Safe Haskell | None |
---|---|
Language | Haskell2010 |
This module defines the internals of a line. You probably won't need this module when using the geomtry libary.
Documentation
This type modells a infinite line.
InfLine (p a) (p a) |
Functor p => Functor (InfLine p) Source |
|
Translate p => Translate (InfLine p) Source | Translate a line by a given vector. |
(Point p, Eq a, Fractional a) => Intersect (p a) (InfLine p a) Source | |
(Eq (p a), Eq a, RealFloat a, Num (p a), Point p) => Eq (InfLine p a) Source | Two lines are equal when they have the same root and the same slope. If the two lines do not have a root, that means that the lines are parallel to the x-axis. In this case we compare their y-value. |
Read (p a) => Read (InfLine p a) Source | |
Show (p a) => Show (InfLine p a) Source | |
(Eq (p a), Arbitrary (p a)) => Arbitrary (InfLine p a) Source | |
(Point p, Eq a, Fractional a) => Intersect (InfLine p a) (p a) Source | |
(Eq (p a), Point p, Num (p a), RealFloat a) => Intersect (FinLine p a) (InfLine p a) Source | |
(Eq (p a), Point p, Num (p a), RealFloat a) => Intersect (InfLine p a) (FinLine p a) Source | |
(Eq (p a), Num (p a), Num a, RealFloat a, Point p) => Intersect (InfLine p a) (InfLine p a) Source |
Modells a finite line stretching between two points.
FinLine (p a) (p a) | We expect the two points to be different |
Point p => Distance p (FinLine p) Source | |
Translate p => Translate (FinLine p) Source | Translate a |
Point p => Distance (FinLine p) p Source | |
Eq (p a) => Eq (FinLine p a) Source | Two lines are equal if their end points are equal. FinLine a b == FinLine b a |
Read (p a) => Read (FinLine p a) Source | |
Show (p a) => Show (FinLine p a) Source | |
(Eq (p a), Arbitrary (p a)) => Arbitrary (FinLine p a) Source | |
AEq (p a) => AEq (FinLine p a) Source | Two lines are almost equal if their ending points are almost equal. |
(Eq (p a), Point p, Num (p a), RealFloat a) => Intersect (FinLine p a) (InfLine p a) Source | |
(Eq (p a), Point p, Num (p a), RealFloat a) => Intersect (FinLine p a) (FinLine p a) Source | |
(Point p, RealFloat a, Ord a, Eq (p a)) => Intersect (FinLine p a) (Shape p a) Source | |
(RealFloat a, Eq a, Eq (p a), Point p) => Intersect (FinLine p a) (Polygon p a) Source | |
(Distance p (FinLine p), Floating a, Ord a) => Intersect (FinLine p a) (Circle p a) Source | |
(Eq (p a), Point p, Num (p a), RealFloat a) => Intersect (InfLine p a) (FinLine p a) Source | |
(Point p, RealFloat a, Ord a, Eq (p a)) => Intersect (Shape p a) (FinLine p a) Source | |
(RealFloat a, Eq a, Eq (p a), Point p) => Intersect (Polygon p a) (FinLine p a) Source | |
(Distance p (FinLine p), Floating a, Ord a) => Intersect (Circle p a) (FinLine p a) Source |