{-# LANGUAGE TypeFamilies #-}

-- | Compile a 'GPUMem' program to imperative code with kernels.
-- This is mostly (but not entirely) the same process no matter if we
-- are targeting OpenCL or CUDA.  The important distinctions (the host
-- level code) are introduced later.
module Futhark.CodeGen.ImpGen.GPU
  ( compileProgOpenCL,
    compileProgCUDA,
    compileProgHIP,
    Warnings,
  )
where

import Control.Monad
import Data.List (foldl')
import Data.Map qualified as M
import Data.Maybe
import Futhark.CodeGen.ImpCode.GPU qualified as Imp
import Futhark.CodeGen.ImpGen hiding (compileProg)
import Futhark.CodeGen.ImpGen qualified
import Futhark.CodeGen.ImpGen.GPU.Base
import Futhark.CodeGen.ImpGen.GPU.SegHist
import Futhark.CodeGen.ImpGen.GPU.SegMap
import Futhark.CodeGen.ImpGen.GPU.SegRed
import Futhark.CodeGen.ImpGen.GPU.SegScan
import Futhark.Error
import Futhark.IR.GPUMem
import Futhark.MonadFreshNames
import Futhark.Util.IntegralExp (divUp, nextMul)
import Prelude hiding (quot, rem)

callKernelOperations :: Operations GPUMem HostEnv Imp.HostOp
callKernelOperations :: Operations GPUMem HostEnv HostOp
callKernelOperations =
  Operations
    { opsExpCompiler :: ExpCompiler GPUMem HostEnv HostOp
opsExpCompiler = ExpCompiler GPUMem HostEnv HostOp
expCompiler,
      opsCopyCompiler :: CopyCompiler GPUMem HostEnv HostOp
opsCopyCompiler = CopyCompiler GPUMem HostEnv HostOp
forall rep r op. CopyCompiler rep r op
lmadCopy,
      opsOpCompiler :: OpCompiler GPUMem HostEnv HostOp
opsOpCompiler = OpCompiler GPUMem HostEnv HostOp
Pat LetDecMem -> Op GPUMem -> CallKernelGen ()
opCompiler,
      opsStmsCompiler :: StmsCompiler GPUMem HostEnv HostOp
opsStmsCompiler = StmsCompiler GPUMem HostEnv HostOp
forall rep (inner :: * -> *) op r.
(Mem rep inner, FreeIn op) =>
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
defCompileStms,
      opsAllocCompilers :: Map Space (AllocCompiler GPUMem HostEnv HostOp)
opsAllocCompilers = Map Space (AllocCompiler GPUMem HostEnv HostOp)
forall a. Monoid a => a
mempty
    }

openclAtomics, cudaAtomics :: AtomicBinOp
(AtomicBinOp
openclAtomics, AtomicBinOp
cudaAtomics) = ((BinOp
 -> [(BinOp,
      VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
 -> Maybe
      (VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp))
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> AtomicBinOp
forall a b c. (a -> b -> c) -> b -> a -> c
flip BinOp
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> Maybe
     (VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)
forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
opencl, (BinOp
 -> [(BinOp,
      VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
 -> Maybe
      (VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp))
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> AtomicBinOp
forall a b c. (a -> b -> c) -> b -> a -> c
flip BinOp
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> Maybe
     (VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)
forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
cuda)
  where
    opencl64 :: [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
opencl64 =
      [ (IntType -> Overflow -> BinOp
Add IntType
Int64 Overflow
OverflowUndef, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicAdd IntType
Int64),
        (IntType -> BinOp
SMax IntType
Int64, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicSMax IntType
Int64),
        (IntType -> BinOp
SMin IntType
Int64, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicSMin IntType
Int64),
        (IntType -> BinOp
UMax IntType
Int64, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicUMax IntType
Int64),
        (IntType -> BinOp
UMin IntType
Int64, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicUMin IntType
Int64),
        (IntType -> BinOp
And IntType
Int64, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicAnd IntType
Int64),
        (IntType -> BinOp
Or IntType
Int64, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicOr IntType
Int64),
        (IntType -> BinOp
Xor IntType
Int64, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicXor IntType
Int64)
      ]
    opencl32 :: [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
opencl32 =
      [ (IntType -> Overflow -> BinOp
Add IntType
Int32 Overflow
OverflowUndef, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicAdd IntType
Int32),
        (IntType -> BinOp
SMax IntType
Int32, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicSMax IntType
Int32),
        (IntType -> BinOp
SMin IntType
Int32, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicSMin IntType
Int32),
        (IntType -> BinOp
UMax IntType
Int32, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicUMax IntType
Int32),
        (IntType -> BinOp
UMin IntType
Int32, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicUMin IntType
Int32),
        (IntType -> BinOp
And IntType
Int32, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicAnd IntType
Int32),
        (IntType -> BinOp
Or IntType
Int32, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicOr IntType
Int32),
        (IntType -> BinOp
Xor IntType
Int32, IntType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicXor IntType
Int32)
      ]
    opencl :: [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
opencl = [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
opencl32 [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
forall a. [a] -> [a] -> [a]
++ [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
opencl64
    cuda :: [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
cuda =
      [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
opencl
        [(BinOp,
  VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
-> [(BinOp,
     VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp)]
forall a. [a] -> [a] -> [a]
++ [ (FloatType -> BinOp
FAdd FloatType
Float32, FloatType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicFAdd FloatType
Float32),
             (FloatType -> BinOp
FAdd FloatType
Float64, FloatType
-> VName -> VName -> Count Elements (TExp Int64) -> Exp -> AtomicOp
Imp.AtomicFAdd FloatType
Float64)
           ]

