{-# LANGUAGE CPP, DeriveFunctor, TypeFamilies, ScopedTypeVariables, TypeApplications,
DerivingStrategies, GeneralizedNewtypeDeriving #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates -Wno-incomplete-uni-patterns #-}
module GHC.Tc.Solver.Monad (
WorkList(..), isEmptyWorkList, emptyWorkList,
extendWorkListNonEq, extendWorkListCt,
extendWorkListCts, extendWorkListEq,
appendWorkList,
selectNextWorkItem,
workListSize,
getWorkList, updWorkListTcS, pushLevelNoWorkList,
TcS, runTcS, runTcSDeriveds, runTcSWithEvBinds, runTcSInerts,
failTcS, warnTcS, addErrTcS, wrapTcS,
runTcSEqualities,
nestTcS, nestImplicTcS, setEvBindsTcS,
emitImplicationTcS, emitTvImplicationTcS,
runTcPluginTcS, addUsedGRE, addUsedGREs, keepAlive,
matchGlobalInst, TcM.ClsInstResult(..),
QCInst(..),
panicTcS, traceTcS,
traceFireTcS, bumpStepCountTcS, csTraceTcS,
wrapErrTcS, wrapWarnTcS,
resetUnificationFlag, setUnificationFlag,
MaybeNew(..), freshGoals, isFresh, getEvExpr,
newTcEvBinds, newNoTcEvBinds,
newWantedEq, newWantedEq_SI, emitNewWantedEq,
newWanted, newWanted_SI, newWantedEvVar,
newWantedNC, newWantedEvVarNC,
newDerivedNC,
newBoundEvVarId,
unifyTyVar, reportUnifications,
setEvBind, setWantedEq,
setWantedEvTerm, setEvBindIfWanted,
newEvVar, newGivenEvVar, newGivenEvVars,
emitNewDeriveds, emitNewDerivedEq,
checkReductionDepth,
getSolvedDicts, setSolvedDicts,
getInstEnvs, getFamInstEnvs,
getTopEnv, getGblEnv, getLclEnv,
getTcEvBindsVar, getTcLevel,
getTcEvTyCoVars, getTcEvBindsMap, setTcEvBindsMap,
tcLookupClass, tcLookupId,
InertSet(..), InertCans(..), emptyInert,
updInertTcS, updInertCans, updInertDicts, updInertIrreds,
getHasGivenEqs, setInertCans,
getInertEqs, getInertCans, getInertGivens,
getInertInsols, getInnermostGivenEqLevel,
getTcSInerts, setTcSInerts,
matchableGivens, prohibitedSuperClassSolve, mightMatchLater,
getUnsolvedInerts,
removeInertCts, getPendingGivenScs,
addInertCan, insertFunEq, addInertForAll,
emitWorkNC, emitWork,
isImprovable,
kickOutAfterUnification,
addInertSafehask, insertSafeOverlapFailureTcS, updInertSafehask,
getSafeOverlapFailures,
DictMap, emptyDictMap, lookupInertDict, findDictsByClass, addDict,
addDictsByClass, delDict, foldDicts, filterDicts, findDict,
EqualCtList(..), findTyEqs, foldTyEqs,
findEq,
addSolvedDict, lookupSolvedDict,
foldIrreds,
lookupFamAppInert, lookupFamAppCache, extendFamAppCache,
pprKicked,
findFunEq, findFunEqsByTyCon,
instDFunType,
newFlexiTcSTy, instFlexi, instFlexiX,
cloneMetaTyVar,
tcInstSkolTyVarsX,
TcLevel,
isFilledMetaTyVar_maybe, isFilledMetaTyVar,
zonkTyCoVarsAndFV, zonkTcType, zonkTcTypes, zonkTcTyVar, zonkCo,
zonkTyCoVarsAndFVList,
zonkSimples, zonkWC,
zonkTyCoVarKind,
newTcRef, readTcRef, writeTcRef, updTcRef,
getDefaultInfo, getDynFlags, getGlobalRdrEnvTcS,
matchFam, matchFamTcM,
checkWellStagedDFun,
pprEq,
breakTyVarCycle, rewriterView
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Driver.Env
import qualified GHC.Tc.Utils.Instantiate as TcM
import GHC.Core.InstEnv
import GHC.Tc.Instance.Family as FamInst
import GHC.Core.FamInstEnv
import qualified GHC.Tc.Utils.Monad as TcM
import qualified GHC.Tc.Utils.TcMType as TcM
import qualified GHC.Tc.Instance.Class as TcM( matchGlobalInst, ClsInstResult(..) )
import qualified GHC.Tc.Utils.Env as TcM
