op_to_x

      InKernelGen ()
maybeBarrier

      TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Bool
in_block_thread_active TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
active) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        String -> InKernelGen () -> InKernelGen ()
forall rep r op. String -> ImpM rep r op () -> ImpM rep r op ()
sComment String
"write result" (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          [InKernelGen ()] -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, Monad m) =>
t (m a) -> m ()
sequence_ ([InKernelGen ()] -> InKernelGen ())
-> [InKernelGen ()] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ (Param LParamMem -> Param LParamMem -> VName -> InKernelGen ())
-> [Param LParamMem]
-> [Param LParamMem]
-> [VName]
-> [InKernelGen ()]
forall a b c d. (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3 Param LParamMem -> Param LParamMem -> VName -> InKernelGen ()
writeResult [Param LParamMem]
x_params [Param LParamMem]
y_params [VName]
arrs

      InKernelGen ()
maybeBarrier

      TV Int32
skip_threads TV Int32 -> TExp Int32 -> InKernelGen ()
forall t rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
skip_threads TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
2
  where
    block_id :: TExp Int32
block_id = TExp Int32
ltid32 TExp Int32 -> TExp Int32 -> TExp Int32
forall e. IntegralExp e => e -> e -> e
`quot` TExp Int32
block_size
    in_block_id :: TExp Int32
in_block_id = TExp Int32
ltid32 TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TExp Int32
block_id TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int32
block_size
    ltid32 :: TExp Int32
ltid32 = KernelConstants -> TExp Int32
kernelLocalThreadId KernelConstants
constants
    ltid :: TExp Int64
ltid = TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int32
ltid32
    gtid :: TExp Int64
gtid = TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
kernelGlobalThreadId KernelConstants
constants
    array_scan :: Bool
array_scan = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> [TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType ([TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool)
-> [TypeBase (ShapeBase SubExp) NoUniqueness] -> Bool
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [TypeBase (ShapeBase SubExp) NoUniqueness]
forall rep.
LambdaT rep -> [TypeBase (ShapeBase SubExp) NoUniqueness]
lambdaReturnType Lambda GPUMem
scan_lam

    readInitial :: Param LParamMem -> VName -> InKernelGen ()
readInitial Param LParamMem
p VName
arr
      | TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
p =
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
arr) [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix TExp Int64
ltid]
      | Bool
otherwise =
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
arr) [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix TExp Int64
gtid]

    readParam :: TExp Int64 -> Param LParamMem -> VName -> InKernelGen ()
readParam TExp Int64
behind Param LParamMem
p VName
arr
      | TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
p =
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
arr) [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
ltid TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TExp Int64
behind]
      | Bool
otherwise =
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
p) [] (VName -> SubExp
Var VName
arr) [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
gtid TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
- TExp Int64
behind TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
arrs_full_size]

    writeResult :: Param LParamMem -> Param LParamMem -> VName -> InKernelGen ()
writeResult Param LParamMem
x Param LParamMem
y VName
arr
      | TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall shape u. TypeBase shape u -> Bool
primType (TypeBase (ShapeBase SubExp) NoUniqueness -> Bool)
-> TypeBase (ShapeBase SubExp) NoUniqueness -> Bool
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> TypeBase (ShapeBase SubExp) NoUniqueness
forall dec.
Typed dec =>
Param dec -> TypeBase (ShapeBase SubExp) NoUniqueness
paramType Param LParamMem
x = do
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM VName
arr [TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix TExp Int64
ltid] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x) []
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
y) [] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x) []
      | Bool
otherwise =
        VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
y) [] (VName -> SubExp
Var (VName -> SubExp) -> VName -> SubExp
forall a b. (a -> b) -> a -> b
$ Param LParamMem -> VName
forall dec. Param dec -> VName
paramName Param LParamMem
x) []

computeMapKernelGroups :: Imp.TExp Int64 -> CallKernelGen (Imp.TExp Int64, Imp.TExp Int64)
computeMapKernelGroups :: TExp Int64 -> CallKernelGen (TExp Int64, TExp Int64)
computeMapKernelGroups TExp Int64
kernel_size = do
  TV Int64
group_size <- String -> PrimType -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"group_size" PrimType
int64
  Maybe Name
fname <- ImpM GPUMem HostEnv HostOp (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
  let group_size_key :: Name
group_size_key = Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname (Name -> Name) -> Name -> Name
forall a b. (a -> b) -> a -> b
$ String -> Name
nameFromString (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$ VName -> String
forall a. Pretty a => a -> String
pretty (VName -> String) -> VName -> String
forall a b. (a -> b) -> a -> b
$ TV Int64 -> VName
forall t. TV t -> VName
tvVar TV Int64
group_size
  HostOp -> ImpM GPUMem HostEnv HostOp ()
forall op rep r. op -> ImpM rep r op ()
sOp (HostOp -> ImpM GPUMem HostEnv HostOp ())
-> HostOp -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ VName -> Name -> SizeClass -> HostOp
Imp.GetSize (TV Int64 -> VName
forall t. TV t -> VName
tvVar TV Int64
group_size) Name
group_size_key SizeClass
Imp.SizeGroup
  TV Int64
num_groups <- String -> TExp Int64 -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"num_groups" (TExp Int64 -> ImpM GPUMem HostEnv HostOp (TV Int64))
-> TExp Int64 -> ImpM GPUMem HostEnv HostOp (TV Int64)
forall a b. (a -> b) -> a -> b
$ TExp Int64
kernel_size TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`divUp` TV Int64 -> TExp Int64
forall t. TV t -> TExp t
tvExp TV Int64
group_size
  (TExp Int64, TExp Int64) -> CallKernelGen (TExp Int64, TExp Int64)
forall (m :: * -> *) a. Monad m => a -> m a
return (TV Int64 -> TExp Int64
forall t. TV t -> TExp t
tvExp TV Int64
num_groups, TV Int64 -> TExp Int64
forall t. TV t -> TExp t
tvExp TV Int64
group_size)

simpleKernelConstants ::
  Imp.TExp Int64 ->
  String ->
  CallKernelGen (KernelConstants, InKernelGen ())
simpleKernelConstants :: TExp Int64
-> String -> CallKernelGen (KernelConstants, InKernelGen ())
simpleKernelConstants TExp Int64
kernel_size String
desc = do
  VName
thread_gtid <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName (String -> ImpM GPUMem HostEnv HostOp VName)
-> String -> ImpM GPUMem HostEnv HostOp VName
forall a b. (a -> b) -> a -> b
$ String
desc String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"_gtid"
  VName
thread_ltid <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName (String -> ImpM GPUMem HostEnv HostOp VName)
-> String -> ImpM GPUMem HostEnv HostOp VName
forall a b. (a -> b) -> a -> b
$ String
desc String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"_ltid"
  VName
group_id <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName (String -> ImpM GPUMem HostEnv HostOp VName)
-> String -> ImpM GPUMem HostEnv HostOp VName
forall a b. (a -> b) -> a -> b
$ String
desc String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"_gid"
  (TExp Int64
num_groups, TExp Int64
group_size) <- TExp Int64 -> CallKernelGen (TExp Int64, TExp Int64)
computeMapKernelGroups TExp Int64
kernel_size
  let set_constants :: InKernelGen ()
set_constants = do
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
thread_gtid PrimType
int32
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
thread_ltid PrimType
int32
        VName -> PrimType -> InKernelGen ()
forall rep r op. VName -> PrimType -> ImpM rep r op ()
dPrim_ VName
group_id PrimType
int32
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> Int -> KernelOp
Imp.GetGlobalId VName
thread_gtid Int
0)
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> Int -> KernelOp
Imp.GetLocalId VName
thread_ltid Int
0)
        KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (VName -> Int -> KernelOp
Imp.GetGroupId VName
group_id Int
0)

  (KernelConstants, InKernelGen ())
-> CallKernelGen (KernelConstants, InKernelGen ())
forall (m :: * -> *) a. Monad m => a -> m a
return
    ( TExp Int32
-> TExp Int32
-> TExp Int32
-> VName
-> VName
-> VName
-> TExp Int64
-> TExp Int64
-> TExp Int32
-> TExp Int32
-> TExp Bool
-> Map [SubExp] [TExp Int32]
-> KernelConstants
KernelConstants
        (VName -> TExp Int32
Imp.vi32 VName
thread_gtid)
        (VName -> TExp Int32
Imp.vi32 VName
thread_ltid)
        (VName -> TExp Int32
Imp.vi32 VName
group_id)
        VName
thread_gtid
        VName
thread_ltid
        VName
group_id
        TExp Int64
num_groups
        TExp Int64
group_size
        (TExp Int64 -> TExp Int32
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (TExp Int64
group_size TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* TExp Int64
num_groups))
        TExp Int32
0
        (VName -> TExp Int64
Imp.vi64 VName
thread_gtid TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int64
kernel_size)
        Map [SubExp] [TExp Int32]
forall a. Monoid a => a
mempty,
      InKernelGen ()
set_constants
    )

-- | For many kernels, we may not have enough physical groups to cover
-- the logical iteration space.  Some groups thus have to perform
-- double duty; we put an outer loop to accomplish this.  The
-- advantage over just launching a bazillion threads is that the cost
-- of memory expansion should be proportional to the number of
-- *physical* threads (hardware parallelism), not the amount of
-- application parallelism.
virtualiseGroups ::
  SegVirt ->
  Imp.TExp Int32 ->
  (Imp.TExp Int32 -> InKernelGen ()) ->
  InKernelGen ()
virtualiseGroups :: SegVirt
-> TExp Int32 -> (TExp Int32 -> InKernelGen ()) -> InKernelGen ()
virtualiseGroups SegVirt
SegVirt TExp Int32
required_groups TExp Int32 -> InKernelGen ()
m = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  TV Int32
phys_group_id <- String -> PrimType -> ImpM GPUMem KernelEnv KernelOp (TV Int32)
forall rep r op t. String -> PrimType -> ImpM rep r op (TV t)
dPrim String
"phys_group_id" PrimType
int32
  KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ VName -> Int -> KernelOp
Imp.GetGroupId (TV Int32 -> VName
forall t. TV t -> VName
tvVar TV Int32
phys_group_id) Int
0
  let iterations :: TExp Int32
iterations =
        (TExp Int32
required_groups TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
- TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
phys_group_id)
          TExp Int32 -> TExp Int32 -> TExp Int32
forall e. IntegralExp e => e -> e -> e
`divUp` TExp Int64 -> TExp Int32
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (KernelConstants -> TExp Int64
kernelNumGroups KernelConstants
constants)

