| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Generic.Data.Surgery.Internal
Description
Operate on data types: insert/modify/delete fields and constructors.
Synopsis
- newtype OR (l :: k -> Type) (x :: k) = OR {
- unOR :: l x
- toOR :: forall a l x. (Generic a, ToORRep a l) => a -> OR l x
- toORLazy :: forall a l x. (Generic a, ToORRepLazy a l) => a -> OR l x
- fromOR' :: forall f l x. FromOR f l => OR l x -> Data f x
- toOR' :: forall f l x. ToOR f l => Data f x -> OR l x
- fromOR :: forall a l x. (Generic a, FromORRep a l) => OR l x -> a
- fromORLazy :: forall a l x. (Generic a, FromORRepLazy a l) => OR l x -> a
- type OROf a = OR (Linearize (Rep a)) ()
- type OROfLazy a = OR (Linearize (Lazify (Rep a))) ()
- type ToORRep a l = ToOR (Rep a) l
- type FromORRep a l = FromOR (Rep a) l
- type ToOR f l = (GLinearize f, Linearize f ~ l, f ~ Arborify l)
- type FromOR f l = (GArborify f, Linearize f ~ l, f ~ Arborify l)
- type ToORRepLazy a l = ToORLazy (Rep a) l
- type FromORRepLazy a l = FromORLazy (Rep a) l
- type FromORLazy f l = (FromOR (Lazify f) l, Coercible (Arborify l) f)
- type ToORLazy f l = (ToOR (Lazify f) l, Coercible f (Arborify l))
- removeCField :: forall n t lt l x. RmvCField n t lt l => OR lt x -> (t, OR l x)
- removeRField :: forall fd n t lt l x. RmvRField fd n t lt l => OR lt x -> (t, OR l x)
- insertCField :: forall n t lt l x. InsCField n t lt l => (t, OR l x) -> OR lt x
- insertCField' :: forall n t lt l x. InsCField n t lt l => t -> OR l x -> OR lt x
- insertRField :: forall fd n t lt l x. InsRField fd n t lt l => (t, OR l x) -> OR lt x
- insertRField' :: forall fd n t lt l x. InsRField fd n t lt l => t -> OR l x -> OR lt x
- modifyCField :: forall n t t' lt lt' l x. ModCField n t t' lt lt' l => (t -> t') -> OR lt x -> OR lt' x
- modifyRField :: forall fd n t t' lt lt' l x. ModRField fd n t t' lt lt' l => (t -> t') -> OR lt x -> OR lt' x
- removeConstr :: forall c n t lc l l_t x. RmvConstr c n t lc l l_t => OR lc x -> Either t (OR l x)
- removeConstrT :: forall c n t lc l l_t x. RmvConstrT c n t lc l l_t => OR lc x -> Either t (OR l x)
- insertConstr :: forall c n t lc l l_t x. InsConstr c n t lc l l_t => Either t (OR l x) -> OR lc x
- insertConstrT :: forall c n t lc l l_t x. InsConstrT c n t lc l l_t => Either t (OR l x) -> OR lc x
- modifyConstr :: forall c n t t' lc lc' l l_t l_t' x. ModConstr c n t t' lc lc' l l_t l_t' => (t -> t') -> OR lc x -> OR lc' x
- modifyConstrT :: forall c n t t' lc lc' l l_t l_t' x. ModConstrT c n t t' lc lc' l l_t l_t' => (t -> t') -> OR lc x -> OR lc' x
- type RmvCField n t lt l = (GRemoveField n lt, CFieldSurgery n t lt l)
- type RmvRField fd n t lt l = (GRemoveField n lt, RFieldSurgery fd n t lt l)
- type InsCField n t lt l = (GInsertField n lt, CFieldSurgery n t lt l)
- type InsRField fd n t lt l = (GInsertField n lt, RFieldSurgery fd n t lt l)
- type ModCField n t t' lt lt' l = (RmvCField n t lt l, InsCField n t' lt' l)
- type ModRField fd n t t' lt lt' l = (RmvRField fd n t lt l, InsRField fd n t' lt' l)
- type RmvConstr c n t lc l l_t = (GRemoveConstr n lc, GArborify (Arborify l_t), ConstrSurgery c n t lc l l_t)
- type RmvConstrT c n t lc l l_t = (RmvConstr c n t lc l l_t, IsTuple (Arity l_t) t)
- type InsConstr c n t lc l l_t = (GInsertConstr n lc, GLinearize (Arborify l_t), ConstrSurgery c n t lc l l_t)
- type InsConstrT c n t lc l l_t = (InsConstr c n t lc l l_t, IsTuple (Arity l_t) t)
- type ModConstr c n t t' lc lc' l l_t l_t' = (RmvConstr c n t lc l l_t, InsConstr c n t' lc' l l_t')