( checkWellStaged, tcGetDefaultTys, tcLookupClass, tcLookupId, topIdLvl )
import GHC.Tc.Instance.Class( InstanceWhat(..), safeOverlap, instanceReturnsDictCon )
import GHC.Tc.Utils.TcType
import GHC.Driver.Session
import GHC.Core.Type
import qualified GHC.Core.TyCo.Rep as Rep
import GHC.Core.Coercion
import GHC.Core.Unify
import GHC.Utils.Error
import GHC.Tc.Types.Evidence
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Tc.Errors ( solverDepthErrorTcS )
import GHC.Types.Name
import GHC.Types.TyThing
import GHC.Unit.Module ( HasModule, getModule )
import GHC.Types.Name.Reader ( GlobalRdrEnv, GlobalRdrElt )
import qualified GHC.Rename.Env as TcM
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.Bag as Bag
import GHC.Types.Unique.Supply
import GHC.Utils.Misc
import GHC.Tc.Types
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Types.Unique.Set
import GHC.Core.TyCon.Env
import GHC.Data.Maybe
import GHC.Core.Map.Type
import GHC.Data.TrieMap
import Control.Monad
import GHC.Utils.Monad
import Data.IORef
import Data.List ( partition, mapAccumL )
import Data.List.NonEmpty ( NonEmpty(..), cons, toList, nonEmpty )
import qualified Data.List.NonEmpty as NE
import Control.Arrow ( first )
#if defined(DEBUG)
import GHC.Data.Graph.Directed
#endif
data WorkList
= WL { WorkList -> [Ct]
wl_eqs :: [Ct]
, WorkList -> [Ct]
wl_rest :: [Ct]
, WorkList -> Bag Implication
wl_implics :: Bag Implication
}
appendWorkList :: WorkList -> WorkList -> WorkList
appendWorkList :: WorkList -> WorkList -> WorkList
appendWorkList
(WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs1, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest1
, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics1 })
(WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs2, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest2
, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics2 })
= WL :: [Ct] -> [Ct] -> Bag Implication -> WorkList
WL { wl_eqs :: [Ct]
wl_eqs = [Ct]
eqs1 [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
eqs2
, wl_rest :: [Ct]
wl_rest = [Ct]
rest1 [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
rest2
, wl_implics :: Bag Implication
wl_implics = Bag Implication
implics1 Bag Implication -> Bag Implication -> Bag Implication
forall a. Bag a -> Bag a -> Bag a
`unionBags` Bag Implication
implics2 }
workListSize :: WorkList -> Int
workListSize :: WorkList -> Int
workListSize (WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest })
= [Ct] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Ct]
eqs Int -> Int -> Int
forall a. Num a => a -> a -> a
+ [Ct] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Ct]
rest
extendWorkListEq :: Ct -> WorkList -> WorkList
extendWorkListEq :: Ct -> WorkList -> WorkList
extendWorkListEq Ct
ct WorkList
wl = WorkList
wl { wl_eqs :: [Ct]
wl_eqs = Ct
ct Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: WorkList -> [Ct]
wl_eqs WorkList
wl }
extendWorkListNonEq :: Ct -> WorkList -> WorkList
extendWorkListNonEq :: Ct -> WorkList -> WorkList
extendWorkListNonEq Ct
ct WorkList
wl = WorkList
wl { wl_rest :: [Ct]
wl_rest = Ct
ct Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: WorkList -> [Ct]
wl_rest WorkList
wl }
extendWorkListDeriveds :: [CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds :: [CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds [CtEvidence]