compileProg ::
  (MonadFreshNames m) =>
  HostEnv ->
  Prog GPUMem ->
  m (Warnings, Imp.Program)
compileProg :: forall (m :: * -> *).
MonadFreshNames m =>
HostEnv -> Prog GPUMem -> m (Warnings, Program)
compileProg HostEnv
env =
  HostEnv
-> Operations GPUMem HostEnv HostOp
-> Space
-> Prog GPUMem
-> m (Warnings, Program)
forall rep (inner :: * -> *) op (m :: * -> *) r.
(Mem rep inner, FreeIn op, MonadFreshNames m) =>
r
-> Operations rep r op
-> Space
-> Prog rep
-> m (Warnings, Definitions op)
Futhark.CodeGen.ImpGen.compileProg HostEnv
env Operations GPUMem HostEnv HostOp
callKernelOperations Space
device_space
  where
    device_space :: Space
device_space = SpaceId -> Space
Imp.Space SpaceId
"device"

-- | Compile a 'GPUMem' program to low-level parallel code, with
-- either CUDA or OpenCL characteristics.
compileProgOpenCL,
  compileProgCUDA,
  compileProgHIP ::
    (MonadFreshNames m) => Prog GPUMem -> m (Warnings, Imp.Program)
compileProgOpenCL :: forall (m :: * -> *).
MonadFreshNames m =>
Prog GPUMem -> m (Warnings, Program)
compileProgOpenCL = HostEnv -> Prog GPUMem -> m (Warnings, Program)
forall (m :: * -> *).
MonadFreshNames m =>
HostEnv -> Prog GPUMem -> m (Warnings, Program)
compileProg (HostEnv -> Prog GPUMem -> m (Warnings, Program))
-> HostEnv -> Prog GPUMem -> m (Warnings, Program)
forall a b. (a -> b) -> a -> b
$ AtomicBinOp -> Target -> Map VName Locks -> HostEnv
HostEnv AtomicBinOp
openclAtomics Target
OpenCL Map VName Locks
forall a. Monoid a => a
mempty
compileProgCUDA :: forall (m :: * -> *).
MonadFreshNames m =>
Prog GPUMem -> m (Warnings, Program)
compileProgCUDA = HostEnv -> Prog GPUMem -> m (Warnings, Program)
forall (m :: * -> *).
MonadFreshNames m =>
HostEnv -> Prog GPUMem -> m (Warnings, Program)
compileProg (HostEnv -> Prog GPUMem -> m (Warnings, Program))
-> HostEnv -> Prog GPUMem -> m (Warnings, Program)
forall a b. (a -> b) -> a -> b
$ AtomicBinOp -> Target -> Map VName Locks -> HostEnv
HostEnv AtomicBinOp
cudaAtomics Target
CUDA Map VName Locks
forall a. Monoid a => a
mempty
compileProgHIP :: forall (m :: * -> *).
MonadFreshNames m =>
Prog GPUMem -> m (Warnings, Program)
compileProgHIP = HostEnv -> Prog GPUMem -> m (Warnings, Program)
forall (m :: * -> *).
MonadFreshNames m =>
HostEnv -> Prog GPUMem -> m (Warnings, Program)
compileProg (HostEnv -> Prog GPUMem -> m (Warnings, Program))
-> HostEnv -> Prog GPUMem -> m (Warnings, Program)
forall a b. (a -> b) -> a -> b
$ AtomicBinOp -> Target -> Map VName Locks -> HostEnv
HostEnv AtomicBinOp
cudaAtomics Target
HIP Map VName Locks
forall a. Monoid a => a
mempty