  String
-> TExp Int32 -> (TExp Int32 -> InKernelGen ()) -> InKernelGen ()
forall t rep r op.
String
-> TExp t -> (TExp t -> ImpM rep r op ()) -> ImpM rep r op ()
sFor String
"i" TExp Int32
iterations ((TExp Int32 -> InKernelGen ()) -> InKernelGen ())
-> (TExp Int32 -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TExp Int32
i -> do
    TExp Int32 -> InKernelGen ()
m (TExp Int32 -> InKernelGen ())
-> (TV Int32 -> TExp Int32) -> TV Int32 -> InKernelGen ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp
      (TV Int32 -> InKernelGen ())
-> ImpM GPUMem KernelEnv KernelOp (TV Int32) -> InKernelGen ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< String -> TExp Int32 -> ImpM GPUMem KernelEnv KernelOp (TV Int32)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV
        String
"virt_group_id"
        (TV Int32 -> TExp Int32
forall t. TV t -> TExp t
tvExp TV Int32
phys_group_id TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
+ TExp Int32
i TExp Int32 -> TExp Int32 -> TExp Int32
forall a. Num a => a -> a -> a
* TExp Int64 -> TExp Int32
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 (KernelConstants -> TExp Int64
kernelNumGroups KernelConstants
constants))
    -- Make sure the virtual group is actually done before we let
    -- another virtual group have its way with it.
    KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceGlobal
virtualiseGroups SegVirt
_ TExp Int32
_ TExp Int32 -> InKernelGen ()
m = do
  VName
gid <- KernelConstants -> VName
kernelGroupIdVar (KernelConstants -> VName)
-> (KernelEnv -> KernelConstants) -> KernelEnv -> VName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> VName)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp VName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  TExp Int32 -> InKernelGen ()
m (TExp Int32 -> InKernelGen ()) -> TExp Int32 -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ VName -> TExp Int32
Imp.vi32 VName
gid

sKernelThread ::
  String ->
  Count NumGroups (Imp.TExp Int64) ->
  Count GroupSize (Imp.TExp Int64) ->
  VName ->
  InKernelGen () ->
  CallKernelGen ()
sKernelThread :: String
-> Count NumGroups (TExp Int64)
-> Count GroupSize (TExp Int64)
-> VName
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernelThread = Operations GPUMem KernelEnv KernelOp
-> (KernelConstants -> TExp Int32)
-> String
-> Count NumGroups (TExp Int64)
-> Count GroupSize (TExp Int64)
-> VName
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernel Operations GPUMem KernelEnv KernelOp
threadOperations KernelConstants -> TExp Int32
kernelGlobalThreadId

sKernelGroup ::
  String ->
  Count NumGroups (Imp.TExp Int64) ->
  Count GroupSize (Imp.TExp Int64) ->
  VName ->
  InKernelGen () ->
  CallKernelGen ()
sKernelGroup :: String
-> Count NumGroups (TExp Int64)
-> Count GroupSize (TExp Int64)
-> VName
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernelGroup = Operations GPUMem KernelEnv KernelOp
-> (KernelConstants -> TExp Int32)
-> String
-> Count NumGroups (TExp Int64)
-> Count GroupSize (TExp Int64)
-> VName
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernel Operations GPUMem KernelEnv KernelOp
groupOperations KernelConstants -> TExp Int32
kernelGroupId

sKernelFailureTolerant ::
  Bool ->
  Operations GPUMem KernelEnv Imp.KernelOp ->
  KernelConstants ->
  Name ->
  InKernelGen () ->
  CallKernelGen ()
sKernelFailureTolerant :: Bool
-> Operations GPUMem KernelEnv KernelOp
-> KernelConstants
-> Name
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernelFailureTolerant Bool
tol Operations GPUMem KernelEnv KernelOp
ops KernelConstants
constants Name
name InKernelGen ()
m = do
  HostEnv AtomicBinOp
atomics Target
_ Map VName Locks
locks <- ImpM GPUMem HostEnv HostOp HostEnv
forall rep r op. ImpM rep r op r
askEnv
  Code KernelOp
body <- CallKernelGen (Code KernelOp) -> CallKernelGen (Code KernelOp)
forall a. CallKernelGen a -> CallKernelGen a
makeAllMemoryGlobal (CallKernelGen (Code KernelOp) -> CallKernelGen (Code KernelOp))
-> CallKernelGen (Code KernelOp) -> CallKernelGen (Code KernelOp)
forall a b. (a -> b) -> a -> b
$ KernelEnv
-> Operations GPUMem KernelEnv KernelOp
-> InKernelGen ()
-> CallKernelGen (Code KernelOp)
forall r' rep op' a r op.
r'
-> Operations rep r' op'
-> ImpM rep r' op' a
-> ImpM rep r op (Code op')
subImpM_ (AtomicBinOp -> KernelConstants -> Map VName Locks -> KernelEnv
KernelEnv AtomicBinOp
atomics KernelConstants
constants Map VName Locks
locks) Operations GPUMem KernelEnv KernelOp
ops InKernelGen ()
m
  [KernelUse]
uses <- Code KernelOp -> [VName] -> CallKernelGen [KernelUse]
forall a. FreeIn a => a -> [VName] -> CallKernelGen [KernelUse]
computeKernelUses Code KernelOp
body [VName]
forall a. Monoid a => a
mempty
  Code HostOp -> ImpM GPUMem HostEnv HostOp ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> ImpM GPUMem HostEnv HostOp ())
-> Code HostOp -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$
    HostOp -> Code HostOp
forall a. a -> Code a
Imp.Op (HostOp -> Code HostOp) -> HostOp -> Code HostOp
forall a b. (a -> b) -> a -> b
$
      Kernel -> HostOp
Imp.CallKernel
        Kernel :: Code KernelOp
-> [KernelUse]
-> [PrimExp ExpLeaf]
-> [PrimExp ExpLeaf]
-> Name
-> Bool
-> Kernel
Imp.Kernel
          { kernelBody :: Code KernelOp
Imp.kernelBody = Code KernelOp
body,
            kernelUses :: [KernelUse]
Imp.kernelUses = [KernelUse]
uses,
            kernelNumGroups :: [PrimExp ExpLeaf]
Imp.kernelNumGroups = [TExp Int64 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped (TExp Int64 -> PrimExp ExpLeaf) -> TExp Int64 -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int64
kernelNumGroups KernelConstants
constants],
            kernelGroupSize :: [PrimExp ExpLeaf]
Imp.kernelGroupSize = [TExp Int64 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped (TExp Int64 -> PrimExp ExpLeaf) -> TExp Int64 -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants],
            kernelName :: Name
Imp.kernelName = Name
name,
            kernelFailureTolerant :: Bool
Imp.kernelFailureTolerant = Bool
tol
          }

sKernel ::
  Operations GPUMem KernelEnv Imp.KernelOp ->
  (KernelConstants -> Imp.TExp Int32) ->
  String ->
  Count NumGroups (Imp.TExp Int64) ->
  Count GroupSize (Imp.TExp Int64) ->
  VName ->
  InKernelGen () ->
  CallKernelGen ()
sKernel :: Operations GPUMem KernelEnv KernelOp
-> (KernelConstants -> TExp Int32)
-> String
-> Count NumGroups (TExp Int64)
-> Count GroupSize (TExp Int64)
-> VName
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernel Operations GPUMem KernelEnv KernelOp
ops KernelConstants -> TExp Int32
flatf String
name Count NumGroups (TExp Int64)
num_groups Count GroupSize (TExp Int64)
group_size VName
v InKernelGen ()
f = do
  (KernelConstants
constants, InKernelGen ()
set_constants) <- Count NumGroups (TExp Int64)
-> Count GroupSize (TExp Int64)
-> CallKernelGen (KernelConstants, InKernelGen ())
kernelInitialisationSimple Count NumGroups (TExp Int64)
num_groups Count GroupSize (TExp Int64)
group_size
  Name
name' <- String -> ImpM GPUMem HostEnv HostOp Name
forall rep r op. String -> ImpM rep r op Name
nameForFun (String -> ImpM GPUMem HostEnv HostOp Name)
-> String -> ImpM GPUMem HostEnv HostOp Name
forall a b. (a -> b) -> a -> b
$ String
name String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"_" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show (VName -> Int
baseTag VName
v)
  Bool
-> Operations GPUMem KernelEnv KernelOp
-> KernelConstants
-> Name
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernelFailureTolerant Bool
False Operations GPUMem KernelEnv KernelOp
ops KernelConstants
constants Name
name' (InKernelGen () -> ImpM GPUMem HostEnv HostOp ())
-> InKernelGen () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
    InKernelGen ()
set_constants
    VName -> TExp Int32 -> InKernelGen ()
forall t rep r op. VName -> TExp t -> ImpM rep r op ()
dPrimV_ VName
v (TExp Int32 -> InKernelGen ()) -> TExp Int32 -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
flatf KernelConstants
constants
    InKernelGen ()
f

copyInGroup :: CopyCompiler GPUMem KernelEnv Imp.KernelOp
copyInGroup :: CopyCompiler GPUMem KernelEnv KernelOp
copyInGroup PrimType
pt MemLocation
destloc Slice (TExp Int64)
destslice MemLocation
srcloc Slice (TExp Int64)
srcslice = do
  Space
dest_space <- MemEntry -> Space
entryMemSpace (MemEntry -> Space)
-> ImpM GPUMem KernelEnv KernelOp MemEntry
-> ImpM GPUMem KernelEnv KernelOp Space
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName -> ImpM GPUMem KernelEnv KernelOp MemEntry
forall rep r op. VName -> ImpM rep r op MemEntry
lookupMemory (MemLocation -> VName
memLocationName MemLocation
destloc)
  Space
src_space <- MemEntry -> Space
entryMemSpace (MemEntry -> Space)
-> ImpM GPUMem KernelEnv KernelOp MemEntry
-> ImpM GPUMem KernelEnv KernelOp Space
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName -> ImpM GPUMem KernelEnv KernelOp MemEntry
forall rep r op. VName -> ImpM rep r op MemEntry
lookupMemory (MemLocation -> VName
memLocationName MemLocation
srcloc)