evs WorkList
wl
= [Ct] -> WorkList -> WorkList
extendWorkListCts ((CtEvidence -> Ct) -> [CtEvidence] -> [Ct]
forall a b. (a -> b) -> [a] -> [b]
map CtEvidence -> Ct
mkNonCanonical [CtEvidence]
evs) WorkList
wl
extendWorkListImplic :: Implication -> WorkList -> WorkList
extendWorkListImplic :: Implication -> WorkList -> WorkList
extendWorkListImplic Implication
implic WorkList
wl = WorkList
wl { wl_implics :: Bag Implication
wl_implics = Implication
implic Implication -> Bag Implication -> Bag Implication
forall a. a -> Bag a -> Bag a
`consBag` WorkList -> Bag Implication
wl_implics WorkList
wl }
extendWorkListCt :: Ct -> WorkList -> WorkList
extendWorkListCt :: Ct -> WorkList -> WorkList
extendWorkListCt Ct
ct WorkList
wl
= case PredType -> Pred
classifyPredType (Ct -> PredType
ctPred Ct
ct) of
EqPred {}
-> Ct -> WorkList -> WorkList
extendWorkListEq Ct
ct WorkList
wl
ClassPred Class
cls [PredType]
_
| Class -> Bool
isEqPredClass Class
cls
-> Ct -> WorkList -> WorkList
extendWorkListEq Ct
ct WorkList
wl
Pred
_ -> Ct -> WorkList -> WorkList
extendWorkListNonEq Ct
ct WorkList
wl
extendWorkListCts :: [Ct] -> WorkList -> WorkList
extendWorkListCts :: [Ct] -> WorkList -> WorkList
extendWorkListCts [Ct]
cts WorkList
wl = (Ct -> WorkList -> WorkList) -> WorkList -> [Ct] -> WorkList
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> WorkList -> WorkList
extendWorkListCt WorkList
wl [Ct]
cts
isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList (WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics })
= [Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
eqs Bool -> Bool -> Bool
&& [Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
rest Bool -> Bool -> Bool
&& Bag Implication -> Bool
forall a. Bag a -> Bool
isEmptyBag Bag Implication
implics
emptyWorkList :: WorkList
emptyWorkList :: WorkList
emptyWorkList = WL :: [Ct] -> [Ct] -> Bag Implication -> WorkList
WL { wl_eqs :: [Ct]
wl_eqs = [], wl_rest :: [Ct]
wl_rest = [], wl_implics :: Bag Implication
wl_implics = Bag Implication
forall a. Bag a
emptyBag }
selectWorkItem :: WorkList -> Maybe (Ct, WorkList)
selectWorkItem :: WorkList -> Maybe (Ct, WorkList)
selectWorkItem wl :: WorkList
wl@(WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest })
| Ct
ct:[Ct]
cts <- [Ct]
eqs = (Ct, WorkList) -> Maybe (Ct, WorkList)
forall a. a -> Maybe a
Just (Ct
ct, WorkList
wl { wl_eqs :: [Ct]
wl_eqs = [Ct]
cts })
| Ct
ct:[Ct]
cts <- [Ct]
rest = (Ct, WorkList) -> Maybe (Ct, WorkList)
forall a. a -> Maybe a
Just (Ct
ct, WorkList
wl { wl_rest :: [Ct]
wl_rest = [Ct]
cts })
| Bool
otherwise = Maybe (Ct, WorkList)
forall a. Maybe a
Nothing
getWorkList :: TcS WorkList
getWorkList :: TcS WorkList
getWorkList = do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; TcM WorkList -> TcS WorkList
forall a. TcM a -> TcS a
wrapTcS (IORef WorkList -> TcM WorkList
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef WorkList
wl_var) }
selectNextWorkItem :: TcS (Maybe Ct)
selectNextWorkItem :: TcS (Maybe Ct)
selectNextWorkItem
= do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; WorkList
wl <- IORef WorkList -> TcS WorkList
forall a. TcRef a -> TcS a
readTcRef IORef WorkList
wl_var
; case WorkList -> Maybe (Ct, WorkList)