- type ModConstrT c n t t' lc lc' l l_t l_t' = (ModConstr c n t t' lc lc' l l_t l_t', IsTuple (Arity l_t) t, IsTuple (Arity l_t') t')
- type FieldSurgery n t lt l = (t ~ Eval (FieldTypeAt n lt), l ~ Eval (RemoveField n lt))
- type CFieldSurgery n t lt l = (lt ~ Eval (InsertField n Nothing t l), FieldSurgery n t lt l)
- type RFieldSurgery fd n t lt l = (n ~ Eval (FieldIndex fd lt), lt ~ Eval (InsertField n (Just fd) t l), FieldSurgery n t lt l)
- type ConstrSurgery c n t lc l l_t = (Generic t, MatchFields (UnM1 (Rep t)) (Arborify l_t), Coercible (Arborify l_t) (Rep t), n ~ Eval (ConstrIndex c lc), c ~ MetaConsName (MetaOf l_t), l_t ~ Linearize (Arborify l_t), l_t ~ Eval (ConstrAt n lc), lc ~ Eval (InsertConstr n l_t l), l ~ Eval (RemoveConstr n lc))
- type family Linearize (f :: k -> *) :: k -> *
- type family LinearizeSum (f :: k -> *) (tl :: k -> *) :: k -> *
- type family LinearizeProduct (f :: k -> *) (tl :: k -> *) :: k -> *
- class GLinearize f where
- gLinearize :: f x -> Linearize f x
- class GLinearizeSum f tl where
- gLinearizeSum :: Either (f x) (tl x) -> LinearizeSum f tl x
- class GLinearizeProduct f tl where
- gLinearizeProduct :: f x -> tl x -> LinearizeProduct f tl x
- class GArborify f where
- class GArborifySum f tl where
- gArborifySum :: LinearizeSum f tl x -> Either (f x) (tl x)
- class GArborifyProduct f tl where
- gArborifyProduct :: LinearizeProduct f tl x -> (f x, tl x)
- type family Arborify (f :: k -> *) :: k -> *
- data ArborifySum (n :: Nat) (f :: k -> *) :: (k -> *) -> *
- data ArborifyProduct (n :: Nat) (f :: k -> *) :: (k -> *) -> *
- type Arborify' arb op n nDiv2 f g = (Uncurry (Pure2 op) <=< (Bimap (arb nDiv2) (arb (n - nDiv2)) <=< SplitAt nDiv2)) (op f g)
- type family Lazify (f :: k -> *) :: k -> *
- type family LazifyMeta (m :: Meta) :: Meta
- data SplitAt :: Nat -> (k -> *) -> (k -> *, k -> *) -> *
- data FieldTypeAt (n :: Nat) (f :: k -> *) :: * -> *
- type family FieldTypeOf (f :: k -> *) :: *
- data RemoveField (n :: Nat) (f :: k -> *) :: (k -> *) -> *
- type DefaultMetaSel field = MetaSel field NoSourceUnpackedness NoSourceStrictness DecidedLazy
- data InsertField (n :: Nat) (fd :: Maybe Symbol) (t :: *) (f :: k -> *) :: (k -> *) -> *
- data Succ :: Nat -> Nat -> *
- data FieldIndex (field :: Symbol) (f :: k -> *) :: Nat -> *
- type family Arity (f :: k -> *) :: Nat
- type family CoArity (f :: k -> *) :: Nat
- class GRemoveField (n :: Nat) f where
- gRemoveField :: f x -> (Eval (FieldTypeAt n f), Eval (RemoveField n f) x)
- class GInsertField (n :: Nat) f where
- gInsertField :: Eval (FieldTypeAt n f) -> Eval (RemoveField n f) x -> f x
- data ConstrAt (n :: Nat) (f :: k -> *) :: (k -> *) -> *
- data RemoveConstr (n :: Nat) (f :: k -> *) :: (k -> *) -> *
- data InsertConstr (n :: Nat) (t :: k -> *) (f :: k -> *) :: (k -> *) -> *
- data ConstrIndex (con :: Symbol) (f :: k -> *) :: Nat -> *
- class GRemoveConstr (n :: Nat) f where
- gRemoveConstr :: f x -> Either (Eval (ConstrAt n f) x) (Eval (RemoveConstr n f) x)
- class GInsertConstr (n :: Nat) f where
- gInsertConstr :: Either (Eval (ConstrAt n f) x) (Eval (RemoveConstr n f) x) -> f x
- class MatchFields (f :: k -> *) (g :: k -> *)
- class IsTuple (n :: Nat) (t :: k)
Documentation
newtype OR (l :: k -> Type) (x :: k) Source #
A sterile Operating Room, where generic data comes to be altered.
Generic representation in a simplified shape l at the type level
(reusing the constructors from GHC.Generics for convenience).
This representation makes it easy to modify fields and constructors.
