gasp-1.4.0.0: A framework of algebraic classes
Safe HaskellSafe-Inferred
LanguageHaskell2010

Algebra.Morphism.Exponential

Documentation

newtype Exp a Source #

Constructors

Exp a 

Instances

Instances details
Foldable Exp Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

fold :: Monoid m => Exp m -> m #

foldMap :: Monoid m => (a -> m) -> Exp a -> m #

foldMap' :: Monoid m => (a -> m) -> Exp a -> m #

foldr :: (a -> b -> b) -> b -> Exp a -> b #

foldr' :: (a -> b -> b) -> b -> Exp a -> b #

foldl :: (b -> a -> b) -> b -> Exp a -> b #

foldl' :: (b -> a -> b) -> b -> Exp a -> b #

foldr1 :: (a -> a -> a) -> Exp a -> a #

foldl1 :: (a -> a -> a) -> Exp a -> a #

toList :: Exp a -> [a] #

null :: Exp a -> Bool #

length :: Exp a -> Int #

elem :: Eq a => a -> Exp a -> Bool #

maximum :: Ord a => Exp a -> a #

minimum :: Ord a => Exp a -> a #

sum :: Num a => Exp a -> a #

product :: Num a => Exp a -> a #

Traversable Exp Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

traverse :: Applicative f => (a -> f b) -> Exp a -> f (Exp b) #

sequenceA :: Applicative f => Exp (f a) -> f (Exp a) #

mapM :: Monad m => (a -> m b) -> Exp a -> m (Exp b) #

sequence :: Monad m => Exp (m a) -> m (Exp a) #

Functor Exp Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

fmap :: (a -> b) -> Exp a -> Exp b #

(<$) :: a -> Exp b -> Exp a #

Show a => Show (Exp a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

showsPrec :: Int -> Exp a -> ShowS #

show :: Exp a -> String #

showList :: [Exp a] -> ShowS #

Group a => Division (Exp a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

recip :: Exp a -> Exp a Source #

(/) :: Exp a -> Exp a -> Exp a Source #

(^) :: Exp a -> Integer -> Exp a Source #

Additive a => Multiplicative (Exp a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

(*) :: Exp a -> Exp a -> Exp a Source #

one :: Exp a Source #

(^+) :: Exp a -> Natural -> Exp a Source #

Field a => Roots (Exp a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

sqrt :: Exp a -> Exp a Source #

root :: Integer -> Exp a -> Exp a Source #

(^/) :: Exp a -> Rational -> Exp a Source #

Eq a => Eq (Exp a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

(==) :: Exp a -> Exp a -> Bool #

(/=) :: Exp a -> Exp a -> Bool #

Ord a => Ord (Exp a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

compare :: Exp a -> Exp a -> Ordering #

(<) :: Exp a -> Exp a -> Bool #

(<=) :: Exp a -> Exp a -> Bool #

(>) :: Exp a -> Exp a -> Bool #

(>=) :: Exp a -> Exp a -> Bool #

max :: Exp a -> Exp a -> Exp a #

min :: Exp a -> Exp a -> Exp a #

fromExp :: Exp a -> a Source #

newtype Log a Source #

Constructors

Log a 

Instances

Instances details
Multiplicative a => Scalable Integer (Log a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

(*^) :: Integer -> Log a -> Log a Source #

Show a => Show (Log a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

showsPrec :: Int -> Log a -> ShowS #

show :: Log a -> String #

showList :: [Log a] -> ShowS #

Multiplicative a => Additive (Log a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

(+) :: Log a -> Log a -> Log a Source #

zero :: Log a Source #

times :: Natural -> Log a -> Log a Source #

Division a => Group (Log a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

(-) :: Log a -> Log a -> Log a Source #

subtract :: Log a -> Log a -> Log a Source #

negate :: Log a -> Log a Source #

mult :: Integer -> Log a -> Log a Source #

Eq a => Eq (Log a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

(==) :: Log a -> Log a -> Bool #

(/=) :: Log a -> Log a -> Bool #

Ord a => Ord (Log a) Source # 
Instance details

Defined in Algebra.Morphism.Exponential

Methods

compare :: Log a -> Log a -> Ordering #

(<) :: Log a -> Log a -> Bool #

(<=) :: Log a -> Log a -> Bool #

(>) :: Log a -> Log a -> Bool #

(>=) :: Log a -> Log a -> Bool #

max :: Log a -> Log a -> Log a #

min :: Log a -> Log a -> Log a #

fromLog :: Log a -> a Source #