opCompiler ::
  Pat LetDecMem ->
  Op GPUMem ->
  CallKernelGen ()
opCompiler :: Pat LetDecMem -> Op GPUMem -> CallKernelGen ()
opCompiler Pat LetDecMem
dest (Alloc SubExp
e Space
space) =
  Pat (LetDec GPUMem) -> SubExp -> Space -> CallKernelGen ()
forall rep (inner :: * -> *) r op.
Mem rep inner =>
Pat (LetDec rep) -> SubExp -> Space -> ImpM rep r op ()
compileAlloc Pat (LetDec GPUMem)
Pat LetDecMem
dest SubExp
e Space
space
opCompiler (Pat [PatElem LetDecMem
pe]) (Inner (SizeOp (GetSize Name
key SizeClass
size_class))) = do
  Maybe Name
fname <- ImpM GPUMem HostEnv HostOp (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
  HostOp -> CallKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (HostOp -> CallKernelGen ()) -> HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$
    VName -> Name -> SizeClass -> HostOp
Imp.GetSize (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LetDecMem
pe) (Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname Name
key) (SizeClass -> HostOp) -> SizeClass -> HostOp
forall a b. (a -> b) -> a -> b
$
      Maybe Name -> SizeClass -> SizeClass
sizeClassWithEntryPoint Maybe Name
fname SizeClass
size_class
opCompiler (Pat [PatElem LetDecMem
pe]) (Inner (SizeOp (CmpSizeLe Name
key SizeClass
size_class SubExp
x))) = do
  Maybe Name
fname <- ImpM GPUMem HostEnv HostOp (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
  let size_class' :: SizeClass
size_class' = Maybe Name -> SizeClass -> SizeClass
sizeClassWithEntryPoint Maybe Name
fname SizeClass
size_class
  HostOp -> CallKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (HostOp -> CallKernelGen ())
-> (Exp -> HostOp) -> Exp -> CallKernelGen ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. VName -> Name -> SizeClass -> Exp -> HostOp
Imp.CmpSizeLe (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LetDecMem
pe) (Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname Name
key) SizeClass
size_class'
    (Exp -> CallKernelGen ())
-> ImpM GPUMem HostEnv HostOp Exp -> CallKernelGen ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< SubExp -> ImpM GPUMem HostEnv HostOp Exp
forall a rep r op. ToExp a => a -> ImpM rep r op Exp
forall rep r op. SubExp -> ImpM rep r op Exp
toExp SubExp
x
opCompiler (Pat [PatElem LetDecMem
pe]) (Inner (SizeOp (GetSizeMax SizeClass
size_class))) =
  HostOp -> CallKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (HostOp -> CallKernelGen ()) -> HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ VName -> SizeClass -> HostOp
Imp.GetSizeMax (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LetDecMem
pe) SizeClass
size_class
opCompiler (Pat [PatElem LetDecMem
pe]) (Inner (SizeOp (CalcNumBlocks SubExp
w64 Name
max_num_tblocks_key SubExp
tblock_size))) = do
  Maybe Name
fname <- ImpM GPUMem HostEnv HostOp (Maybe Name)
forall rep r op. ImpM rep r op (Maybe Name)
askFunction
  TV Int32
max_num_tblocks :: TV Int32 <- SpaceId -> PrimType -> ImpM GPUMem HostEnv HostOp (TV Int32)
forall {k} rep r op (t :: k).
SpaceId -> PrimType -> ImpM rep r op (TV t)
dPrim SpaceId
"max_num_tblocks" PrimType
int32
  HostOp -> CallKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (HostOp -> CallKernelGen ()) -> HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$
    VName -> Name -> SizeClass -> HostOp
Imp.GetSize (TV Int32 -> VName
forall {k} (t :: k). TV t -> VName
tvVar TV Int32
max_num_tblocks) (Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname Name
max_num_tblocks_key) (SizeClass -> HostOp) -> SizeClass -> HostOp
forall a b. (a -> b) -> a -> b
$
      Maybe Name -> SizeClass -> SizeClass
sizeClassWithEntryPoint Maybe Name
fname SizeClass
SizeGrid

  -- If 'w' is small, we launch fewer blocks than we normally would.
  -- We don't want any idle blocks.
  --
  -- The calculations are done with 64-bit integers to avoid overflow
  -- issues.
  let num_tblocks_maybe_zero :: TExp Int64
num_tblocks_maybe_zero =
        TExp Int64 -> TExp Int64 -> TExp Int64
forall v. TPrimExp Int64 v -> TPrimExp Int64 v -> TPrimExp Int64 v