selectWorkItem WorkList
wl of {
Maybe (Ct, WorkList)
Nothing -> Maybe Ct -> TcS (Maybe Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Ct
forall a. Maybe a
Nothing ;
Just (Ct
ct, WorkList
new_wl) ->
do {
; IORef WorkList -> WorkList -> TcS ()
forall a. TcRef a -> a -> TcS ()
writeTcRef IORef WorkList
wl_var WorkList
new_wl
; Maybe Ct -> TcS (Maybe Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return (Ct -> Maybe Ct
forall a. a -> Maybe a
Just Ct
ct) } } }
instance Outputable WorkList where
ppr :: WorkList -> SDoc
ppr (WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics })
= String -> SDoc
text String
"WL" SDoc -> SDoc -> SDoc
<+> (SDoc -> SDoc
braces (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ Bool -> SDoc -> SDoc
ppUnless ([Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
eqs) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Eqs =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((Ct -> SDoc) -> [Ct] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Ct]
eqs)
, Bool -> SDoc -> SDoc
ppUnless ([Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
rest) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Non-eqs =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((Ct -> SDoc) -> [Ct] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Ct]
rest)
, Bool -> SDoc -> SDoc
ppUnless (Bag Implication -> Bool
forall a. Bag a -> Bool
isEmptyBag Bag Implication
implics) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
SDoc -> SDoc -> SDoc
ifPprDebug (String -> SDoc
text String
"Implics =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((Implication -> SDoc) -> [Implication] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Implication -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Bag Implication -> [Implication]
forall a. Bag a -> [a]
bagToList Bag Implication
implics)))
(String -> SDoc
text String
"(Implics omitted)")
])
data InertSet
= IS { InertSet -> InertCans
inert_cans :: InertCans
, InertSet -> [(TcTyVar, PredType)]
inert_cycle_breakers :: [(TcTyVar, TcType)]
, InertSet -> FunEqMap (TcCoercion, PredType)
inert_famapp_cache :: FunEqMap (TcCoercion, TcType)
, InertSet -> DictMap CtEvidence
inert_solved_dicts :: DictMap CtEvidence
}
instance Outputable InertSet where
ppr :: InertSet -> SDoc
ppr (IS { inert_cans :: InertSet -> InertCans
inert_cans = InertCans
ics
, inert_solved_dicts :: InertSet -> DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
solved_dicts })
= [SDoc] -> SDoc
vcat [ InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ics
, Bool -> SDoc -> SDoc
ppUnless ([CtEvidence] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [CtEvidence]
dicts) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Solved dicts =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((CtEvidence -> SDoc) -> [CtEvidence] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr [CtEvidence]
dicts) ]
where
dicts :: [CtEvidence]
dicts = Bag CtEvidence -> [CtEvidence]
forall a. Bag a -> [a]
bagToList (DictMap CtEvidence -> Bag CtEvidence
forall a. DictMap a -> Bag a
dictsToBag DictMap CtEvidence
solved_dicts)
emptyInertCans :: InertCans
emptyInertCans :: InertCans
emptyInertCans
= IC :: InertEqs
-> FunEqMap EqualCtList
-> DictMap Ct
-> [QCInst]
-> DictMap Ct
-> Cts
-> TcLevel