  case (Space
dest_space, Space
src_space) of
    (ScalarSpace [SubExp]
destds PrimType
_, ScalarSpace [SubExp]
srcds PrimType
_) -> do
      let destslice' :: Slice (TExp Int64)
destslice' =
            Int -> DimIndex (TExp Int64) -> Slice (TExp Int64)
forall a. Int -> a -> [a]
replicate (Slice (TExp Int64) -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Slice (TExp Int64)
destslice Int -> Int -> Int
forall a. Num a => a -> a -> a
- [SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
destds) (TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix TExp Int64
0)
              Slice (TExp Int64) -> Slice (TExp Int64) -> Slice (TExp Int64)
forall a. [a] -> [a] -> [a]
++ Int -> Slice (TExp Int64) -> Slice (TExp Int64)
forall a. Int -> [a] -> [a]
takeLast ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
destds) Slice (TExp Int64)
destslice
          srcslice' :: Slice (TExp Int64)
srcslice' =
            Int -> DimIndex (TExp Int64) -> Slice (TExp Int64)
forall a. Int -> a -> [a]
replicate (Slice (TExp Int64) -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Slice (TExp Int64)
srcslice Int -> Int -> Int
forall a. Num a => a -> a -> a
- [SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
srcds) (TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix TExp Int64
0)
              Slice (TExp Int64) -> Slice (TExp Int64) -> Slice (TExp Int64)
forall a. [a] -> [a] -> [a]
++ Int -> Slice (TExp Int64) -> Slice (TExp Int64)
forall a. Int -> [a] -> [a]
takeLast ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
srcds) Slice (TExp Int64)
srcslice
      CopyCompiler GPUMem KernelEnv KernelOp
forall rep r op. CopyCompiler rep r op
copyElementWise PrimType
pt MemLocation
destloc Slice (TExp Int64)
destslice' MemLocation
srcloc Slice (TExp Int64)
srcslice'
    (Space, Space)
_ -> do
      [TExp Int64] -> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
groupCoverSpace (Slice (TExp Int64) -> [TExp Int64]
forall d. Slice d -> [d]
sliceDims Slice (TExp Int64)
destslice) (([TExp Int64] -> InKernelGen ()) -> InKernelGen ())
-> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TExp Int64]
is ->
        CopyCompiler GPUMem KernelEnv KernelOp
forall rep r op. CopyCompiler rep r op
copyElementWise
          PrimType
pt
          MemLocation
destloc
          ((TExp Int64 -> DimIndex (TExp Int64))
-> [TExp Int64] -> Slice (TExp Int64)
forall a b. (a -> b) -> [a] -> [b]
map TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix ([TExp Int64] -> Slice (TExp Int64))
-> [TExp Int64] -> Slice (TExp Int64)
forall a b. (a -> b) -> a -> b
$ Slice (TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall d. Num d => Slice d -> [d] -> [d]
fixSlice Slice (TExp Int64)
destslice [TExp Int64]
is)
          MemLocation
srcloc
          ((TExp Int64 -> DimIndex (TExp Int64))
-> [TExp Int64] -> Slice (TExp Int64)
forall a b. (a -> b) -> [a] -> [b]
map TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> DimIndex d
DimFix ([TExp Int64] -> Slice (TExp Int64))
-> [TExp Int64] -> Slice (TExp Int64)
forall a b. (a -> b) -> a -> b
$ Slice (TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall d. Num d => Slice d -> [d] -> [d]
fixSlice Slice (TExp Int64)
srcslice [TExp Int64]
is)
      KernelOp -> InKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (KernelOp -> InKernelGen ()) -> KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Fence -> KernelOp
Imp.Barrier Fence
Imp.FenceLocal

threadOperations, groupOperations :: Operations GPUMem KernelEnv Imp.KernelOp
threadOperations :: Operations GPUMem KernelEnv KernelOp
threadOperations =
  (OpCompiler GPUMem KernelEnv KernelOp
-> Operations GPUMem KernelEnv KernelOp
forall rep op r.
(Mem rep, FreeIn op) =>
OpCompiler rep r op -> Operations rep r op
defaultOperations OpCompiler GPUMem KernelEnv KernelOp
compileThreadOp)
    { opsCopyCompiler :: CopyCompiler GPUMem KernelEnv KernelOp
opsCopyCompiler = CopyCompiler GPUMem KernelEnv KernelOp
forall rep r op. CopyCompiler rep r op
copyElementWise,
      opsExpCompiler :: ExpCompiler GPUMem KernelEnv KernelOp
opsExpCompiler = ExpCompiler GPUMem KernelEnv KernelOp
compileThreadExp,
      opsStmsCompiler :: Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
opsStmsCompiler = \Names
_ -> Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep op r.
(Mem rep, FreeIn op) =>
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
defCompileStms Names
forall a. Monoid a => a
mempty,
      opsAllocCompilers :: Map Space (AllocCompiler GPUMem KernelEnv KernelOp)
opsAllocCompilers =
        [(Space, AllocCompiler GPUMem KernelEnv KernelOp)]
-> Map Space (AllocCompiler GPUMem KernelEnv KernelOp)
forall k a. Ord k => [(k, a)] -> Map k a
M.fromList [(String -> Space
Space String
"local", AllocCompiler GPUMem KernelEnv KernelOp
forall r. AllocCompiler GPUMem r KernelOp
allocLocal)]
    }
groupOperations :: Operations GPUMem KernelEnv KernelOp
groupOperations =
  (OpCompiler GPUMem KernelEnv KernelOp
-> Operations GPUMem KernelEnv KernelOp
forall rep op r.
(Mem rep, FreeIn op) =>
OpCompiler rep r op -> Operations rep r op
defaultOperations OpCompiler GPUMem KernelEnv KernelOp
compileGroupOp)
    { opsCopyCompiler :: CopyCompiler GPUMem KernelEnv KernelOp
opsCopyCompiler = CopyCompiler GPUMem KernelEnv KernelOp
copyInGroup,
      opsExpCompiler :: ExpCompiler GPUMem KernelEnv KernelOp
opsExpCompiler = ExpCompiler GPUMem KernelEnv KernelOp
compileGroupExp,
      opsStmsCompiler :: Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
opsStmsCompiler = \Names
_ -> Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep op r.
(Mem rep, FreeIn op) =>
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
defCompileStms Names
forall a. Monoid a => a
mempty,
      opsAllocCompilers :: Map Space (AllocCompiler GPUMem KernelEnv KernelOp)
opsAllocCompilers =
        [(Space, AllocCompiler GPUMem KernelEnv KernelOp)]
-> Map Space (AllocCompiler GPUMem KernelEnv KernelOp)
forall k a. Ord k => [(k, a)] -> Map k a
M.fromList [(String -> Space
Space String
"local", AllocCompiler GPUMem KernelEnv KernelOp
forall r. AllocCompiler GPUMem r KernelOp
allocLocal)]
    }

-- | Perform a Replicate with a kernel.
sReplicateKernel :: VName -> SubExp -> CallKernelGen ()
sReplicateKernel :: VName -> SubExp -> ImpM GPUMem HostEnv HostOp ()
sReplicateKernel VName
arr SubExp
se = do
  TypeBase (ShapeBase SubExp) NoUniqueness
t <- SubExp
-> ImpM
     GPUMem HostEnv HostOp (TypeBase (ShapeBase SubExp) NoUniqueness)
forall t (m :: * -> *).
HasScope t m =>
SubExp -> m (TypeBase (ShapeBase SubExp) NoUniqueness)
subExpType SubExp
se
  [SubExp]
ds <- Int -> [SubExp] -> [SubExp]
forall a. Int -> [a] -> [a]
dropLast (TypeBase (ShapeBase SubExp) NoUniqueness -> Int
forall shape u. ArrayShape shape => TypeBase shape u -> Int
arrayRank TypeBase (ShapeBase SubExp) NoUniqueness
t) ([SubExp] -> [SubExp])
-> (TypeBase (ShapeBase SubExp) NoUniqueness -> [SubExp])
-> TypeBase (ShapeBase SubExp) NoUniqueness
-> [SubExp]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TypeBase (ShapeBase SubExp) NoUniqueness -> [SubExp]
forall u. TypeBase (ShapeBase SubExp) u -> [SubExp]
arrayDims (TypeBase (ShapeBase SubExp) NoUniqueness -> [SubExp])
-> ImpM
     GPUMem HostEnv HostOp (TypeBase (ShapeBase SubExp) NoUniqueness)
-> ImpM GPUMem HostEnv HostOp [SubExp]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName
-> ImpM
     GPUMem HostEnv HostOp (TypeBase (ShapeBase SubExp) NoUniqueness)
forall rep (m :: * -> *).
HasScope rep m =>
VName -> m (TypeBase (ShapeBase SubExp) NoUniqueness)
lookupType VName
arr

  let dims :: [TExp Int64]
dims = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp ([SubExp] -> [TExp Int64]) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> a -> b
$ [SubExp]
ds [SubExp] -> [SubExp] -> [SubExp]
forall a. [a] -> [a] -> [a]
++ TypeBase (ShapeBase SubExp) NoUniqueness -> [SubExp]
forall u. TypeBase (ShapeBase SubExp) u -> [SubExp]
arrayDims TypeBase (ShapeBase SubExp) NoUniqueness
t
  (KernelConstants
constants, InKernelGen ()
set_constants) <-
    TExp Int64
-> String -> CallKernelGen (KernelConstants, InKernelGen ())
simpleKernelConstants ([TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product ([TExp Int64] -> TExp Int64) -> [TExp Int64] -> TExp Int64
forall a b. (a -> b) -> a -> b
$ (TExp Int64 -> TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map TExp Int64 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 [TExp Int64]
dims) String
"replicate"

  Maybe Name
fname <- ImpM GPUMem HostEnv HostOp (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
  let name :: Name
name =
        Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname (Name -> Name) -> Name -> Name
forall a b. (a -> b) -> a -> b
$
          String -> Name
nameFromString (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$
            String
"replicate_" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show (VName -> Int
baseTag (VName -> Int) -> VName -> Int
forall a b. (a -> b) -> a -> b
$ KernelConstants -> VName
kernelGlobalThreadIdVar KernelConstants
constants)
      is' :: [TExp Int64]
is' = [TExp Int64] -> TExp Int64 -> [TExp Int64]
forall num. IntegralExp num => [num] -> num -> [num]
unflattenIndex [TExp Int64]
dims (TExp Int64 -> [TExp Int64]) -> TExp Int64 -> [TExp Int64]
forall a b. (a -> b) -> a -> b
$ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
kernelGlobalThreadId KernelConstants
constants