We may also refer to the representation l as a "row" of constructors,
if it represents a sum type, otherwise it is a "row" of unnamed fields or
record fields for single-constructor types.
x corresponds to the last parameter of Rep, and is currently ignored by
this module (no support for Generic1).
General sketch
toOR surgeries fromOR'
data MyType --------> OR (Rep MyType) ----------> OR alteredRep ---------> Data alteredRep
|
| myGenericFun :: Generic a => a -> a
fromOR surgeries toOR' v
data MyType <-------- OR (Rep MyType) <---------- OR alteredRep <--------- Data alteredRep
If instead myGenericFun is only a consumer of a (resp. producer),
then you only need the top half of the diagram (resp. bottom half).
For example, in aeson:
genericToJSON (consumer), genericParseJSON (producer).
toOR :: forall a l x. (Generic a, ToORRep a l) => a -> OR l x Source #
Move fresh data to the Operating Room, where surgeries can be applied.
Convert a generic type to a generic representation.
When inserting or removing fields, there may be a mismatch with strict/unpacked fields.
To work around this, you can switch to toORLazy, if your operations don't care about
dealing with a normalized Rep (in which all the strictness annotations have been
replaced with lazy defaults).
Details
toORLazy :: forall a l x. (Generic a, ToORRepLazy a l) => a -> OR l x Source #
Move normalized data to the Operating Room, where surgeries can be applied.
Convert a generic type to a generic representation, in which all the strictness annotations have been normalized to lazy defaults.
This variant is useful when one needs to operate on fields whose Rep has different
strictness annotations than the ones used by DefaultMetaSel.
Details
fromOR' :: forall f l x. FromOR f l => OR l x -> Data f x Source #
Move altered data out of the Operating Room, to be consumed by some generic function.
Convert a generic representation to a "synthetic" type that behaves like a generic type.
Details
Type parameters
f :: k ->Type--Genericrepresentation (proper) l :: k ->Type-- Generic representation (simplified) x :: k -- Ignored
Functional dependencies
f -> l l -> f
Implementation details
The synthesized representation is made of balanced binary trees, corresponding closely to what GHC would generate for an actual data type.
That structure assumed by at least one piece of code out there (aeson).
fromOR :: forall a l x. (Generic a, FromORRep a l) => OR l x -> a Source #
Move restored data out of the Operating Room and back to the real world.
The inverse of toOR.
It may be useful to annotate the output type of fromOR,
since the rest of the type depends on it and the only way to infer it
otherwise is from the context. The following annotations are possible:
fromOR::OROfa -> afromOR@a -- with TypeApplications
When inserting or removing fields, there may be a mismatch with strict/unpacked fields.
To work around this, you can switch to fromORLazy, if your operations don't care
about dealing with a normalized Rep (in which all the strictness annotations have
been replaced with lazy defaults).
Details
fromORLazy :: forall a l x. (Generic a, FromORRepLazy a l) => OR l x -> a Source #
Move normalized data out of the Operating Room and back to the real world.
The inverse of toORLazy.
It may be useful to annotate the output type of fromORLazy,
since the rest of the type depends on it and the only way to infer it
otherwise is from the context. The following annotations are possible:
fromORLazy::OROfLazya -> afromORLazy@a -- with TypeApplications
Details
type OROfLazy a = OR (Linearize (Lazify (Rep a))) () Source #
The simplified and normalized generic representation type of type a,
that toORLazy and fromORLazy convert to and from.
type ToORRepLazy a l = ToORLazy (Rep a) l Source #
type FromORRepLazy a l = FromORLazy (Rep a) l Source #
type FromORLazy f l = (FromOR (Lazify f) l, Coercible (Arborify l) f) Source #
Similar to FromLazyORRep, but as a constraint on the standard
generic representation of a directly, f ~ .Rep a
type ToORLazy f l = (ToOR (Lazify f) l, Coercible f (Arborify l)) Source #
Similar to ToORRepLazy, but as a constraint on the standard
generic representation of a directly, f ~ .Rep a
removeCField :: forall n t lt l x. RmvCField n t lt l => OR lt x -> (t, OR l x) Source #
: remove the removeCField @n @tn-th field, of type t, in a
non-record single-constructor type.
Inverse of insertCField.
Details
removeRField :: forall fd n t lt l x. RmvRField fd n t lt l => OR lt x -> (t, OR l x) Source #
: remove the field removeRField @"fdName" @n @tfdName
at position n of type t in a record type.
Inverse of insertRField.
Details
Type parameters
fd ::Symbol-- Field name n ::Nat-- Field position t ::Type-- Field type lt :: k ->Type-- Row with field l :: k ->Type-- Row without field x :: k -- Ignored
Signature
ORlt x -- Data with field -> (t,ORl x) -- Field value × Data without field
Functional dependencies
fd lt -> n t l n lt -> fd t l fd n t l -> lt
insertCField :: forall n t lt l x. InsCField n t lt l => (t, OR l x) -> OR lt x Source #
: insert a field of type insertCField @n @tt
at position n in a non-record single-constructor type.