sMin64 (SubExp -> TExp Int64
pe64 SubExp
w64 TExp Int64 -> TExp Int64 -> TExp Int64
forall e. IntegralExp e => e -> e -> e
`divUp` SubExp -> TExp Int64
pe64 SubExp
tblock_size) (TExp Int64 -> TExp Int64) -> TExp Int64 -> TExp Int64
forall a b. (a -> b) -> a -> b
$
          TPrimExp Int32 VName -> TExp Int64
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TV Int32 -> TPrimExp Int32 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int32
max_num_tblocks)
  -- We also don't want zero blocks.
  let num_tblocks :: TExp Int64
num_tblocks = TExp Int64 -> TExp Int64 -> TExp Int64
forall v. TPrimExp Int64 v -> TPrimExp Int64 v -> TPrimExp Int64 v
sMax64 TExp Int64
1 TExp Int64
num_tblocks_maybe_zero
  VName -> PrimType -> TV Int32
forall {k} (t :: k). VName -> PrimType -> TV t
mkTV (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LetDecMem
pe) PrimType
int32 TV Int32 -> TPrimExp Int32 VName -> CallKernelGen ()
forall {k} (t :: k) rep r op. TV t -> TExp t -> ImpM rep r op ()
<-- TExp Int64 -> TPrimExp Int32 VName
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int32 v
sExt32 TExp Int64
num_tblocks
opCompiler Pat LetDecMem
dest (Inner (SegOp SegOp SegLevel GPUMem
op)) =
  Pat LetDecMem -> SegOp SegLevel GPUMem -> CallKernelGen ()
segOpCompiler Pat LetDecMem
dest SegOp SegLevel GPUMem
op
opCompiler (Pat [PatElem LetDecMem]
pes) (Inner (GPUBody [TypeBase Shape NoUniqueness]
_ (Body BodyDec GPUMem
_ Stms GPUMem
stms Result
res))) = do
  VName
tid <- SpaceId -> ImpM GPUMem HostEnv HostOp VName
forall (m :: * -> *). MonadFreshNames m => SpaceId -> m VName
newVName SpaceId
"tid"
  let one :: Count u SubExp
one = SubExp -> Count u SubExp
forall {k} (u :: k) e. e -> Count u e
Count (IntType -> Integer -> SubExp
intConst IntType
Int64 Integer
1)
  SpaceId
-> VName -> KernelAttrs -> InKernelGen () -> CallKernelGen ()
sKernelThread SpaceId
"gpuseq" VName
tid (Count NumBlocks SubExp -> Count BlockSize SubExp -> KernelAttrs
defKernelAttrs Count NumBlocks SubExp
forall {k} {u :: k}. Count u SubExp
one Count BlockSize SubExp
forall {k} {u :: k}. Count u SubExp
one) (InKernelGen () -> CallKernelGen ())
-> InKernelGen () -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$
    Names -> Stms GPUMem -> InKernelGen () -> InKernelGen ()
forall rep r op.
Names -> Stms rep -> ImpM rep r op () -> ImpM rep r op ()
compileStms (Result -> Names
forall a. FreeIn a => a -> Names
freeIn Result
res) Stms GPUMem
stms (InKernelGen () -> InKernelGen ())
-> InKernelGen () -> InKernelGen ()
forall a b. (a -> b) -> a -> b
$
      [(PatElem LetDecMem, SubExpRes)]
-> ((PatElem LetDecMem, SubExpRes) -> InKernelGen ())
-> InKernelGen ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([PatElem LetDecMem] -> Result -> [(PatElem LetDecMem, SubExpRes)]
forall a b. [a] -> [b] -> [(a, b)]
zip [PatElem LetDecMem]
pes Result
res) (((PatElem LetDecMem, SubExpRes) -> InKernelGen ())
 -> InKernelGen ())
-> ((PatElem LetDecMem, SubExpRes) -> InKernelGen ())
-> InKernelGen ()
forall a b. (a -> b) -> a -> b
$ \(PatElem LetDecMem
pe, SubExpRes Certs
_ SubExp
se) ->
        VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> InKernelGen ()
forall rep r op.
VName -> [TExp Int64] -> SubExp -> [TExp Int64] -> ImpM rep r op ()
copyDWIMFix (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem LetDecMem
pe) [TExp Int64
0] SubExp
se []
opCompiler Pat LetDecMem
pat Op GPUMem
e =
  SpaceId -> CallKernelGen ()
forall a. SpaceId -> a
compilerBugS (SpaceId -> CallKernelGen ()) -> SpaceId -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$
    SpaceId
"opCompiler: Invalid pattern\n  "
      SpaceId -> SpaceId -> SpaceId
forall a. [a] -> [a] -> [a]
++ Pat LetDecMem -> SpaceId
forall a. Pretty a => a -> SpaceId
prettyString Pat LetDecMem
pat
      SpaceId -> SpaceId -> SpaceId
forall a. [a] -> [a] -> [a]
++ SpaceId
"\nfor expression\n  "
      SpaceId -> SpaceId -> SpaceId
forall a. [a] -> [a] -> [a]
++ MemOp (HostOp NoOp) GPUMem -> SpaceId
forall a. Pretty a => a -> SpaceId
prettyString Op GPUMem
MemOp (HostOp NoOp) GPUMem
e