  Bool
-> Operations GPUMem KernelEnv KernelOp
-> KernelConstants
-> Name
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernelFailureTolerant Bool
True Operations GPUMem KernelEnv KernelOp
threadOperations KernelConstants
constants Name
name (InKernelGen () -> ImpM GPUMem HostEnv HostOp ())
-> InKernelGen () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
    InKernelGen ()
set_constants
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (KernelConstants -> TExp Bool
kernelThreadActive KernelConstants
constants) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix VName
arr [TExp Int64]
is' SubExp
se ([TExp Int64] -> InKernelGen ()) -> [TExp Int64] -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ Int -> [TExp Int64] -> [TExp Int64]
forall a. Int -> [a] -> [a]
drop ([SubExp] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [SubExp]
ds) [TExp Int64]
is'

replicateName :: PrimType -> String
replicateName :: PrimType -> String
replicateName PrimType
bt = String
"replicate_" String -> String -> String
forall a. [a] -> [a] -> [a]
++ PrimType -> String
forall a. Pretty a => a -> String
pretty PrimType
bt

replicateForType :: PrimType -> CallKernelGen Name
replicateForType :: PrimType -> ImpM GPUMem HostEnv HostOp Name
replicateForType PrimType
bt = do
  let fname :: Name
fname = String -> Name
nameFromString (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$ String
"builtin#" String -> String -> String
forall a. Semigroup a => a -> a -> a
<> PrimType -> String
replicateName PrimType
bt

  Bool
exists <- Name -> ImpM GPUMem HostEnv HostOp Bool
forall rep r op. Name -> ImpM rep r op Bool
hasFunction Name
fname
  Bool
-> ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
exists (ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ())
-> ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
    VName
mem <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"mem"
    VName
num_elems <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"num_elems"
    VName
val <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"val"

    let params :: [Param]
params =
          [ VName -> Space -> Param
Imp.MemParam VName
mem (String -> Space
Space String
"device"),
            VName -> PrimType -> Param
Imp.ScalarParam VName
num_elems PrimType
int32,
            VName -> PrimType -> Param
Imp.ScalarParam VName
val PrimType
bt
          ]
        shape :: ShapeBase SubExp
shape = [SubExp] -> ShapeBase SubExp
forall d. [d] -> ShapeBase d
Shape [VName -> SubExp
Var VName
num_elems]
    Name
-> [Param]
-> [Param]
-> ImpM GPUMem HostEnv HostOp ()
-> ImpM GPUMem HostEnv HostOp ()
forall rep r op.
Name -> [Param] -> [Param] -> ImpM rep r op () -> ImpM rep r op ()
function Name
fname [] [Param]
params (ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ())
-> ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
      VName
arr <-
        String
-> PrimType
-> ShapeBase SubExp
-> MemBind
-> ImpM GPUMem HostEnv HostOp VName
forall rep r op.
String
-> PrimType -> ShapeBase SubExp -> MemBind -> ImpM rep r op VName
sArray String
"arr" PrimType
bt ShapeBase SubExp
shape (MemBind -> ImpM GPUMem HostEnv HostOp VName)
-> MemBind -> ImpM GPUMem HostEnv HostOp VName
forall a b. (a -> b) -> a -> b
$
          VName -> IxFun -> MemBind
ArrayIn VName
mem (IxFun -> MemBind) -> IxFun -> MemBind
forall a b. (a -> b) -> a -> b
$
            Shape (TPrimExp Int64 VName) -> IxFun
forall num. IntegralExp num => Shape num -> IxFun num
IxFun.iota (Shape (TPrimExp Int64 VName) -> IxFun)
-> Shape (TPrimExp Int64 VName) -> IxFun
forall a b. (a -> b) -> a -> b
$
              (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 ([SubExp] -> Shape (TPrimExp Int64 VName))
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$ ShapeBase SubExp -> [SubExp]
forall d. ShapeBase d -> [d]
shapeDims ShapeBase SubExp
shape
      VName -> SubExp -> ImpM GPUMem HostEnv HostOp ()
sReplicateKernel VName
arr (SubExp -> ImpM GPUMem HostEnv HostOp ())
-> SubExp -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ VName -> SubExp
Var VName
val

  Name -> ImpM GPUMem HostEnv HostOp Name
forall (m :: * -> *) a. Monad m => a -> m a
return Name
fname

replicateIsFill :: VName -> SubExp -> CallKernelGen (Maybe (CallKernelGen ()))
replicateIsFill :: VName
-> SubExp -> CallKernelGen (Maybe (ImpM GPUMem HostEnv HostOp ()))
replicateIsFill VName
arr SubExp
v = do
  ArrayEntry (MemLocation VName
arr_mem [SubExp]
arr_shape IxFun (TExp Int64)
arr_ixfun) PrimType
_ <- VName -> ImpM GPUMem HostEnv HostOp ArrayEntry
forall rep r op. VName -> ImpM rep r op ArrayEntry
lookupArray VName
arr
  TypeBase (ShapeBase SubExp) NoUniqueness
v_t <- SubExp
-> ImpM
     GPUMem HostEnv HostOp (TypeBase (ShapeBase SubExp) NoUniqueness)
forall t (m :: * -> *).
HasScope t m =>
SubExp -> m (TypeBase (ShapeBase SubExp) NoUniqueness)
subExpType SubExp
v
  case TypeBase (ShapeBase SubExp) NoUniqueness
v_t of
    Prim PrimType
v_t'
      | IxFun (TExp Int64) -> Bool
forall num. (Eq num, IntegralExp num) => IxFun num -> Bool
IxFun.isLinear IxFun (TExp Int64)
arr_ixfun -> Maybe (ImpM GPUMem HostEnv HostOp ())
-> CallKernelGen (Maybe (ImpM GPUMem HostEnv HostOp ()))
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (ImpM GPUMem HostEnv HostOp ())
 -> CallKernelGen (Maybe (ImpM GPUMem HostEnv HostOp ())))
-> Maybe (ImpM GPUMem HostEnv HostOp ())
-> CallKernelGen (Maybe (ImpM GPUMem HostEnv HostOp ()))
forall a b. (a -> b) -> a -> b
$
        ImpM GPUMem HostEnv HostOp ()
-> Maybe (ImpM GPUMem HostEnv HostOp ())
forall a. a -> Maybe a
Just (ImpM GPUMem HostEnv HostOp ()
 -> Maybe (ImpM GPUMem HostEnv HostOp ()))
-> ImpM GPUMem HostEnv HostOp ()
-> Maybe (ImpM GPUMem HostEnv HostOp ())
forall a b. (a -> b) -> a -> b
$ do
          Name
fname <- PrimType -> ImpM GPUMem HostEnv HostOp Name
replicateForType PrimType
v_t'
          Code HostOp -> ImpM GPUMem HostEnv HostOp ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> ImpM GPUMem HostEnv HostOp ())
-> Code HostOp -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$
            [VName] -> Name -> [Arg] -> Code HostOp
forall a. [VName] -> Name -> [Arg] -> Code a
Imp.Call
              []
              Name
fname
              [ VName -> Arg
Imp.MemArg VName
arr_mem,
                PrimExp ExpLeaf -> Arg
Imp.ExpArg (PrimExp ExpLeaf -> Arg) -> PrimExp ExpLeaf -> Arg
forall a b. (a -> b) -> a -> b
$ TExp Int64 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped (TExp Int64 -> PrimExp ExpLeaf) -> TExp Int64 -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ [TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product ([TExp Int64] -> TExp Int64) -> [TExp Int64] -> TExp Int64
forall a b. (a -> b) -> a -> b
$ (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
arr_shape,
                PrimExp ExpLeaf -> Arg
Imp.ExpArg (PrimExp ExpLeaf -> Arg) -> PrimExp ExpLeaf -> Arg
forall a b. (a -> b) -> a -> b
$ PrimType -> SubExp -> PrimExp ExpLeaf
forall a. ToExp a => PrimType -> a -> PrimExp ExpLeaf
toExp' PrimType
v_t' SubExp
v
              ]
    TypeBase (ShapeBase SubExp) NoUniqueness
_ -> Maybe (ImpM GPUMem HostEnv HostOp ())
-> CallKernelGen (Maybe (ImpM GPUMem HostEnv HostOp ()))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (ImpM GPUMem HostEnv HostOp ())
forall a. Maybe a
Nothing

-- | Perform a Replicate with a kernel.
sReplicate :: VName -> SubExp -> CallKernelGen ()
sReplicate :: VName -> SubExp -> ImpM GPUMem HostEnv HostOp ()
sReplicate VName
arr SubExp
se = do
  -- If the replicate is of a particularly common and simple form
  -- (morally a memset()/fill), then we use a common function.
  Maybe (ImpM GPUMem HostEnv HostOp ())
is_fill <- VName
-> SubExp -> CallKernelGen (Maybe (ImpM GPUMem HostEnv HostOp ()))
replicateIsFill VName
arr SubExp
se

  case Maybe (ImpM GPUMem HostEnv HostOp ())
is_fill of
    Just ImpM GPUMem HostEnv HostOp ()
m -> ImpM GPUMem HostEnv HostOp ()
m
    Maybe (ImpM GPUMem HostEnv HostOp ())
Nothing -> VName -> SubExp -> ImpM GPUMem HostEnv HostOp ()
sReplicateKernel VName
arr SubExp
se

-- | Perform an Iota with a kernel.
sIotaKernel ::
  VName ->
  Imp.TExp Int64 ->
  Imp.Exp ->
  Imp.Exp ->
  IntType ->
  CallKernelGen ()
sIotaKernel :: VName
-> TExp Int64
-> PrimExp ExpLeaf
-> PrimExp ExpLeaf
-> IntType
-> ImpM GPUMem HostEnv HostOp ()
sIotaKernel VName
arr TExp Int64
n PrimExp ExpLeaf
x PrimExp ExpLeaf
s IntType
et = do
  MemLocation
destloc <- ArrayEntry -> MemLocation
entryArrayLocation (ArrayEntry -> MemLocation)
-> ImpM GPUMem HostEnv HostOp ArrayEntry
-> ImpM GPUMem HostEnv HostOp MemLocation
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName -> ImpM GPUMem HostEnv HostOp ArrayEntry
forall rep r op. VName -> ImpM rep r op ArrayEntry
lookupArray VName
arr
  (KernelConstants
constants, InKernelGen ()
set_constants) <- TExp Int64
-> String -> CallKernelGen (KernelConstants, InKernelGen ())
simpleKernelConstants TExp Int64
n String
"iota"