Inverse of removeCField.
Details
insertCField' :: forall n t lt l x. InsCField n t lt l => t -> OR l x -> OR lt x Source #
Curried insertCField.
insertRField :: forall fd n t lt l x. InsRField fd n t lt l => (t, OR l x) -> OR lt x Source #
: insert a field
named insertRField @"fdName" @n @tfdName of type t at position n in a record type.
Inverse of removeRField.
Details
Type parameters
fd ::Symbol-- Field name n ::Nat-- Field position t ::Type-- Field type lt :: k ->Type-- Row with field l :: k ->Type-- Row without field x :: k -- Ignored
Signature
(t,ORl x) -- Field value × Data without field ->ORlt x -- Data with field
Functional dependencies
fd lt -> n t l n lt -> fd t l fd n t l -> lt
insertRField' :: forall fd n t lt l x. InsRField fd n t lt l => t -> OR l x -> OR lt x Source #
Curried insertRField.
modifyCField :: forall n t t' lt lt' l x. ModCField n t t' lt lt' l => (t -> t') -> OR lt x -> OR lt' x Source #
: modify the field at position modifyCField @n @t @t'n in a
non-record via a function f :: t -> t' (changing the type of the field).
Details
Type parameters
n ::Nat-- Field position t ::Type-- Initial field type t' ::Type-- Final field type lt :: k ->Type-- Row with initial field lt' :: k ->Type-- Row with final field l :: k ->Type-- Row without field x :: k -- Ignored
Signature
(t -> t') -- Field modification ->ORlt x -- Data with field t ->ORlt' x -- Data with field t'
Functional dependencies
n lt -> t l n lt' -> t' l n t l -> lt n t' l -> lt'
modifyRField :: forall fd n t t' lt lt' l x. ModRField fd n t t' lt lt' l => (t -> t') -> OR lt x -> OR lt' x Source #
: modify the field
modifyRField @"fdName" @n @t @t'fdName at position n in a record via a function f :: t -> t'
(changing the type of the field).
Details
Type parameters
fd ::Symbol-- Field name n ::Nat-- Field position t ::Type-- Initial field type t' ::Type-- Final field type lt :: k ->Type-- Row with initial field lt' :: k ->Type-- Row with final field l :: k ->Type-- Row without field x :: k -- Ignored
Signature
(t -> t') -- Field modification ->ORlt x -- Data with field t ->ORlt' x -- Data with field t'
Functional dependencies
fd lt -> n t l fd lt' -> n t' l n lt -> fd t l n lt' -> fd t' l fd n t l -> lt fd n t' l -> lt'
removeConstr :: forall c n t lc l l_t x. RmvConstr c n t lc l l_t => OR lc x -> Either t (OR l x) Source #
: remove the removeConstr @"C" @n @tn-th constructor, named C,
with contents isomorphic to the tuple t.
Inverse of insertConstr.
Details
Type parameters
c ::Symbol-- Constructor name t ::Type-- Tuple type to hold c's contents n ::Nat-- Constructor position lc :: k ->Type-- Row with constructor l :: k ->Type-- Row without constructor l_t :: k ->Type-- Field row of constructor c x :: k -- Ignored
Signature
ORlc x -- Data with constructor -> Either t (ORl x) -- Constructor (as a tuple) | Data without constructor
Functional dependencies
c lc -> n l l_t n lc -> c l l_t c n l l_t -> lc
Note that there is no dependency to determine t.
removeConstrT :: forall c n t lc l l_t x. RmvConstrT c n t lc l l_t => OR lc x -> Either t (OR l x) Source #
A variant of removeConstr that can infer the tuple type t to hold
the contents of the removed constructor.
See removeConstr.
Details
Extra functional dependency
l_t -> t
insertConstr :: forall c n t lc l l_t x. InsConstr c n t lc l l_t => Either t (OR l x) -> OR lc x Source #
: insert a constructor insertConstr @"C" @n @tC at position n
with contents isomorphic to the tuple t.
Inverse of removeConstr.
Details
Type parameters
c ::Symbol-- Constructor name t ::Type-- Tuple type to hold c's contents n ::Nat-- Constructor position lc :: k ->Type-- Row with constructor l :: k ->Type-- Row without constructor l_t :: k ->Type-- Field row of constructor c x :: k -- Ignored
Signature
Either t (ORl x) -- Constructor (as a tuple) | Data without constructor ->ORlc x -- Data with constructor
Functional dependencies
c lc -> n l l_t n lc -> c l l_t c n l l_t -> lc
Note that there is no dependency to determine t.
insertConstrT :: forall c n t lc l l_t x. InsConstrT c n t lc l l_t => Either t (OR l x) -> OR lc x Source #
A variant of insertConstr that can infer the tuple type t to hold
the contents of the inserted constructor.
See insertConstr.