sizeClassWithEntryPoint :: Maybe Name -> Imp.SizeClass -> Imp.SizeClass
sizeClassWithEntryPoint :: Maybe Name -> SizeClass -> SizeClass
sizeClassWithEntryPoint Maybe Name
fname (Imp.SizeThreshold KernelPath
path Maybe Int64
def) =
  KernelPath -> Maybe Int64 -> SizeClass
Imp.SizeThreshold (((Name, Bool) -> (Name, Bool)) -> KernelPath -> KernelPath
forall a b. (a -> b) -> [a] -> [b]
map (Name, Bool) -> (Name, Bool)
f KernelPath
path) Maybe Int64
def
  where
    f :: (Name, Bool) -> (Name, Bool)
f (Name
name, Bool
x) = (Maybe Name -> Name -> Name
keyWithEntryPoint Maybe Name
fname Name
name, Bool
x)
sizeClassWithEntryPoint Maybe Name
_ SizeClass
size_class = SizeClass
size_class

segOpCompiler ::
  Pat LetDecMem ->
  SegOp SegLevel GPUMem ->
  CallKernelGen ()
segOpCompiler :: Pat LetDecMem -> SegOp SegLevel GPUMem -> CallKernelGen ()
segOpCompiler Pat LetDecMem
pat (SegMap SegLevel
lvl SegSpace
space [TypeBase Shape NoUniqueness]
_ KernelBody GPUMem
kbody) =
  Pat LetDecMem
-> SegLevel -> SegSpace -> KernelBody GPUMem -> CallKernelGen ()
compileSegMap Pat LetDecMem
pat SegLevel
lvl SegSpace
space KernelBody GPUMem
kbody
segOpCompiler Pat LetDecMem
pat (SegRed lvl :: SegLevel
lvl@(SegThread SegVirt
_ Maybe KernelGrid
_) SegSpace
space [SegBinOp GPUMem]
reds [TypeBase Shape NoUniqueness]
_ KernelBody GPUMem
kbody) =
  Pat LetDecMem
-> SegLevel
-> SegSpace
-> [SegBinOp GPUMem]
-> KernelBody GPUMem
-> CallKernelGen ()
compileSegRed Pat LetDecMem
pat SegLevel
lvl SegSpace
space [SegBinOp GPUMem]
reds KernelBody GPUMem
kbody
segOpCompiler Pat LetDecMem
pat (SegScan lvl :: SegLevel
lvl@(SegThread SegVirt
_ Maybe KernelGrid
_) SegSpace
space [SegBinOp GPUMem]
scans [TypeBase Shape NoUniqueness]
_ KernelBody GPUMem
kbody) =
  Pat LetDecMem
-> SegLevel
-> SegSpace
-> [SegBinOp GPUMem]
-> KernelBody GPUMem
-> CallKernelGen ()
compileSegScan Pat LetDecMem
pat SegLevel
lvl SegSpace
space [SegBinOp GPUMem]
scans KernelBody GPUMem
kbody
segOpCompiler Pat LetDecMem
pat (SegHist lvl :: SegLevel
lvl@(SegThread SegVirt
_ Maybe KernelGrid
_) SegSpace
space [HistOp GPUMem]
ops [TypeBase Shape NoUniqueness]
_ KernelBody GPUMem
kbody) =
  Pat LetDecMem
-> SegLevel
-> SegSpace
-> [HistOp GPUMem]
-> KernelBody GPUMem
-> CallKernelGen ()
compileSegHist Pat LetDecMem
pat SegLevel
lvl SegSpace
space [HistOp GPUMem]
ops KernelBody GPUMem
kbody
segOpCompiler Pat LetDecMem
pat SegOp SegLevel GPUMem
segop =
  SpaceId -> CallKernelGen ()
forall a. SpaceId -> a
compilerBugS (SpaceId -> CallKernelGen ()) -> SpaceId -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ SpaceId
"segOpCompiler: unexpected " SpaceId -> SpaceId -> SpaceId
forall a. [a] -> [a] -> [a]
++ SegLevel -> SpaceId
forall a. Pretty a => a -> SpaceId
prettyString (SegOp SegLevel GPUMem -> SegLevel
forall lvl rep. SegOp lvl rep -> lvl
segLevel SegOp SegLevel GPUMem
segop) SpaceId -> SpaceId -> SpaceId
forall a. [a] -> [a] -> [a]
++ SpaceId
" for rhs of pattern " SpaceId -> SpaceId -> SpaceId
forall a. [a] -> [a] -> [a]
++ Pat LetDecMem -> SpaceId
forall a. Pretty a => a -> SpaceId
prettyString Pat LetDecMem
pat

-- Create boolean expression that checks whether all kernels in the
-- enclosed code do not use more shared memory than we have available.
-- We look at *all* the kernels here, even those that might be
-- otherwise protected by their own multi-versioning branches deeper
-- down.  Currently the compiler will not generate multi-versioning
-- that makes this a problem, but it might in the future.
checkSharedMemoryReqs :: (VName -> Bool) -> Imp.HostCode -> CallKernelGen (Maybe (Imp.TExp Bool))
checkSharedMemoryReqs :: (VName -> Bool) -> HostCode -> CallKernelGen (Maybe (TExp Bool))
checkSharedMemoryReqs VName -> Bool
in_scope HostCode
code = do
  let alloc_sizes :: [Count Bytes (TExp Int64)]
alloc_sizes = (Kernel -> Count Bytes (TExp Int64))
-> [Kernel] -> [Count Bytes (TExp Int64)]
forall a b. (a -> b) -> [a] -> [b]
map ([Count Bytes (TExp Int64)] -> Count Bytes (TExp Int64)
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ([Count Bytes (TExp Int64)] -> Count Bytes (TExp Int64))
-> (Kernel -> [Count Bytes (TExp Int64)])
-> Kernel
-> Count Bytes (TExp Int64)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Count Bytes (TExp Int64) -> Count Bytes (TExp Int64))
-> [Count Bytes (TExp Int64)] -> [Count Bytes (TExp Int64)]
forall a b. (a -> b) -> [a] -> [b]
map Count Bytes (TExp Int64) -> Count Bytes (TExp Int64)
forall {e}. IntegralExp e => e -> e
alignedSize ([Count Bytes (TExp Int64)] -> [Count Bytes (TExp Int64)])
-> (Kernel -> [Count Bytes (TExp Int64)])
-> Kernel
-> [Count Bytes (TExp Int64)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Code KernelOp -> [Count Bytes (TExp Int64)]
localAllocSizes (Code KernelOp -> [Count Bytes (TExp Int64)])
-> (Kernel -> Code KernelOp)
-> Kernel
-> [Count Bytes (TExp Int64)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Kernel -> Code KernelOp
Imp.kernelBody) ([Kernel] -> [Count Bytes (TExp Int64)])
-> [Kernel] -> [Count Bytes (TExp Int64)]
forall a b. (a -> b) -> a -> b
$ HostCode -> [Kernel]
getGPU HostCode
code

  -- If any of the sizes involve a variable that is not known at this
  -- point, then we cannot check the requirements.
  if Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ (VName -> Bool) -> [VName] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all VName -> Bool
in_scope ([VName] -> Bool) -> [VName] -> Bool
forall a b. (a -> b) -> a -> b
$ Names -> [VName]
namesToList (Names -> [VName]) -> Names -> [VName]
forall a b. (a -> b) -> a -> b
$ [Count Bytes (TExp Int64)] -> Names
forall a. FreeIn a => a -> Names
freeIn [Count Bytes (TExp Int64)]
alloc_sizes
    then Maybe (TExp Bool) -> CallKernelGen (Maybe (TExp Bool))
forall a. a -> ImpM GPUMem HostEnv HostOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (TExp Bool)
forall a. Maybe a
Nothing
    else do
      TV Int32
shared_memory_capacity :: TV Int32 <- SpaceId -> PrimType -> ImpM GPUMem HostEnv HostOp (TV Int32)
forall {k} rep r op (t :: k).
SpaceId -> PrimType -> ImpM rep r op (TV t)
dPrim SpaceId
"shared_memory_capacity" PrimType
int32
      HostOp -> CallKernelGen ()
forall op rep r. op -> ImpM rep r op ()
sOp (HostOp -> CallKernelGen ()) -> HostOp -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ VName -> SizeClass -> HostOp
Imp.GetSizeMax (TV Int32 -> VName
forall {k} (t :: k). TV t -> VName
tvVar TV Int32
shared_memory_capacity) SizeClass
SizeSharedMemory