  Maybe Name
fname <- ImpM GPUMem HostEnv HostOp (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
  let name :: Name
name =
        Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname (Name -> Name) -> Name -> Name
forall a b. (a -> b) -> a -> b
$
          String -> Name
nameFromString (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$
            String
"iota_" String -> String -> String
forall a. [a] -> [a] -> [a]
++ IntType -> String
forall a. Pretty a => a -> String
pretty IntType
et String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"_"
              String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show (VName -> Int
baseTag (VName -> Int) -> VName -> Int
forall a b. (a -> b) -> a -> b
$ KernelConstants -> VName
kernelGlobalThreadIdVar KernelConstants
constants)

  Bool
-> Operations GPUMem KernelEnv KernelOp
-> KernelConstants
-> Name
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernelFailureTolerant Bool
True Operations GPUMem KernelEnv KernelOp
threadOperations KernelConstants
constants Name
name (InKernelGen () -> ImpM GPUMem HostEnv HostOp ())
-> InKernelGen () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
    InKernelGen ()
set_constants
    let gtid :: TExp Int64
gtid = TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
kernelGlobalThreadId KernelConstants
constants
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (KernelConstants -> TExp Bool
kernelThreadActive KernelConstants
constants) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ do
      (VName
destmem, Space
destspace, Count Elements (TExp Int64)
destidx) <- MemLocation
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall rep r op.
MemLocation
-> [TExp Int64]
-> ImpM rep r op (VName, Space, Count Elements (TExp Int64))
fullyIndexArray' MemLocation
destloc [TExp Int64
gtid]

      Code KernelOp -> InKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code KernelOp -> InKernelGen ())
-> Code KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        VName
-> Count Elements (TExp Int64)
-> PrimType
-> Space
-> Volatility
-> PrimExp ExpLeaf
-> Code KernelOp
forall a.
VName
-> Count Elements (TExp Int64)
-> PrimType
-> Space
-> Volatility
-> PrimExp ExpLeaf
-> Code a
Imp.Write VName
destmem Count Elements (TExp Int64)
destidx (IntType -> PrimType
IntType IntType
et) Space
destspace Volatility
Imp.Nonvolatile (PrimExp ExpLeaf -> Code KernelOp)
-> PrimExp ExpLeaf -> Code KernelOp
forall a b. (a -> b) -> a -> b
$
          BinOp -> PrimExp ExpLeaf -> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall v. BinOp -> PrimExp v -> PrimExp v -> PrimExp v
BinOpExp
            (IntType -> Overflow -> BinOp
Add IntType
et Overflow
OverflowWrap)
            (BinOp -> PrimExp ExpLeaf -> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall v. BinOp -> PrimExp v -> PrimExp v -> PrimExp v
BinOpExp (IntType -> Overflow -> BinOp
Mul IntType
et Overflow
OverflowWrap) (IntType -> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall v. IntType -> PrimExp v -> PrimExp v
Imp.sExt IntType
et (PrimExp ExpLeaf -> PrimExp ExpLeaf)
-> PrimExp ExpLeaf -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ TExp Int64 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped TExp Int64
gtid) PrimExp ExpLeaf
s)
            PrimExp ExpLeaf
x

iotaName :: IntType -> String
iotaName :: IntType -> String
iotaName IntType
bt = String
"iota_" String -> String -> String
forall a. [a] -> [a] -> [a]
++ IntType -> String
forall a. Pretty a => a -> String
pretty IntType
bt

iotaForType :: IntType -> CallKernelGen Name
iotaForType :: IntType -> ImpM GPUMem HostEnv HostOp Name
iotaForType IntType
bt = do
  let fname :: Name
fname = String -> Name
nameFromString (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$ String
"builtin#" String -> String -> String
forall a. Semigroup a => a -> a -> a
<> IntType -> String
iotaName IntType
bt

  Bool
exists <- Name -> ImpM GPUMem HostEnv HostOp Bool
forall rep r op. Name -> ImpM rep r op Bool
hasFunction Name
fname
  Bool
-> ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
exists (ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ())
-> ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
    VName
mem <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"mem"
    VName
n <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"n"
    VName
x <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"x"
    VName
s <- String -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => String -> m VName
newVName String
"s"

    let params :: [Param]
params =
          [ VName -> Space -> Param
Imp.MemParam VName
mem (String -> Space
Space String
"device"),
            VName -> PrimType -> Param
Imp.ScalarParam VName
n PrimType
int32,
            VName -> PrimType -> Param
Imp.ScalarParam VName
x (PrimType -> Param) -> PrimType -> Param
forall a b. (a -> b) -> a -> b
$ IntType -> PrimType
IntType IntType
bt,
            VName -> PrimType -> Param
Imp.ScalarParam VName
s (PrimType -> Param) -> PrimType -> Param
forall a b. (a -> b) -> a -> b
$ IntType -> PrimType
IntType IntType
bt
          ]
        shape :: ShapeBase SubExp
shape = [SubExp] -> ShapeBase SubExp
forall d. [d] -> ShapeBase d
Shape [VName -> SubExp
Var VName
n]
        n' :: TExp Int64
n' = VName -> TExp Int64
Imp.vi64 VName
n
        x' :: PrimExp ExpLeaf
x' = VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
x (PrimType -> PrimExp ExpLeaf) -> PrimType -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ IntType -> PrimType
IntType IntType
bt
        s' :: PrimExp ExpLeaf
s' = VName -> PrimType -> PrimExp ExpLeaf
Imp.var VName
s (PrimType -> PrimExp ExpLeaf) -> PrimType -> PrimExp ExpLeaf
forall a b. (a -> b) -> a -> b
$ IntType -> PrimType
IntType IntType
bt

    Name
-> [Param]
-> [Param]
-> ImpM GPUMem HostEnv HostOp ()
-> ImpM GPUMem HostEnv HostOp ()
forall rep r op.
Name -> [Param] -> [Param] -> ImpM rep r op () -> ImpM rep r op ()
function Name
fname [] [Param]
params (ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ())
-> ImpM GPUMem HostEnv HostOp () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
      VName
arr <-
        String
-> PrimType
-> ShapeBase SubExp
-> MemBind
-> ImpM GPUMem HostEnv HostOp VName
forall rep r op.
String
-> PrimType -> ShapeBase SubExp -> MemBind -> ImpM rep r op VName
sArray String
"arr" (IntType -> PrimType
IntType IntType
bt) ShapeBase SubExp
shape (MemBind -> ImpM GPUMem HostEnv HostOp VName)
-> MemBind -> ImpM GPUMem HostEnv HostOp VName
forall a b. (a -> b) -> a -> b
$
          VName -> IxFun -> MemBind
ArrayIn VName
mem (IxFun -> MemBind) -> IxFun -> MemBind
forall a b. (a -> b) -> a -> b
$
            Shape (TPrimExp Int64 VName) -> IxFun
forall num. IntegralExp num => Shape num -> IxFun num
IxFun.iota (Shape (TPrimExp Int64 VName) -> IxFun)
-> Shape (TPrimExp Int64 VName) -> IxFun
forall a b. (a -> b) -> a -> b
$
              (SubExp -> TPrimExp Int64 VName)
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TPrimExp Int64 VName
pe64 ([SubExp] -> Shape (TPrimExp Int64 VName))
-> [SubExp] -> Shape (TPrimExp Int64 VName)
forall a b. (a -> b) -> a -> b
$ ShapeBase SubExp -> [SubExp]
forall d. ShapeBase d -> [d]
shapeDims ShapeBase SubExp
shape
      VName
-> TExp Int64
-> PrimExp ExpLeaf
-> PrimExp ExpLeaf
-> IntType
-> ImpM GPUMem HostEnv HostOp ()
sIotaKernel VName
arr (TExp Int64 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 TExp Int64
n') PrimExp ExpLeaf
x' PrimExp ExpLeaf
s' IntType
bt

  Name -> ImpM GPUMem HostEnv HostOp Name
forall (m :: * -> *) a. Monad m => a -> m a
return Name
fname

-- | Perform an Iota with a kernel.
sIota ::
  VName ->
  Imp.TExp Int64 ->
  Imp.Exp ->
  Imp.Exp ->
  IntType ->
  CallKernelGen ()
sIota :: VName
-> TExp Int64
-> PrimExp ExpLeaf
-> PrimExp ExpLeaf
-> IntType
-> ImpM GPUMem HostEnv HostOp ()
sIota VName
arr TExp Int64
n PrimExp ExpLeaf
x PrimExp ExpLeaf
s IntType
et = do
  ArrayEntry (MemLocation VName
arr_mem [SubExp]
_ IxFun (TExp Int64)
arr_ixfun) PrimType
_ <- VName -> ImpM GPUMem HostEnv HostOp ArrayEntry
forall rep r op. VName -> ImpM rep r op ArrayEntry
lookupArray VName
arr
  if IxFun (TExp Int64) -> Bool
forall num. (Eq num, IntegralExp num) => IxFun num -> Bool
IxFun.isLinear IxFun (TExp Int64)
arr_ixfun
    then do
      Name
fname <- IntType -> ImpM GPUMem HostEnv HostOp Name
iotaForType IntType
et
      Code HostOp -> ImpM GPUMem HostEnv HostOp ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code HostOp -> ImpM GPUMem HostEnv HostOp ())
-> Code HostOp -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$
        [VName] -> Name -> [Arg] -> Code HostOp
forall a. [VName] -> Name -> [Arg] -> Code a
Imp.Call
          []
          Name
fname
          [VName -> Arg
Imp.MemArg VName
arr_mem, PrimExp ExpLeaf -> Arg
Imp.ExpArg (PrimExp ExpLeaf -> Arg) -> PrimExp ExpLeaf -> Arg
forall a b. (a -> b) -> a -> b
$ TExp Int64 -> PrimExp ExpLeaf
forall t v. TPrimExp t v -> PrimExp v
untyped TExp Int64
n, PrimExp ExpLeaf -> Arg
Imp.ExpArg PrimExp ExpLeaf
x, PrimExp ExpLeaf -> Arg
Imp.ExpArg PrimExp ExpLeaf
s]
    else VName
-> TExp Int64
-> PrimExp ExpLeaf
-> PrimExp ExpLeaf
-> IntType
-> ImpM GPUMem HostEnv HostOp ()
sIotaKernel VName
arr TExp Int64
n PrimExp ExpLeaf
x PrimExp ExpLeaf
s IntType
et

sCopy :: CopyCompiler GPUMem HostEnv Imp.HostOp
sCopy :: CopyCompiler GPUMem HostEnv HostOp
sCopy
  PrimType
bt
  destloc :: MemLocation
destloc@(MemLocation VName
destmem [SubExp]
_ IxFun (TExp Int64)
_)
  Slice (TExp Int64)
destslice
  srcloc :: MemLocation
srcloc@(MemLocation VName
srcmem [SubExp]
_ IxFun (TExp Int64)
_)
  Slice (TExp Int64)
srcslice =
    do
      -- Note that the shape of the destination and the source are
      -- necessarily the same.
      let shape :: [TExp Int64]
shape = Slice (TExp Int64) -> [TExp Int64]
forall d. Slice d -> [d]
sliceDims Slice (TExp Int64)
srcslice
          kernel_size :: TExp Int64
kernel_size = [TExp Int64] -> TExp Int64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [TExp Int64]
shape