-> Bool
-> InertCans
IC { inert_eqs :: InertEqs
inert_eqs = InertEqs
forall a. DVarEnv a
emptyDVarEnv
, inert_given_eq_lvl :: TcLevel
inert_given_eq_lvl = TcLevel
topTcLevel
, inert_given_eqs :: Bool
inert_given_eqs = Bool
False
, inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct
forall a. DictMap a
emptyDicts
, inert_safehask :: DictMap Ct
inert_safehask = DictMap Ct
forall a. DictMap a
emptyDicts
, inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
forall a. DictMap a
emptyFunEqs
, inert_insts :: [QCInst]
inert_insts = []
, inert_irreds :: Cts
inert_irreds = Cts
emptyCts }
emptyInert :: InertSet
emptyInert :: InertSet
emptyInert
= IS :: InertCans
-> [(TcTyVar, PredType)]
-> FunEqMap (TcCoercion, PredType)
-> DictMap CtEvidence
-> InertSet
IS { inert_cans :: InertCans
inert_cans = InertCans
emptyInertCans
, inert_cycle_breakers :: [(TcTyVar, PredType)]
inert_cycle_breakers = []
, inert_famapp_cache :: FunEqMap (TcCoercion, PredType)
inert_famapp_cache = FunEqMap (TcCoercion, PredType)
forall a. DictMap a
emptyFunEqs
, inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
forall a. DictMap a
emptyDictMap }
data InertCans
= IC { InertCans -> InertEqs
inert_eqs :: InertEqs
, InertCans -> FunEqMap EqualCtList
inert_funeqs :: FunEqMap EqualCtList
, InertCans -> DictMap Ct
inert_dicts :: DictMap Ct
, InertCans -> [QCInst]
inert_insts :: [QCInst]
, InertCans -> DictMap Ct
inert_safehask :: DictMap Ct
, InertCans -> Cts
inert_irreds :: Cts
, InertCans -> TcLevel
inert_given_eq_lvl :: TcLevel
, InertCans -> Bool
inert_given_eqs :: Bool
}
type InertEqs = DTyVarEnv EqualCtList
newtype EqualCtList = EqualCtList (NonEmpty Ct)
deriving newtype EqualCtList -> SDoc
(EqualCtList -> SDoc) -> Outputable EqualCtList
forall a. (a -> SDoc) -> Outputable a
ppr :: EqualCtList -> SDoc
$cppr :: EqualCtList -> SDoc
Outputable
unitEqualCtList :: Ct -> EqualCtList
unitEqualCtList :: Ct -> EqualCtList
unitEqualCtList Ct
ct = NonEmpty Ct -> EqualCtList
EqualCtList (Ct
ct Ct -> [Ct] -> NonEmpty Ct
forall a. a -> [a] -> NonEmpty a
:| [])
addToEqualCtList :: Ct -> EqualCtList -> EqualCtList
addToEqualCtList :: Ct -> EqualCtList -> EqualCtList
addToEqualCtList Ct
ct (EqualCtList NonEmpty Ct
old_eqs)
| Ct -> Bool
isWantedCt Ct
ct
, Ct
eq1 :| [Ct]
eqs <- NonEmpty Ct
old_eqs
= NonEmpty Ct -> EqualCtList
EqualCtList (Ct
eq1 Ct -> [Ct] -> NonEmpty Ct
forall a. a -> [a] -> NonEmpty a
:| Ct
ct Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: [Ct]
eqs)
| Bool
otherwise
= NonEmpty Ct -> EqualCtList
EqualCtList (Ct
ct Ct -> NonEmpty Ct -> NonEmpty Ct
forall a. a -> NonEmpty a -> NonEmpty a
`cons` NonEmpty Ct
old_eqs)
filterEqualCtList :: (Ct -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList :: (Ct -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList Ct -> Bool
pred (EqualCtList NonEmpty Ct
cts)
= (NonEmpty Ct -> EqualCtList)
-> Maybe (NonEmpty Ct) -> Maybe EqualCtList
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap NonEmpty Ct -> EqualCtList
EqualCtList ([Ct] -> Maybe (NonEmpty Ct)
forall a. [a] -> Maybe (NonEmpty a)
nonEmpty ([Ct] -> Maybe (NonEmpty Ct)) -> [Ct] -> Maybe (NonEmpty Ct)
forall a b. (a -> b) -> a -> b
$ (Ct -> Bool) -> NonEmpty Ct -> [Ct]
forall a. (a -> Bool) -> NonEmpty a -> [a]
NE.filter Ct -> Bool