      let shared_memory_capacity_64 :: TExp Int64
shared_memory_capacity_64 =
            TPrimExp Int32 VName -> TExp Int64
forall {k} (t :: k) v. IntExp t => TPrimExp t v -> TPrimExp Int64 v
sExt64 (TPrimExp Int32 VName -> TExp Int64)
-> TPrimExp Int32 VName -> TExp Int64
forall a b. (a -> b) -> a -> b
$ TV Int32 -> TPrimExp Int32 VName
forall {k} (t :: k). TV t -> TExp t
tvExp TV Int32
shared_memory_capacity
          fits :: Count Bytes (TExp Int64) -> TExp Bool
fits Count Bytes (TExp Int64)
size =
            Count Bytes (TExp Int64) -> TExp Int64
forall {k} (u :: k) e. Count u e -> e
unCount Count Bytes (TExp Int64)
size TExp Int64 -> TExp Int64 -> TExp Bool
forall {k} v (t :: k).
Eq v =>
TPrimExp t v -> TPrimExp t v -> TPrimExp Bool v
.<=. TExp Int64
shared_memory_capacity_64
      Maybe (TExp Bool) -> CallKernelGen (Maybe (TExp Bool))
forall a. a -> ImpM GPUMem HostEnv HostOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe (TExp Bool) -> CallKernelGen (Maybe (TExp Bool)))
-> Maybe (TExp Bool) -> CallKernelGen (Maybe (TExp Bool))
forall a b. (a -> b) -> a -> b
$ TExp Bool -> Maybe (TExp Bool)
forall a. a -> Maybe a
Just (TExp Bool -> Maybe (TExp Bool)) -> TExp Bool -> Maybe (TExp Bool)
forall a b. (a -> b) -> a -> b
$ (TExp Bool -> TExp Bool -> TExp Bool)
-> TExp Bool -> [TExp Bool] -> TExp Bool
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' TExp Bool -> TExp Bool -> TExp Bool
forall v.
Eq v =>
TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
(.&&.) TExp Bool
forall v. TPrimExp Bool v
true ((Count Bytes (TExp Int64) -> TExp Bool)
-> [Count Bytes (TExp Int64)] -> [TExp Bool]
forall a b. (a -> b) -> [a] -> [b]
map Count Bytes (TExp Int64) -> TExp Bool
fits [Count Bytes (TExp Int64)]
alloc_sizes)
  where
    getGPU :: HostCode -> [Kernel]
getGPU = (HostOp -> [Kernel]) -> HostCode -> [Kernel]
forall m a. Monoid m => (a -> m) -> Code a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap HostOp -> [Kernel]
getKernel
    getKernel :: HostOp -> [Kernel]
getKernel (Imp.CallKernel Kernel
k) | Kernel -> Bool
Imp.kernelCheckSharedMemory Kernel
k = [Kernel
k]
    getKernel HostOp
_ = []

    localAllocSizes :: Code KernelOp -> [Count Bytes (TExp Int64)]
localAllocSizes = (KernelOp -> [Count Bytes (TExp Int64)])
-> Code KernelOp -> [Count Bytes (TExp Int64)]
forall m a. Monoid m => (a -> m) -> Code a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap KernelOp -> [Count Bytes (TExp Int64)]
localAllocSize
    localAllocSize :: KernelOp -> [Count Bytes (TExp Int64)]
localAllocSize (Imp.SharedAlloc VName
_ Count Bytes (TExp Int64)
size) = [Count Bytes (TExp Int64)
size]
    localAllocSize KernelOp
_ = []

    -- These allocations will actually be padded to an 8-byte aligned
    -- size, so we should take that into account when checking whether
    -- they fit.
    alignedSize :: e -> e
alignedSize e
x = e -> e -> e
forall e. IntegralExp e => e -> e -> e
nextMul e
x e
8