      (KernelConstants
constants, InKernelGen ()
set_constants) <- TExp Int64
-> String -> CallKernelGen (KernelConstants, InKernelGen ())
simpleKernelConstants TExp Int64
kernel_size String
"copy"

      Maybe Name
fname <- ImpM GPUMem HostEnv HostOp (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
      let name :: Name
name =
            Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname (Name -> Name) -> Name -> Name
forall a b. (a -> b) -> a -> b
$
              String -> Name
nameFromString (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$
                String
"copy_" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show (VName -> Int
baseTag (VName -> Int) -> VName -> Int
forall a b. (a -> b) -> a -> b
$ KernelConstants -> VName
kernelGlobalThreadIdVar KernelConstants
constants)

      Bool
-> Operations GPUMem KernelEnv KernelOp
-> KernelConstants
-> Name
-> InKernelGen ()
-> ImpM GPUMem HostEnv HostOp ()
sKernelFailureTolerant Bool
True Operations GPUMem KernelEnv KernelOp
threadOperations KernelConstants
constants Name
name (InKernelGen () -> ImpM GPUMem HostEnv HostOp ())
-> InKernelGen () -> ImpM GPUMem HostEnv HostOp ()
forall a b. (a -> b) -> a -> b
$ do
        InKernelGen ()
set_constants

        let gtid :: TExp Int64
gtid = TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
kernelGlobalThreadId KernelConstants
constants
            dest_is :: [TExp Int64]
dest_is = [TExp Int64] -> TExp Int64 -> [TExp Int64]
forall num. IntegralExp num => [num] -> num -> [num]
unflattenIndex [TExp Int64]
shape TExp Int64
gtid
            src_is :: [TExp Int64]
src_is = [TExp Int64]
dest_is

        (VName
_, Space
destspace, Count Elements (TExp Int64)
destidx) <-
          MemLocation
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall rep r op.
MemLocation
-> [TExp Int64]
-> ImpM rep r op (VName, Space, Count Elements (TExp Int64))
fullyIndexArray' MemLocation
destloc ([TExp Int64]
 -> ImpM
      GPUMem
      KernelEnv
      KernelOp
      (VName, Space, Count Elements (TExp Int64)))
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall a b. (a -> b) -> a -> b
$ Slice (TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall d. Num d => Slice d -> [d] -> [d]
fixSlice Slice (TExp Int64)
destslice [TExp Int64]
dest_is
        (VName
_, Space
srcspace, Count Elements (TExp Int64)
srcidx) <-
          MemLocation
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall rep r op.
MemLocation
-> [TExp Int64]
-> ImpM rep r op (VName, Space, Count Elements (TExp Int64))
fullyIndexArray' MemLocation
srcloc ([TExp Int64]
 -> ImpM
      GPUMem
      KernelEnv
      KernelOp
      (VName, Space, Count Elements (TExp Int64)))
-> [TExp Int64]
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (VName, Space, Count Elements (TExp Int64))
forall a b. (a -> b) -> a -> b
$ Slice (TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall d. Num d => Slice d -> [d] -> [d]
fixSlice Slice (TExp Int64)
srcslice [TExp Int64]
src_is

        TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Int64
gtid TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TExp Int64
kernel_size) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          Code KernelOp -> InKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (Code KernelOp -> InKernelGen ())
-> Code KernelOp -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
            VName
-> Count Elements (TExp Int64)
-> PrimType
-> Space
-> Volatility
-> PrimExp ExpLeaf
-> Code KernelOp
forall a.
VName
-> Count Elements (TExp Int64)
-> PrimType
-> Space
-> Volatility
-> PrimExp ExpLeaf
-> Code a
Imp.Write VName
destmem Count Elements (TExp Int64)
destidx PrimType
bt Space
destspace Volatility
Imp.Nonvolatile (PrimExp ExpLeaf -> Code KernelOp)
-> PrimExp ExpLeaf -> Code KernelOp
forall a b. (a -> b) -> a -> b
$
              VName
-> Count Elements (TExp Int64)
-> PrimType
-> Space
-> Volatility
-> PrimExp ExpLeaf
Imp.index VName
srcmem Count Elements (TExp Int64)
srcidx PrimType
bt Space
srcspace Volatility
Imp.Nonvolatile

compileGroupResult ::
  SegSpace ->
  PatElem GPUMem ->
  KernelResult ->
  InKernelGen ()
compileGroupResult :: SegSpace
-> PatElemT (LetDec GPUMem) -> KernelResult -> InKernelGen ()
compileGroupResult SegSpace
_ PatElemT (LetDec GPUMem)
pe (TileReturns [(SubExp
w, SubExp
per_group_elems)] VName
what) = do
  TExp Int64
n <- SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp (SubExp -> TExp Int64)
-> (TypeBase (ShapeBase SubExp) NoUniqueness -> SubExp)
-> TypeBase (ShapeBase SubExp) NoUniqueness
-> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> TypeBase (ShapeBase SubExp) NoUniqueness -> SubExp
forall u. Int -> TypeBase (ShapeBase SubExp) u -> SubExp
arraySize Int
0 (TypeBase (ShapeBase SubExp) NoUniqueness -> TExp Int64)
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (TypeBase (ShapeBase SubExp) NoUniqueness)
-> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (TypeBase (ShapeBase SubExp) NoUniqueness)
forall rep (m :: * -> *).
HasScope rep m =>
VName -> m (TypeBase (ShapeBase SubExp) NoUniqueness)
lookupType VName
what

  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  let ltid :: TExp Int64
ltid = TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
kernelLocalThreadId KernelConstants
constants
      offset :: TExp Int64
offset =
        SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
per_group_elems
          TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (KernelConstants -> TExp Int32
kernelGroupId KernelConstants
constants)

  -- Avoid loop for the common case where each thread is statically
  -- known to write at most one element.
  Operations GPUMem KernelEnv KernelOp
-> InKernelGen () -> InKernelGen ()
forall rep r op a.
Operations rep r op -> ImpM rep r op a -> ImpM rep r op a
localOps Operations GPUMem KernelEnv KernelOp
threadOperations (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    if SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
per_group_elems TExp Int64 -> TExp Int64 -> Bool
forall a. Eq a => a -> a -> Bool
== KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants
      then
        TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Int64
ltid TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
offset TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
w) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64
ltid TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
offset] (VName -> SubExp
Var VName
what) [TExp Int64
ltid]
      else String
-> TExp Int64 -> (TExp Int64 -> InKernelGen ()) -> InKernelGen ()
forall t rep r op.
String
-> TExp t -> (TExp t -> ImpM rep r op ()) -> ImpM rep r op ()
sFor String
"i" (TExp Int64
n TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`divUp` KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants) ((TExp Int64 -> InKernelGen ()) -> InKernelGen ())
-> (TExp Int64 -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \TExp Int64
i -> do
        TExp Int64
j <- String -> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"j" (TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TExp Int64))
-> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int64
kernelGroupSize KernelConstants
constants TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* TExp Int64
i TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
ltid
        TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (TExp Int64
j TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
offset TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
w) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64
j TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
+ TExp Int64
offset] (VName -> SubExp
Var VName
what) [TExp Int64
j]
compileGroupResult SegSpace
space PatElemT (LetDec GPUMem)
pe (TileReturns [(SubExp, SubExp)]
dims VName
what) = do
  let gids :: [VName]
gids = ((VName, SubExp) -> VName) -> [(VName, SubExp)] -> [VName]
forall a b. (a -> b) -> [a] -> [b]
map (VName, SubExp) -> VName
forall a b. (a, b) -> a
fst ([(VName, SubExp)] -> [VName]) -> [(VName, SubExp)] -> [VName]
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
      out_tile_sizes :: [TExp Int64]
out_tile_sizes = ((SubExp, SubExp) -> TExp Int64)
-> [(SubExp, SubExp)] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map (SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp (SubExp -> TExp Int64)
-> ((SubExp, SubExp) -> SubExp) -> (SubExp, SubExp) -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (SubExp, SubExp) -> SubExp
forall a b. (a, b) -> b
snd) [(SubExp, SubExp)]
dims
      group_is :: [TExp Int64]
group_is = (TExp Int64 -> TExp Int64 -> TExp Int64)
-> [TExp Int64] -> [TExp Int64] -> [TExp Int64]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
(*) ((VName -> TExp Int64) -> [VName] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map VName -> TExp Int64
Imp.vi64 [VName]
gids) [TExp Int64]
out_tile_sizes
  [TExp Int64]
local_is <- [SubExp] -> InKernelGen [TExp Int64]
localThreadIDs ([SubExp] -> InKernelGen [TExp Int64])
-> [SubExp] -> InKernelGen [TExp Int64]
forall a b. (a -> b) -> a -> b
$ ((SubExp, SubExp) -> SubExp) -> [(SubExp, SubExp)] -> [SubExp]
forall a b. (a -> b) -> [a] -> [b]
map (SubExp, SubExp) -> SubExp
forall a b. (a, b) -> b
snd [(SubExp, SubExp)]
dims
  [TV Int64]
is_for_thread <-
    (TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64))
-> [TExp Int64] -> ImpM GPUMem KernelEnv KernelOp [TV Int64]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (String -> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TV Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TV t)
dPrimV String
"thread_out_index") ([TExp Int64] -> ImpM GPUMem KernelEnv KernelOp [TV Int64])
-> [TExp Int64] -> ImpM GPUMem KernelEnv KernelOp [TV Int64]
forall a b. (a -> b) -> a -> b
$
      (TExp Int64 -> TExp Int64 -> TExp Int64)
-> [TExp Int64] -> [TExp Int64] -> [TExp Int64]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
(+) [TExp Int64]
group_is [TExp Int64]
local_is