Details
Extra functional dependency
l_t -> t
modifyConstr :: forall c n t t' lc lc' l l_t l_t' x. ModConstr c n t t' lc lc' l l_t l_t' => (t -> t') -> OR lc x -> OR lc' x Source #
: modify the modifyConstr @"C" @n @t @t'n-th constructor,
named C, with contents isomorphic to the tuple t, to another tuple t'.
Details
Type parameters
c ::Symbol-- Constructor name t ::Type-- Tuple type to hold c's initial contents t' ::Type-- Tuple type to hold c's final contents n ::Nat-- Constructor position lc :: k ->Type-- Row with initial constructor lc' :: k ->Type-- Row with final constructor l :: k ->Type-- Row without constructor l_t :: k ->Type-- Initial field row of constructor c l_t' :: k ->Type-- Final field row of constructor c x :: k -- Ignored
Signature
(t -> t') -- Constructor modification ->ORlc x -- Data with initial constructor ->ORlc' x -- Data with final constructor
Functional dependencies
c lc -> n l l_t c lc' -> n l l_t' n lc -> c l l_t n lc' -> c l l_t' c n l l_t -> lc c n l l_t' -> lc'
Note that there is no dependency to determine t and t'.
modifyConstrT :: forall c n t t' lc lc' l l_t l_t' x. ModConstrT c n t t' lc lc' l l_t l_t' => (t -> t') -> OR lc x -> OR lc' x Source #
A variant of modifyConstr that can infer the tuple types t and t' to
hold the contents of the inserted constructor.
See modifyConstr.
Details
Extra functional dependencies
l_t -> t l_t' -> t'
type RmvCField n t lt l = (GRemoveField n lt, CFieldSurgery n t lt l) Source #
This constraint means that the (unnamed) field row lt contains
a field of type t at position n, and removing it yields row l.
type RmvRField fd n t lt l = (GRemoveField n lt, RFieldSurgery fd n t lt l) Source #
This constraint means that the record field row lt contains a field of
type t named fd at position n, and removing it yields row l.
type InsCField n t lt l = (GInsertField n lt, CFieldSurgery n t lt l) Source #
This constraint means that inserting a field t at position n in the
(unnamed) field row l yields row lt.
type InsRField fd n t lt l = (GInsertField n lt, RFieldSurgery fd n t lt l) Source #
This constraint means that inserting a field t named fd at position
n in the record field row l yields row lt.
type ModCField n t t' lt lt' l = (RmvCField n t lt l, InsCField n t' lt' l) Source #
This constraint means that modifying a field t to t' at position n
in the (unnamed) field row lt yields row lt'.
l is the row of fields common to lt and lt'.
type ModRField fd n t t' lt lt' l = (RmvRField fd n t lt l, InsRField fd n t' lt' l) Source #
This constraint means that modifying a field t named fd at position n
to t' in the record field row lt yields row lt'.
l is the row of fields common to lt and lt'.
type RmvConstr c n t lc l l_t = (GRemoveConstr n lc, GArborify (Arborify l_t), ConstrSurgery c n t lc l l_t) Source #
This constraint means that the constructor row lc contains a constructor
named c at position n, and removing it from lc yields row l.
Furthermore, constructor c contains a field row l_t compatible with the
tuple type t.
type RmvConstrT c n t lc l l_t = (RmvConstr c n t lc l l_t, IsTuple (Arity l_t) t) Source #
A variant of RmvConstr allowing t to be inferred.
type InsConstr c n t lc l l_t = (GInsertConstr n lc, GLinearize (Arborify l_t), ConstrSurgery c n t lc l l_t) Source #
This constraint means that inserting a constructor c at position n
in the constructor row l yields row lc.
Furthermore, constructor c contains a field row l_t compatible with the
tuple type t.
type InsConstrT c n t lc l l_t = (InsConstr c n t lc l l_t, IsTuple (Arity l_t) t) Source #
A variant of InsConstr allowing t to be inferred.
type ModConstr c n t t' lc lc' l l_t l_t' = (RmvConstr c n t lc l l_t, InsConstr c n t' lc' l l_t') Source #
This constraint means that the constructor row lc contains a constructor
named c at position n of type isomorphic to t, and modifying it to
t' yields row lc'.
type ModConstrT c n t t' lc lc' l l_t l_t' = (ModConstr c n t t' lc lc' l l_t l_t', IsTuple (Arity l_t) t, IsTuple (Arity l_t') t') Source #
A variant of ModConstr allowing t and t' to be inferred.