pred NonEmpty Ct
cts)
equalCtListToList :: EqualCtList -> [Ct]
equalCtListToList :: EqualCtList -> [Ct]
equalCtListToList (EqualCtList NonEmpty Ct
cts) = NonEmpty Ct -> [Ct]
forall a. NonEmpty a -> [a]
toList NonEmpty Ct
cts
listToEqualCtList :: [Ct] -> Maybe EqualCtList
listToEqualCtList :: [Ct] -> Maybe EqualCtList
listToEqualCtList [Ct]
cts = NonEmpty Ct -> EqualCtList
EqualCtList (NonEmpty Ct -> EqualCtList)
-> Maybe (NonEmpty Ct) -> Maybe EqualCtList
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Ct] -> Maybe (NonEmpty Ct)
forall a. [a] -> Maybe (NonEmpty a)
nonEmpty [Ct]
cts
instance Outputable InertCans where
ppr :: InertCans -> SDoc
ppr (IC { inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
eqs
, inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
funeqs, inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dicts
, inert_safehask :: InertCans -> DictMap Ct
inert_safehask = DictMap Ct
safehask, inert_irreds :: InertCans -> Cts
inert_irreds = Cts
irreds
, inert_given_eq_lvl :: InertCans -> TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl
, inert_given_eqs :: InertCans -> Bool
inert_given_eqs = Bool
given_eqs
, inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
insts })
= SDoc -> SDoc
braces (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
[ Bool -> SDoc -> SDoc
ppUnless (InertEqs -> Bool
forall a. DVarEnv a -> Bool
isEmptyDVarEnv InertEqs
eqs) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Equalities:"
SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
pprCts ((EqualCtList -> Cts -> Cts) -> Cts -> InertEqs -> Cts
forall a b. (a -> b -> b) -> b -> DVarEnv a -> b
foldDVarEnv EqualCtList -> Cts -> Cts
folder Cts
emptyCts InertEqs
eqs)
, Bool -> SDoc -> SDoc
ppUnless (FunEqMap EqualCtList -> Bool
forall a. TcAppMap a -> Bool
isEmptyTcAppMap FunEqMap EqualCtList
funeqs) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Type-function equalities =" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
pprCts ((EqualCtList -> Cts -> Cts) -> FunEqMap EqualCtList -> Cts -> Cts
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs EqualCtList -> Cts -> Cts
folder FunEqMap EqualCtList
funeqs Cts
emptyCts)
, Bool -> SDoc -> SDoc
ppUnless (DictMap Ct -> Bool
forall a. TcAppMap a -> Bool
isEmptyTcAppMap DictMap Ct
dicts) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Dictionaries =" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
pprCts (DictMap Ct -> Cts
forall a. DictMap a -> Bag a
dictsToBag DictMap Ct
dicts)
, Bool -> SDoc -> SDoc
ppUnless (DictMap Ct -> Bool
forall a. TcAppMap a -> Bool
isEmptyTcAppMap DictMap Ct
safehask) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Safe Haskell unsafe overlap =" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
pprCts (DictMap Ct -> Cts
forall a. DictMap a -> Bag a
dictsToBag DictMap Ct
safehask)
, Bool -> SDoc -> SDoc
ppUnless (Cts -> Bool
isEmptyCts Cts
irreds) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Irreds =" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
pprCts Cts
irreds
, Bool -> SDoc -> SDoc
ppUnless ([QCInst] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [QCInst]