  Operations GPUMem KernelEnv KernelOp
-> InKernelGen () -> InKernelGen ()
forall rep r op a.
Operations rep r op -> ImpM rep r op a -> ImpM rep r op a
localOps Operations GPUMem KernelEnv KernelOp
threadOperations (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen ([(VName, SubExp)] -> TExp Bool
isActive ([(VName, SubExp)] -> TExp Bool) -> [(VName, SubExp)] -> TExp Bool
forall a b. (a -> b) -> a -> b
$ [VName] -> [SubExp] -> [(VName, SubExp)]
forall a b. [a] -> [b] -> [(a, b)]
zip ((TV Int64 -> VName) -> [TV Int64] -> [VName]
forall a b. (a -> b) -> [a] -> [b]
map TV Int64 -> VName
forall t. TV t -> VName
tvVar [TV Int64]
is_for_thread) ([SubExp] -> [(VName, SubExp)]) -> [SubExp] -> [(VName, SubExp)]
forall a b. (a -> b) -> a -> b
$ ((SubExp, SubExp) -> SubExp) -> [(SubExp, SubExp)] -> [SubExp]
forall a b. (a -> b) -> [a] -> [b]
map (SubExp, SubExp) -> SubExp
forall a b. (a, b) -> a
fst [(SubExp, SubExp)]
dims) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) ((TV Int64 -> TExp Int64) -> [TV Int64] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map TV Int64 -> TExp Int64
forall t. TV t -> TExp t
tvExp [TV Int64]
is_for_thread) (VName -> SubExp
Var VName
what) [TExp Int64]
local_is
compileGroupResult SegSpace
space PatElemT (LetDec GPUMem)
pe (RegTileReturns [(SubExp, SubExp, SubExp)]
dims_n_tiles VName
what) = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv

  let gids :: [VName]
gids = ((VName, SubExp) -> VName) -> [(VName, SubExp)] -> [VName]
forall a b. (a -> b) -> [a] -> [b]
map (VName, SubExp) -> VName
forall a b. (a, b) -> a
fst ([(VName, SubExp)] -> [VName]) -> [(VName, SubExp)] -> [VName]
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
      ([SubExp]
dims, [SubExp]
group_tiles, [SubExp]
reg_tiles) = [(SubExp, SubExp, SubExp)] -> ([SubExp], [SubExp], [SubExp])
forall a b c. [(a, b, c)] -> ([a], [b], [c])
unzip3 [(SubExp, SubExp, SubExp)]
dims_n_tiles
      group_tiles' :: [TExp Int64]
group_tiles' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
group_tiles
      reg_tiles' :: [TExp Int64]
reg_tiles' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
reg_tiles

  -- Which group tile is this group responsible for?
  let group_tile_is :: [TExp Int64]
group_tile_is = (VName -> TExp Int64) -> [VName] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map VName -> TExp Int64
Imp.vi64 [VName]
gids

  -- Within the group tile, which register tile is this thread
  -- responsible for?
  [TExp Int64]
reg_tile_is <-
    (TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TExp Int64))
-> [TExp Int64] -> InKernelGen [TExp Int64]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (String -> TExp Int64 -> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall t rep r op. String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"reg_tile_i") ([TExp Int64] -> InKernelGen [TExp Int64])
-> [TExp Int64] -> InKernelGen [TExp Int64]
forall a b. (a -> b) -> a -> b
$
      [TExp Int64] -> TExp Int64 -> [TExp Int64]
forall num. IntegralExp num => [num] -> num -> [num]
unflattenIndex [TExp Int64]
group_tiles' (TExp Int64 -> [TExp Int64]) -> TExp Int64 -> [TExp Int64]
forall a b. (a -> b) -> a -> b
$ TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64) -> TExp Int32 -> TExp Int64
forall a b. (a -> b) -> a -> b
$ KernelConstants -> TExp Int32
kernelLocalThreadId KernelConstants
constants

  -- Compute output array slice for the register tile belonging to
  -- this thread.
  let regTileSliceDim :: (TExp t, TExp t)
-> (TExp t, TExp t) -> ImpM rep r op (DimIndex (TExp t))
regTileSliceDim (TExp t
group_tile, TExp t
group_tile_i) (TExp t
reg_tile, TExp t
reg_tile_i) = do
        TExp t
tile_dim_start <-
          String -> TExp t -> ImpM rep r op (TExp t)
forall t rep r op. String -> TExp t -> ImpM rep r op (TExp t)
dPrimVE String
"tile_dim_start" (TExp t -> ImpM rep r op (TExp t))
-> TExp t -> ImpM rep r op (TExp t)
forall a b. (a -> b) -> a -> b
$
            TExp t
reg_tile TExp t -> TExp t -> TExp t
forall a. Num a => a -> a -> a
* (TExp t
group_tile TExp t -> TExp t -> TExp t
forall a. Num a => a -> a -> a
* TExp t
group_tile_i TExp t -> TExp t -> TExp t
forall a. Num a => a -> a -> a
+ TExp t
reg_tile_i)
        DimIndex (TExp t) -> ImpM rep r op (DimIndex (TExp t))
forall (m :: * -> *) a. Monad m => a -> m a
return (DimIndex (TExp t) -> ImpM rep r op (DimIndex (TExp t)))
-> DimIndex (TExp t) -> ImpM rep r op (DimIndex (TExp t))
forall a b. (a -> b) -> a -> b
$ TExp t -> TExp t -> TExp t -> DimIndex (TExp t)
forall d. d -> d -> d -> DimIndex d
DimSlice TExp t
tile_dim_start TExp t
reg_tile TExp t
1
  Slice (TExp Int64)
reg_tile_slices <-
    ((TExp Int64, TExp Int64)
 -> (TExp Int64, TExp Int64)
 -> ImpM GPUMem KernelEnv KernelOp (DimIndex (TExp Int64)))
-> [(TExp Int64, TExp Int64)]
-> [(TExp Int64, TExp Int64)]
-> ImpM GPUMem KernelEnv KernelOp (Slice (TExp Int64))
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM
      (TExp Int64, TExp Int64)
-> (TExp Int64, TExp Int64)
-> ImpM GPUMem KernelEnv KernelOp (DimIndex (TExp Int64))
forall {t} {rep} {r} {op}.
NumExp t =>
(TExp t, TExp t)
-> (TExp t, TExp t) -> ImpM rep r op (DimIndex (TExp t))
regTileSliceDim
      ([TExp Int64] -> [TExp Int64] -> [(TExp Int64, TExp Int64)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TExp Int64]
group_tiles' [TExp Int64]
group_tile_is)
      ([TExp Int64] -> [TExp Int64] -> [(TExp Int64, TExp Int64)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TExp Int64]
reg_tiles' [TExp Int64]
reg_tile_is)

  Operations GPUMem KernelEnv KernelOp
-> InKernelGen () -> InKernelGen ()
forall rep r op a.
Operations rep r op -> ImpM rep r op a -> ImpM rep r op a
localOps Operations GPUMem KernelEnv KernelOp
threadOperations (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
    ShapeBase SubExp
-> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
forall rep r op.
ShapeBase SubExp
-> ([TExp Int64] -> ImpM rep r op ()) -> ImpM rep r op ()
sLoopNest ([SubExp] -> ShapeBase SubExp
forall d. [d] -> ShapeBase d
Shape [SubExp]
reg_tiles) (([TExp Int64] -> InKernelGen ()) -> InKernelGen ())
-> ([TExp Int64] -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \[TExp Int64]
is_in_reg_tile -> do
      let dest_is :: [TExp Int64]
dest_is = Slice (TExp Int64) -> [TExp Int64] -> [TExp Int64]
forall d. Num d => Slice d -> [d] -> [d]
fixSlice Slice (TExp Int64)
reg_tile_slices [TExp Int64]
is_in_reg_tile
          src_is :: [TExp Int64]
src_is = [TExp Int64]
reg_tile_is [TExp Int64] -> [TExp Int64] -> [TExp Int64]
forall a. [a] -> [a] -> [a]
++ [TExp Int64]
is_in_reg_tile
      TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen ((TExp Bool -> TExp Bool -> TExp Bool) -> [TExp Bool] -> TExp Bool
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
(.&&.) ([TExp Bool] -> TExp Bool) -> [TExp Bool] -> TExp Bool
forall a b. (a -> b) -> a -> b
$ (TExp Int64 -> TExp Int64 -> TExp Bool)
-> [TExp Int64] -> [TExp Int64] -> [TExp Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith TExp Int64 -> TExp Int64 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
(.<.) [TExp Int64]
dest_is ([TExp Int64] -> [TExp Bool]) -> [TExp Int64] -> [TExp Bool]
forall a b. (a -> b) -> a -> b
$ (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
dims) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64]
dest_is (VName -> SubExp
Var VName
what) [TExp Int64]
src_is
compileGroupResult SegSpace
space PatElemT (LetDec GPUMem)
pe (Returns ResultManifest
_ SubExp
what) = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  Bool
in_local_memory <- SubExp -> InKernelGen Bool
arrayInLocalMemory SubExp
what
  let gids :: [TExp Int64]
gids = ((VName, SubExp) -> TExp Int64)
-> [(VName, SubExp)] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map (VName -> TExp Int64
Imp.vi64 (VName -> TExp Int64)
-> ((VName, SubExp) -> VName) -> (VName, SubExp) -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (VName, SubExp) -> VName
forall a b. (a, b) -> a
fst) ([(VName, SubExp)] -> [TExp Int64])
-> [(VName, SubExp)] -> [TExp Int64]
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space

  if Bool -> Bool
not Bool
in_local_memory
    then
      Operations GPUMem KernelEnv KernelOp
-> InKernelGen () -> InKernelGen ()
forall rep r op a.
Operations rep r op -> ImpM rep r op a -> ImpM rep r op a
localOps Operations GPUMem KernelEnv KernelOp
threadOperations (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
        TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen (KernelConstants -> TExp Int32
kernelLocalThreadId KernelConstants
constants TExp Int32 -> TExp Int32 -> TExp Bool
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.==. TExp Int32
0) (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
          VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64]
gids SubExp
what []
    else -- If the result of the group is an array in local memory, we
    -- store it by collective copying among all the threads of the
    -- group.  TODO: also do this if the array is in global memory
    -- (but this is a bit more tricky, synchronisation-wise).
      VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64]
gids SubExp
what []
compileGroupResult SegSpace
_ PatElemT (LetDec GPUMem)
_ WriteReturns {} =
  String -> InKernelGen ()
forall a. String -> a
compilerLimitationS String
"compileGroupResult: WriteReturns not handled yet."
compileGroupResult SegSpace
_ PatElemT (LetDec GPUMem)
_ ConcatReturns {} =
  String -> InKernelGen ()
forall a. String -> a
compilerLimitationS String
"compileGroupResult: ConcatReturns not handled yet."