type FieldSurgery n t lt l = (t ~ Eval (FieldTypeAt n lt), l ~ Eval (RemoveField n lt)) Source #
type CFieldSurgery n t lt l = (lt ~ Eval (InsertField n Nothing t l), FieldSurgery n t lt l) Source #
type RFieldSurgery fd n t lt l = (n ~ Eval (FieldIndex fd lt), lt ~ Eval (InsertField n (Just fd) t l), FieldSurgery n t lt l) Source #
type ConstrSurgery c n t lc l l_t = (Generic t, MatchFields (UnM1 (Rep t)) (Arborify l_t), Coercible (Arborify l_t) (Rep t), n ~ Eval (ConstrIndex c lc), c ~ MetaConsName (MetaOf l_t), l_t ~ Linearize (Arborify l_t), l_t ~ Eval (ConstrAt n lc), lc ~ Eval (InsertConstr n l_t l), l ~ Eval (RemoveConstr n lc)) Source #
type family LinearizeSum (f :: k -> *) (tl :: k -> *) :: k -> * Source #
Instances
| type LinearizeSum (V1 :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type LinearizeSum (f :+: g :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type LinearizeSum (M1 c m f :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type LinearizeSum (M1 c m f :: k -> Type) (tl :: k -> Type) = M1 c m (LinearizeProduct f (U1 :: k -> Type)) :+: tl | |
type family LinearizeProduct (f :: k -> *) (tl :: k -> *) :: k -> * Source #
Instances
| type LinearizeProduct (U1 :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type LinearizeProduct (f :*: g :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type LinearizeProduct (f :*: g :: k -> Type) (tl :: k -> Type) = LinearizeProduct f (LinearizeProduct g tl) | |
| type LinearizeProduct (M1 s m f :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
class GLinearize f where Source #
Methods
gLinearize :: f x -> Linearize f x Source #
Instances
| GLinearizeSum f (V1 :: k -> Type) => GLinearize (M1 D m f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| GLinearizeProduct f (U1 :: k -> Type) => GLinearize (M1 C m f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
class GLinearizeSum f tl where Source #
Methods
gLinearizeSum :: Either (f x) (tl x) -> LinearizeSum f tl x Source #
Instances
| GLinearizeSum (V1 :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gLinearizeSum :: Either (V1 x) (tl x) -> LinearizeSum V1 tl x Source # | |
| (GLinearizeSum g tl, GLinearizeSum f (LinearizeSum g tl)) => GLinearizeSum (f :+: g :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gLinearizeSum :: Either ((f :+: g) x) (tl x) -> LinearizeSum (f :+: g) tl x Source # | |
| GLinearizeProduct f (U1 :: k -> Type) => GLinearizeSum (M1 c m f :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gLinearizeSum :: Either (M1 c m f x) (tl x) -> LinearizeSum (M1 c m f) tl x Source # | |
class GLinearizeProduct f tl where Source #
Methods
gLinearizeProduct :: f x -> tl x -> LinearizeProduct f tl x Source #
Instances
| GLinearizeProduct (U1 :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gLinearizeProduct :: U1 x -> tl x -> LinearizeProduct U1 tl x Source # | |
| (GLinearizeProduct g tl, GLinearizeProduct f (LinearizeProduct g tl)) => GLinearizeProduct (f :*: g :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gLinearizeProduct :: (f :*: g) x -> tl x -> LinearizeProduct (f :*: g) tl x Source # | |
| GLinearizeProduct (M1 s m f :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gLinearizeProduct :: M1 s m f x -> tl x -> LinearizeProduct (M1 s m f) tl x Source # | |
class GArborifySum f tl where Source #
Methods
gArborifySum :: LinearizeSum f tl x -> Either (f x) (tl x) Source #
Instances
| GArborifySum (V1 :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gArborifySum :: LinearizeSum V1 tl x -> Either (V1 x) (tl x) Source # | |
| (GArborifySum g tl, GArborifySum f (LinearizeSum g tl)) => GArborifySum (f :+: g :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gArborifySum :: LinearizeSum (f :+: g) tl x -> Either ((f :+: g) x) (tl x) Source # | |
| GArborifyProduct f (U1 :: k -> Type) => GArborifySum (M1 c m f :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gArborifySum :: LinearizeSum (M1 c m f) tl x -> Either (M1 c m f x) (tl x) Source # | |
class GArborifyProduct f tl where Source #
Methods
gArborifyProduct :: LinearizeProduct f tl x -> (f x, tl x) Source #
Instances
| GArborifyProduct (U1 :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gArborifyProduct :: LinearizeProduct U1 tl x -> (U1 x, tl x) Source # | |
| (GArborifyProduct g tl, GArborifyProduct f (LinearizeProduct g tl)) => GArborifyProduct (f :*: g :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gArborifyProduct :: LinearizeProduct (f :*: g) tl x -> ((f :*: g) x, tl x) Source # | |
| GArborifyProduct (M1 s m f :: k -> Type) (tl :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gArborifyProduct :: LinearizeProduct (M1 s m f) tl x -> (M1 s m f x, tl x) Source # | |