withAcc ::
  Pat LetDecMem ->
  [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))] ->
  Lambda GPUMem ->
  CallKernelGen ()
withAcc :: Pat LetDecMem
-> [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
-> Lambda GPUMem
-> CallKernelGen ()
withAcc Pat LetDecMem
pat [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
inputs Lambda GPUMem
lam = do
  AtomicBinOp
atomics <- HostEnv -> AtomicBinOp
hostAtomics (HostEnv -> AtomicBinOp)
-> ImpM GPUMem HostEnv HostOp HostEnv
-> ImpM GPUMem HostEnv HostOp AtomicBinOp
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ImpM GPUMem HostEnv HostOp HostEnv
forall rep r op. ImpM rep r op r
askEnv
  AtomicBinOp
-> [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
-> CallKernelGen ()
locksForInputs AtomicBinOp
atomics ([(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
 -> CallKernelGen ())
-> [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
-> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ [VName]
-> [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
-> [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
forall a b. [a] -> [b] -> [(a, b)]
zip [VName]
accs [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
inputs
  where
    accs :: [VName]
accs = (Param LetDecMem -> VName) -> [Param LetDecMem] -> [VName]
forall a b. (a -> b) -> [a] -> [b]
map Param LetDecMem -> VName
forall dec. Param dec -> VName
paramName ([Param LetDecMem] -> [VName]) -> [Param LetDecMem] -> [VName]
forall a b. (a -> b) -> a -> b
$ Lambda GPUMem -> [LParam GPUMem]
forall rep. Lambda rep -> [LParam rep]
lambdaParams Lambda GPUMem
lam
    locksForInputs :: AtomicBinOp
-> [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
-> CallKernelGen ()
locksForInputs AtomicBinOp
_ [] =
      ExpCompiler GPUMem HostEnv HostOp
forall rep (inner :: * -> *) r op.
Mem rep inner =>
Pat (LetDec rep) -> Exp rep -> ImpM rep r op ()
defCompileExp Pat (LetDec GPUMem)
Pat LetDecMem
pat (Exp GPUMem -> CallKernelGen ()) -> Exp GPUMem -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
-> Lambda GPUMem -> Exp GPUMem
forall rep. [WithAccInput rep] -> Lambda rep -> Exp rep
WithAcc [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
inputs Lambda GPUMem
lam
    locksForInputs AtomicBinOp
atomics ((VName
c, (Shape
_, [VName]
_, Maybe (Lambda GPUMem, [SubExp])
op)) : [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
inputs')
      | Just (Lambda GPUMem
op_lam, [SubExp]
_) <- Maybe (Lambda GPUMem, [SubExp])
op,
        AtomicLocking Locking -> DoAtomicUpdate GPUMem KernelEnv
_ <- AtomicBinOp -> Lambda GPUMem -> AtomicUpdate GPUMem KernelEnv
atomicUpdateLocking AtomicBinOp
atomics Lambda GPUMem
op_lam = do
          let num_locks :: Int
num_locks = Int
100151
          VName
locks_arr <- SpaceId -> Int -> ImpM GPUMem HostEnv HostOp VName
genZeroes SpaceId
"withacc_locks" Int
num_locks
          let locks :: Locks
locks = VName -> Int -> Locks
Locks VName
locks_arr Int
num_locks
              extend :: HostEnv -> HostEnv
extend HostEnv
env = HostEnv
env {hostLocks = M.insert c locks $ hostLocks env}
          (HostEnv -> HostEnv) -> CallKernelGen () -> CallKernelGen ()
forall r rep op a. (r -> r) -> ImpM rep r op a -> ImpM rep r op a
localEnv HostEnv -> HostEnv
extend (CallKernelGen () -> CallKernelGen ())
-> CallKernelGen () -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ AtomicBinOp
-> [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
-> CallKernelGen ()
locksForInputs AtomicBinOp
atomics [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
inputs'
      | Bool
otherwise =
          AtomicBinOp
-> [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
-> CallKernelGen ()
locksForInputs AtomicBinOp
atomics [(VName, (Shape, [VName], Maybe (Lambda GPUMem, [SubExp])))]
inputs'

expCompiler :: ExpCompiler GPUMem HostEnv Imp.HostOp
-- We generate a simple kernel for itoa and replicate.
expCompiler :: ExpCompiler GPUMem HostEnv HostOp
expCompiler (Pat [PatElem (LetDec GPUMem)
pe]) (BasicOp (Iota SubExp
n SubExp
x SubExp
s IntType
et)) = do
  Exp
x' <- SubExp -> ImpM GPUMem HostEnv HostOp Exp
forall a rep r op. ToExp a => a -> ImpM rep r op Exp
forall rep r op. SubExp -> ImpM rep r op Exp
toExp SubExp
x
  Exp
s' <- SubExp -> ImpM GPUMem HostEnv HostOp Exp
forall a rep r op. ToExp a => a -> ImpM rep r op Exp
forall rep r op. SubExp -> ImpM rep r op Exp
toExp SubExp
s