compileThreadResult ::
  SegSpace ->
  PatElem GPUMem ->
  KernelResult ->
  InKernelGen ()
compileThreadResult :: SegSpace
-> PatElemT (LetDec GPUMem) -> KernelResult -> InKernelGen ()
compileThreadResult SegSpace
_ PatElemT (LetDec GPUMem)
_ RegTileReturns {} =
  String -> InKernelGen ()
forall a. String -> a
compilerLimitationS String
"compileThreadResult: RegTileReturns not yet handled."
compileThreadResult SegSpace
space PatElemT (LetDec GPUMem)
pe (Returns ResultManifest
_ SubExp
what) = do
  let is :: [TExp Int64]
is = ((VName, SubExp) -> TExp Int64)
-> [(VName, SubExp)] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map (VName -> TExp Int64
Imp.vi64 (VName -> TExp Int64)
-> ((VName, SubExp) -> VName) -> (VName, SubExp) -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (VName, SubExp) -> VName
forall a b. (a, b) -> a
fst) ([(VName, SubExp)] -> [TExp Int64])
-> [(VName, SubExp)] -> [TExp Int64]
forall a b. (a -> b) -> a -> b
$ SegSpace -> [(VName, SubExp)]
unSegSpace SegSpace
space
  VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64]
is SubExp
what []
compileThreadResult SegSpace
_ PatElemT (LetDec GPUMem)
pe (ConcatReturns SplitOrdering
SplitContiguous SubExp
_ SubExp
per_thread_elems VName
what) = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  let offset :: TExp Int64
offset =
        SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
per_thread_elems
          TExp Int64 -> TExp Int64 -> TExp Int64
forall a. Num a => a -> a -> a
* TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (KernelConstants -> TExp Int32
kernelGlobalThreadId KernelConstants
constants)
  TExp Int64
n <- SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp (SubExp -> TExp Int64)
-> (TypeBase (ShapeBase SubExp) NoUniqueness -> SubExp)
-> TypeBase (ShapeBase SubExp) NoUniqueness
-> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> TypeBase (ShapeBase SubExp) NoUniqueness -> SubExp
forall u. Int -> TypeBase (ShapeBase SubExp) u -> SubExp
arraySize Int
0 (TypeBase (ShapeBase SubExp) NoUniqueness -> TExp Int64)
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (TypeBase (ShapeBase SubExp) NoUniqueness)
-> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (TypeBase (ShapeBase SubExp) NoUniqueness)
forall rep (m :: * -> *).
HasScope rep m =>
VName -> m (TypeBase (ShapeBase SubExp) NoUniqueness)
lookupType VName
what
  VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64 -> TExp Int64 -> TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> d -> d -> DimIndex d
DimSlice TExp Int64
offset TExp Int64
n TExp Int64
1] (VName -> SubExp
Var VName
what) []
compileThreadResult SegSpace
_ PatElemT (LetDec GPUMem)
pe (ConcatReturns (SplitStrided SubExp
stride) SubExp
_ SubExp
_ VName
what) = do
  TExp Int64
offset <- TExp Int32 -> TExp Int64
forall t v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TExp Int32 -> TExp Int64)
-> (KernelEnv -> TExp Int32) -> KernelEnv -> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelConstants -> TExp Int32
kernelGlobalThreadId (KernelConstants -> TExp Int32)
-> (KernelEnv -> KernelConstants) -> KernelEnv -> TExp Int32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> TExp Int64)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  TExp Int64
n <- SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp (SubExp -> TExp Int64)
-> (TypeBase (ShapeBase SubExp) NoUniqueness -> SubExp)
-> TypeBase (ShapeBase SubExp) NoUniqueness
-> TExp Int64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> TypeBase (ShapeBase SubExp) NoUniqueness -> SubExp
forall u. Int -> TypeBase (ShapeBase SubExp) u -> SubExp
arraySize Int
0 (TypeBase (ShapeBase SubExp) NoUniqueness -> TExp Int64)
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (TypeBase (ShapeBase SubExp) NoUniqueness)
-> ImpM GPUMem KernelEnv KernelOp (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName
-> ImpM
     GPUMem
     KernelEnv
     KernelOp
     (TypeBase (ShapeBase SubExp) NoUniqueness)
forall rep (m :: * -> *).
HasScope rep m =>
VName -> m (TypeBase (ShapeBase SubExp) NoUniqueness)
lookupType VName
what
  VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) [TExp Int64 -> TExp Int64 -> TExp Int64 -> DimIndex (TExp Int64)
forall d. d -> d -> d -> DimIndex d
DimSlice TExp Int64
offset TExp Int64
n (TExp Int64 -> DimIndex (TExp Int64))
-> TExp Int64 -> DimIndex (TExp Int64)
forall a b. (a -> b) -> a -> b
$ SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp SubExp
stride] (VName -> SubExp
Var VName
what) []
compileThreadResult SegSpace
_ PatElemT (LetDec GPUMem)
pe (WriteReturns (Shape [SubExp]
rws) VName
_arr [(Slice SubExp, SubExp)]
dests) = do
  KernelConstants
constants <- KernelEnv -> KernelConstants
kernelConstants (KernelEnv -> KernelConstants)
-> ImpM GPUMem KernelEnv KernelOp KernelEnv
-> ImpM GPUMem KernelEnv KernelOp KernelConstants
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem KernelEnv KernelOp KernelEnv
forall rep r op. ImpM rep r op r
askEnv
  let rws' :: [TExp Int64]
rws' = (SubExp -> TExp Int64) -> [SubExp] -> [TExp Int64]
forall a b. (a -> b) -> [a] -> [b]
map SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp [SubExp]
rws
  [(Slice SubExp, SubExp)]
-> ((Slice SubExp, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [(Slice SubExp, SubExp)]
dests (((Slice SubExp, SubExp) -> InKernelGen ()) -> InKernelGen ())
-> ((Slice SubExp, SubExp) -> InKernelGen ()) -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(Slice SubExp
slice, SubExp
e) -> do
    let slice' :: Slice (TExp Int64)
slice' = (DimIndex SubExp -> DimIndex (TExp Int64))
-> Slice SubExp -> Slice (TExp Int64)
forall a b. (a -> b) -> [a] -> [b]
map ((SubExp -> TExp Int64) -> DimIndex SubExp -> DimIndex (TExp Int64)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap SubExp -> TExp Int64
forall a. ToExp a => a -> TExp Int64
toInt64Exp) Slice SubExp
slice
        condInBounds :: DimIndex (TPrimExp t v) -> TPrimExp t v -> TPrimExp Bool v
condInBounds (DimFix TPrimExp t v
i) TPrimExp t v
rw =
          TPrimExp t v
0 TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TPrimExp t v
i TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TPrimExp t v
i TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TPrimExp t v
rw
        condInBounds (DimSlice TPrimExp t v
i TPrimExp t v
n TPrimExp t v
s) TPrimExp t v
rw =
          TPrimExp t v
0 TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TPrimExp t v
i TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TPrimExp t v
i TPrimExp t v -> TPrimExp t v -> TPrimExp t v
forall a. Num a => a -> a -> a
+ TPrimExp t v
n TPrimExp t v -> TPrimExp t v -> TPrimExp t v
forall a. Num a => a -> a -> a
* TPrimExp t v
s TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
forall t v. TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<. TPrimExp t v
rw
        write :: TExp Bool
write =
          (TExp Bool -> TExp Bool -> TExp Bool)
-> TExp Bool -> [TExp Bool] -> TExp Bool
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl TExp Bool -> TExp Bool -> TExp Bool
forall v. TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
(.&&.) (KernelConstants -> TExp Bool
kernelThreadActive KernelConstants
constants) ([TExp Bool] -> TExp Bool) -> [TExp Bool] -> TExp Bool
forall a b. (a -> b) -> a -> b
$
            (DimIndex (TExp Int64) -> TExp Int64 -> TExp Bool)
-> Slice (TExp Int64) -> [TExp Int64] -> [TExp Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith DimIndex (TExp Int64) -> TExp Int64 -> TExp Bool
forall {t} {v}.
(NumExp t, Pretty v) =>
DimIndex (TPrimExp t v) -> TPrimExp t v -> TPrimExp Bool v
condInBounds Slice (TExp Int64)
slice' [TExp Int64]
rws'
    TExp Bool -> InKernelGen () -> InKernelGen ()
forall rep r op. TExp Bool -> ImpM rep r op () -> ImpM rep r op ()
sWhen TExp Bool
write (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> InKernelGen ()
forall rep r op.
VName
-> Slice (TExp Int64)
-> SubExp
-> Slice (TExp Int64)
-> ImpM rep r op ()
copyDWIM (PatElemT LParamMem -> VName
forall dec. PatElemT dec -> VName
patElemName PatElemT (LetDec GPUMem)
PatElemT LParamMem
pe) Slice (TExp Int64)
slice' SubExp
e []
compileThreadResult SegSpace
_ PatElemT (LetDec GPUMem)
_ TileReturns {} =
  String -> InKernelGen ()
forall a. String -> a
compilerBugS String
"compileThreadResult: TileReturns unhandled."

arrayInLocalMemory :: SubExp -> InKernelGen Bool
arrayInLocalMemory :: SubExp -> InKernelGen Bool
arrayInLocalMemory (Var VName
name) = do
  VarEntry GPUMem
res <- VName -> ImpM GPUMem KernelEnv KernelOp (VarEntry GPUMem)
forall rep r op. VName -> ImpM rep r op (VarEntry rep)
lookupVar VName
name
  case VarEntry GPUMem
res of
    ArrayVar Maybe (Exp GPUMem)
_ ArrayEntry
entry ->
      (String -> Space
Space String
"local" Space -> Space -> Bool
forall a. Eq a => a -> a -> Bool
==) (Space -> Bool) -> (MemEntry -> Space) -> MemEntry -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MemEntry -> Space
entryMemSpace
        (MemEntry -> Bool)
-> ImpM GPUMem KernelEnv KernelOp MemEntry -> InKernelGen Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> VName -> ImpM GPUMem KernelEnv KernelOp MemEntry
forall rep r op. VName -> ImpM rep r op MemEntry
lookupMemory (MemLocation -> VName
memLocationName (ArrayEntry -> MemLocation
entryArrayLocation ArrayEntry
entry))
    VarEntry GPUMem
_ -> Bool -> InKernelGen Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
arrayInLocalMemory Constant {} = Bool -> InKernelGen Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False