data ArborifySum (n :: Nat) (f :: k -> *) :: (k -> *) -> * Source #
data ArborifyProduct (n :: Nat) (f :: k -> *) :: (k -> *) -> * Source #
Instances
| type Eval (ArborifyProduct n (U1 :: k -> Type) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (ArborifyProduct n (M1 C s f) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type Eval (ArborifyProduct n (M1 C s f) :: (k -> Type) -> Type) = M1 C s (Eval (ArborifyProduct n f)) | |
| type Eval (ArborifyProduct n (f :*: g) :: (k -> Type) -> Type) Source # | |
type Arborify' arb op n nDiv2 f g = (Uncurry (Pure2 op) <=< (Bimap (arb nDiv2) (arb (n - nDiv2)) <=< SplitAt nDiv2)) (op f g) Source #
type family Lazify (f :: k -> *) :: k -> * Source #
Instances
| type Lazify (V1 :: k -> Type) Source # | |
| type Lazify (U1 :: k -> Type) Source # | |
| type Lazify (K1 i c :: k -> Type) Source # | |
| type Lazify (f :+: g :: k -> Type) Source # | |
| type Lazify (f :*: g :: k -> Type) Source # | |
| type Lazify (M1 i m f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
type family LazifyMeta (m :: Meta) :: Meta Source #
Instances
| type LazifyMeta (MetaCons n f s) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type LazifyMeta (MetaData n m p nt) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type LazifyMeta (MetaSel mn su ss ds) Source # | |
Defined in Generic.Data.Surgery.Internal type LazifyMeta (MetaSel mn su ss ds) = MetaSel mn NoSourceUnpackedness NoSourceStrictness DecidedLazy | |
data SplitAt :: Nat -> (k -> *) -> (k -> *, k -> *) -> * Source #
Instances
| type Eval (SplitAt n (f :*: g) :: (k -> Type, k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type Eval (SplitAt n (f :*: g) :: (k -> Type, k -> Type) -> Type) = Eval (If (n == 0) (Pure ((,) (U1 :: k -> Type) (f :*: g))) ((Bimap (Pure2 ((:*:) :: (k -> Type) -> (k -> Type) -> k -> Type) f) (Pure :: (k -> Type) -> (k -> Type) -> Type) :: (k -> Type, k -> Type) -> (k -> Type, k -> Type) -> Type) =<< SplitAt (n - 1) g)) | |
| type Eval (SplitAt n (f :+: g) :: (k -> Type, k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type Eval (SplitAt n (f :+: g) :: (k -> Type, k -> Type) -> Type) = Eval (If (n == 0) (Pure ((,) (V1 :: k -> Type) (f :+: g))) ((Bimap (Pure2 ((:+:) :: (k -> Type) -> (k -> Type) -> k -> Type) f) (Pure :: (k -> Type) -> (k -> Type) -> Type) :: (k -> Type, k -> Type) -> (k -> Type, k -> Type) -> Type) =<< SplitAt (n - 1) g)) | |
data FieldTypeAt (n :: Nat) (f :: k -> *) :: * -> * Source #
Instances
| type Eval (FieldTypeAt n (f :+: (V1 :: k -> Type)) :: Type -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (FieldTypeAt n (M1 i c f) :: Type -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (FieldTypeAt n (f :*: g) :: Type -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type Eval (FieldTypeAt n (f :*: g) :: Type -> Type) = Eval (If (n == 0) (Pure (FieldTypeOf f)) (FieldTypeAt (n - 1) g)) | |
type family FieldTypeOf (f :: k -> *) :: * Source #
Instances
| type FieldTypeOf (M1 s m (K1 i a :: k -> Type) :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
data RemoveField (n :: Nat) (f :: k -> *) :: (k -> *) -> * Source #
Instances
| type Eval (RemoveField n (f :*: g) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (RemoveField n (f :+: (V1 :: k -> Type)) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (RemoveField n (M1 i m f) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
type DefaultMetaSel field = MetaSel field NoSourceUnpackedness NoSourceStrictness DecidedLazy Source #
data InsertField (n :: Nat) (fd :: Maybe Symbol) (t :: *) (f :: k -> *) :: (k -> *) -> * Source #
Instances
| type Eval (InsertField 0 fd t (U1 :: k -> Type) :: (k -> Type) -> Type) Source # | |
| type Eval (InsertField n fd t (f :*: g) :: (k -> Type) -> Type) Source # | |
| type Eval (InsertField n fd t (f :+: (V1 :: k -> Type)) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (InsertField n fd t (M1 C m f) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type Eval (InsertField n fd t (M1 C m f) :: (k -> Type) -> Type) = M1 C m (Eval (InsertField n fd t f)) | |
| type Eval (InsertField n fd t (M1 D m f) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal type Eval (InsertField n fd t (M1 D m f) :: (k -> Type) -> Type) = M1 D m (Eval (InsertField n fd t f)) | |
data FieldIndex (field :: Symbol) (f :: k -> *) :: Nat -> * Source #
Position of a record field
Instances
| type Eval (FieldIndex field (M1 S (MetaSel (Just field') su ss ds) f :*: g) :: Nat -> Type) Source # | |