insts) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Given instances =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((QCInst -> SDoc) -> [QCInst] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map QCInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr [QCInst]
insts)
, String -> SDoc
text String
"Innermost given equalities =" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
ge_lvl
, String -> SDoc
text String
"Given eqs at this level =" SDoc -> SDoc -> SDoc
<+> Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bool
given_eqs
]
where
folder :: EqualCtList -> Cts -> Cts
folder (EqualCtList NonEmpty Ct
eqs) Cts
rest = NonEmpty Ct -> Cts
forall a. NonEmpty a -> Bag a
nonEmptyToBag NonEmpty Ct
eqs Cts -> Cts -> Cts
`andCts` Cts
rest
maybeEmitShadow :: InertCans -> Ct -> TcS Ct
maybeEmitShadow :: InertCans -> Ct -> TcS Ct
maybeEmitShadow InertCans
ics Ct
ct
| let ev :: CtEvidence
ev = Ct -> CtEvidence
ctEvidence Ct
ct
, CtWanted { ctev_pred :: CtEvidence -> PredType
ctev_pred = PredType
pred, ctev_loc :: CtEvidence -> CtLoc
ctev_loc = CtLoc
loc
, ctev_nosh :: CtEvidence -> ShadowInfo
ctev_nosh = ShadowInfo
WDeriv } <- CtEvidence
ev
, InertEqs -> FunEqMap EqualCtList -> Ct -> Bool
shouldSplitWD (InertCans -> InertEqs
inert_eqs InertCans
ics) (InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
ics) Ct
ct
= do { String -> SDoc -> TcS ()
traceTcS String
"Emit derived shadow" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
; let derived_ev :: CtEvidence
derived_ev = CtDerived :: PredType -> CtLoc -> CtEvidence
CtDerived { ctev_pred :: PredType
ctev_pred = PredType
pred
, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc }
shadow_ct :: Ct
shadow_ct = Ct
ct { cc_ev :: CtEvidence
cc_ev = CtEvidence
derived_ev }
; [Ct] -> TcS ()
emitWork [Ct
shadow_ct]
; let ev' :: CtEvidence
ev' = CtEvidence
ev { ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
WOnly }
ct' :: Ct
ct' = Ct
ct { cc_ev :: CtEvidence
cc_ev = CtEvidence
ev' }
; Ct -> TcS Ct
forall (m :: * -> *) a. Monad m => a -> m a
return Ct
ct' }
| Bool
otherwise
= Ct -> TcS Ct
forall (m :: * -> *) a. Monad m => a -> m a
return Ct
ct
shouldSplitWD :: InertEqs -> FunEqMap EqualCtList -> Ct -> Bool
shouldSplitWD :: InertEqs -> FunEqMap EqualCtList -> Ct -> Bool
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CDictCan { cc_tyargs :: Ct -> [PredType]
cc_tyargs = [PredType]
tys })
= InertEqs -> FunEqMap EqualCtList -> [PredType] -> Bool
should_split_match_args InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs [PredType]
tys
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = TyVarLHS TcTyVar
tv, cc_rhs :: Ct -> PredType
cc_rhs = PredType
ty
, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel })
= TcTyVar
tv TcTyVar -> InertEqs -> Bool
forall a. TcTyVar -> DVarEnv a -> Bool
`elemDVarEnv` InertEqs
inert_eqs
Bool -> Bool -> Bool
|| EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [PredType] -> Bool)
-> PredType
-> Bool
anyRewritableCanEqLHS EqRel
eq_rel (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs) (FunEqMap EqualCtList -> EqRel -> TyCon -> [PredType] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs) PredType
ty
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CEqCan { cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel })
= EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [PredType] -> Bool)
-> PredType
-> Bool