  VName -> TExp Int64 -> Exp -> Exp -> IntType -> CallKernelGen ()
sIota (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem (LetDec GPUMem)
PatElem LetDecMem
pe) (SubExp -> TExp Int64
pe64 SubExp
n) Exp
x' Exp
s' IntType
et
expCompiler (Pat [PatElem (LetDec GPUMem)
pe]) (BasicOp (Replicate Shape
shape SubExp
se))
  | Acc {} <- PatElem LetDecMem -> TypeBase Shape NoUniqueness
forall dec. Typed dec => PatElem dec -> TypeBase Shape NoUniqueness
patElemType PatElem (LetDec GPUMem)
PatElem LetDecMem
pe = () -> CallKernelGen ()
forall a. a -> ImpM GPUMem HostEnv HostOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
  | Bool
otherwise =
      if Shape -> Int
forall a. ArrayShape a => a -> Int
shapeRank Shape
shape Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
        then VName
-> [DimIndex (TExp Int64)]
-> SubExp
-> [DimIndex (TExp Int64)]
-> CallKernelGen ()
forall rep r op.
VName
-> [DimIndex (TExp Int64)]
-> SubExp
-> [DimIndex (TExp Int64)]
-> ImpM rep r op ()
copyDWIM (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem (LetDec GPUMem)
PatElem LetDecMem
pe) [] SubExp
se []
        else VName -> SubExp -> CallKernelGen ()
sReplicate (PatElem LetDecMem -> VName
forall dec. PatElem dec -> VName
patElemName PatElem (LetDec GPUMem)
PatElem LetDecMem
pe) SubExp
se
-- Allocation in the "shared" space is just a placeholder.
expCompiler Pat (LetDec GPUMem)
_ (Op (Alloc SubExp
_ (Space SpaceId
"shared"))) =
  () -> CallKernelGen ()
forall a. a -> ImpM GPUMem HostEnv HostOp a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
expCompiler Pat (LetDec GPUMem)
pat (WithAcc [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
inputs Lambda GPUMem
lam) =
  Pat LetDecMem
-> [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
-> Lambda GPUMem
-> CallKernelGen ()
withAcc Pat (LetDec GPUMem)
Pat LetDecMem
pat [(Shape, [VName], Maybe (Lambda GPUMem, [SubExp]))]
inputs Lambda GPUMem
lam
-- This is a multi-versioning Match created by incremental flattening.
-- We need to augment the conditional with a check that any local
-- memory requirements in tbranch are compatible with the hardware.
-- We do not check anything for defbody, as we assume that it will
-- always be safe (and what would we do if none of the branches would
-- work?).
expCompiler Pat (LetDec GPUMem)
dest (Match [SubExp]
cond (Case (Body GPUMem)
first_case : [Case (Body GPUMem)]
cases) Body GPUMem
defbranch sort :: MatchDec (BranchType GPUMem)
sort@(MatchDec [BranchType GPUMem]
_ MatchSort
MatchEquiv)) = do
  Scope SOACS
scope <- ImpM GPUMem HostEnv HostOp (Scope SOACS)
forall rep (m :: * -> *). HasScope rep m => m (Scope rep)
askScope
  HostCode
tcode <- CallKernelGen () -> ImpM GPUMem HostEnv HostOp HostCode
forall rep r op. ImpM rep r op () -> ImpM rep r op (Code op)
collect (CallKernelGen () -> ImpM GPUMem HostEnv HostOp HostCode)
-> CallKernelGen () -> ImpM GPUMem HostEnv HostOp HostCode
forall a b. (a -> b) -> a -> b
$ Pat (LetDec GPUMem) -> Body GPUMem -> CallKernelGen ()
forall rep r op. Pat (LetDec rep) -> Body rep -> ImpM rep r op ()
compileBody Pat (LetDec GPUMem)
dest (Body GPUMem -> CallKernelGen ())
-> Body GPUMem -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ Case (Body GPUMem) -> Body GPUMem
forall body. Case body -> body
caseBody Case (Body GPUMem)
first_case
  HostCode
fcode <- CallKernelGen () -> ImpM GPUMem HostEnv HostOp HostCode
forall rep r op. ImpM rep r op () -> ImpM rep r op (Code op)
collect (CallKernelGen () -> ImpM GPUMem HostEnv HostOp HostCode)
-> CallKernelGen () -> ImpM GPUMem HostEnv HostOp HostCode
forall a b. (a -> b) -> a -> b
$ ExpCompiler GPUMem HostEnv HostOp
expCompiler Pat (LetDec GPUMem)
dest (Exp GPUMem -> CallKernelGen ()) -> Exp GPUMem -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ [SubExp]
-> [Case (Body GPUMem)]
-> Body GPUMem
-> MatchDec (BranchType GPUMem)
-> Exp GPUMem
forall rep.
[SubExp]
-> [Case (Body rep)]
-> Body rep
-> MatchDec (BranchType rep)
-> Exp rep
Match [SubExp]
cond [Case (Body GPUMem)]
cases Body GPUMem
defbranch MatchDec (BranchType GPUMem)
sort
  Maybe (TExp Bool)
check <- (VName -> Bool) -> HostCode -> CallKernelGen (Maybe (TExp Bool))
checkSharedMemoryReqs (VName -> Scope SOACS -> Bool
forall k a. Ord k => k -> Map k a -> Bool
`M.member` Scope SOACS
scope) HostCode
tcode
  let matches :: TExp Bool
matches = [SubExp] -> [Maybe PrimValue] -> TExp Bool
caseMatch [SubExp]
cond (Case (Body GPUMem) -> [Maybe PrimValue]
forall body. Case body -> [Maybe PrimValue]
casePat Case (Body GPUMem)
first_case)
  HostCode -> CallKernelGen ()
forall op rep r. Code op -> ImpM rep r op ()
emit (HostCode -> CallKernelGen ()) -> HostCode -> CallKernelGen ()
forall a b. (a -> b) -> a -> b
$ case Maybe (TExp Bool)
check of
    Maybe (TExp Bool)
Nothing -> HostCode
fcode
    Just TExp Bool
ok -> TExp Bool -> HostCode -> HostCode -> HostCode
forall a. TExp Bool -> Code a -> Code a -> Code a
Imp.If (TExp Bool
matches TExp Bool -> TExp Bool -> TExp Bool
forall v.
Eq v =>
TPrimExp Bool v -> TPrimExp Bool v -> TPrimExp Bool v
.&&. TExp Bool
ok) HostCode
tcode HostCode
fcode
expCompiler Pat (LetDec GPUMem)
dest Exp GPUMem
e =
  ExpCompiler GPUMem HostEnv HostOp
forall rep (inner :: * -> *) r op.
Mem rep inner =>
Pat (LetDec rep) -> Exp rep -> ImpM rep r op ()
defCompileExp Pat (LetDec GPUMem)
dest Exp GPUMem
e