| type Eval (FieldIndex field (f :+: (V1 :: k -> Type)) :: Nat -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (FieldIndex field (M1 C m f) :: Nat -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (FieldIndex field (M1 D m f) :: Nat -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
type family Arity (f :: k -> *) :: Nat Source #
Number of fields of a single constructor
Instances
| type Arity (U1 :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Arity (K1 i c :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Arity (f :*: g :: k -> Type) Source # | |
| type Arity (f :+: (V1 :: k -> Type) :: k -> Type) Source # | |
| type Arity (M1 d m f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
type family CoArity (f :: k -> *) :: Nat Source #
Number of constructors of a data type
class GRemoveField (n :: Nat) f where Source #
Methods
gRemoveField :: f x -> (Eval (FieldTypeAt n f), Eval (RemoveField n f) x) Source #
Instances
| (If (n == 0) () (GRemoveField (n - 1) g), IsBool (n == 0)) => GRemoveField n (M1 s m (K1 i t :: k -> Type) :*: g :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| GRemoveField n f => GRemoveField n (f :+: (V1 :: k -> Type) :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gRemoveField :: (f :+: V1) x -> (Eval (FieldTypeAt n (f :+: V1)), Eval (RemoveField n (f :+: V1)) x) Source # | |
| GRemoveField n f => GRemoveField n (M1 i c f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gRemoveField :: M1 i c f x -> (Eval (FieldTypeAt n (M1 i c f)), Eval (RemoveField n (M1 i c f)) x) Source # | |
class GInsertField (n :: Nat) f where Source #
Methods
gInsertField :: Eval (FieldTypeAt n f) -> Eval (RemoveField n f) x -> f x Source #
Instances
| (If (n == 0) () (GInsertField (n - 1) g), IsBool (n == 0)) => GInsertField n (M1 s m (K1 i t :: k -> Type) :*: g :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| GInsertField n f => GInsertField n (f :+: (V1 :: k -> Type) :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gInsertField :: Eval (FieldTypeAt n (f :+: V1)) -> Eval (RemoveField n (f :+: V1)) x -> (f :+: V1) x Source # | |
| GInsertField n f => GInsertField n (M1 i c f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal Methods gInsertField :: Eval (FieldTypeAt n (M1 i c f)) -> Eval (RemoveField n (M1 i c f)) x -> M1 i c f x Source # | |
data ConstrAt (n :: Nat) (f :: k -> *) :: (k -> *) -> * Source #
data RemoveConstr (n :: Nat) (f :: k -> *) :: (k -> *) -> * Source #
Instances
| type Eval (RemoveConstr n (f :+: g) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (RemoveConstr n (M1 i m f) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
data InsertConstr (n :: Nat) (t :: k -> *) (f :: k -> *) :: (k -> *) -> * Source #
Instances
| type Eval (InsertConstr 0 t (V1 :: k -> Type) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| type Eval (InsertConstr n t (f :+: g) :: (k -> Type) -> Type) Source # | |
| type Eval (InsertConstr n t (M1 i m f) :: (k -> Type) -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
data ConstrIndex (con :: Symbol) (f :: k -> *) :: Nat -> * Source #
class GRemoveConstr (n :: Nat) f where Source #
Methods
gRemoveConstr :: f x -> Either (Eval (ConstrAt n f) x) (Eval (RemoveConstr n f) x) Source #
Instances
| (If (n == 0) () (GRemoveConstr (n - 1) g), IsBool (n == 0)) => GRemoveConstr n (f :+: g :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| GRemoveConstr n f => GRemoveConstr n (M1 i c f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
class GInsertConstr (n :: Nat) f where Source #
Methods
gInsertConstr :: Either (Eval (ConstrAt n f) x) (Eval (RemoveConstr n f) x) -> f x Source #
Instances
| (If (n == 0) () (GInsertConstr (n - 1) g), IsBool (n == 0)) => GInsertConstr n (f :+: g :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| GInsertConstr n f => GInsertConstr n (M1 i c f :: k -> Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
class MatchFields (f :: k -> *) (g :: k -> *) Source #
Generate equality constraints between fields of two matching generic representations.
Instances
class IsTuple (n :: Nat) (t :: k) Source #
Instances
| t ~ () => IsTuple 0 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| t ~ Identity a => IsTuple 1 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| t ~ (a, b) => IsTuple 2 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| t ~ (a, b, c) => IsTuple 3 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| t ~ (a, b, c, d) => IsTuple 4 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| t ~ (a, b, c, d, e) => IsTuple 5 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| t ~ (a, b, c, d, e, f) => IsTuple 6 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |
| t ~ (a, b, c, d, e, f, g) => IsTuple 7 (t :: Type) Source # | |
Defined in Generic.Data.Surgery.Internal | |