anyRewritableCanEqLHS EqRel
eq_rel (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs) (FunEqMap EqualCtList -> EqRel -> TyCon -> [PredType] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs)
(CtEvidence -> PredType
ctEvPred CtEvidence
ev)
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CIrredCan { cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev })
= EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [PredType] -> Bool)
-> PredType
-> Bool
anyRewritableCanEqLHS (CtEvidence -> EqRel
ctEvEqRel CtEvidence
ev) (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs)
(FunEqMap EqualCtList -> EqRel -> TyCon -> [PredType] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs) (CtEvidence -> PredType
ctEvPred CtEvidence
ev)
shouldSplitWD InertEqs
_ FunEqMap EqualCtList
_ Ct
_ = Bool
False
should_split_match_args :: InertEqs -> FunEqMap EqualCtList -> [TcType] -> Bool
should_split_match_args :: InertEqs -> FunEqMap EqualCtList -> [PredType] -> Bool
should_split_match_args InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs [PredType]
tys
= (PredType -> Bool) -> [PredType] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [PredType] -> Bool)
-> PredType
-> Bool
anyRewritableCanEqLHS EqRel
NomEq (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs) (FunEqMap EqualCtList -> EqRel -> TyCon -> [PredType] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs)) [PredType]
tys
canRewriteTv :: InertEqs -> EqRel -> TyVar -> Bool
canRewriteTv :: InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs EqRel
eq_rel TcTyVar
tv
| Just (EqualCtList (Ct
ct :| [Ct]
_)) <- InertEqs -> TcTyVar -> Maybe EqualCtList
forall a. DVarEnv a -> TcTyVar -> Maybe a
lookupDVarEnv InertEqs
inert_eqs TcTyVar
tv
, CEqCan { cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel1 } <- Ct
ct
= EqRel
eq_rel1 EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
eq_rel
| Bool
otherwise
= Bool
False
canRewriteTyFam :: FunEqMap EqualCtList -> EqRel -> TyCon -> [Type] -> Bool
canRewriteTyFam :: FunEqMap EqualCtList -> EqRel -> TyCon -> [PredType] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs EqRel
eq_rel TyCon
tf [PredType]
args
| Just (EqualCtList (Ct
ct :| [Ct]
_)) <- FunEqMap EqualCtList -> TyCon -> [PredType] -> Maybe EqualCtList
forall a. FunEqMap a -> TyCon -> [PredType] -> Maybe a
findFunEq FunEqMap EqualCtList
fun_eqs TyCon
tf [PredType]
args
, CEqCan { cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel1 } <- Ct
ct
= EqRel
eq_rel1 EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
eq_rel
| Bool
otherwise
= Bool
False
isImprovable :: CtEvidence -> Bool
isImprovable :: CtEvidence -> Bool
isImprovable (CtWanted { ctev_nosh :: CtEvidence -> ShadowInfo
ctev_nosh = ShadowInfo
WOnly }) = Bool
False
isImprovable CtEvidence
_ = Bool
True
addTyEq :: InertEqs -> TcTyVar -> Ct -> InertEqs
addTyEq :: InertEqs -> TcTyVar -> Ct -> InertEqs
addTyEq InertEqs
old_eqs TcTyVar
tv Ct
ct
= (EqualCtList -> EqualCtList -> EqualCtList)
-> InertEqs -> TcTyVar -> EqualCtList -> InertEqs
forall a. (a -> a -> a) -> DVarEnv a -> TcTyVar -> a -> DVarEnv a
extendDVarEnv_C EqualCtList -> EqualCtList -> EqualCtList
add_eq InertEqs
old_eqs TcTyVar
tv (Ct -> EqualCtList
unitEqualCtList Ct
ct)
where
add_eq :: EqualCtList -> EqualCtList -> EqualCtList
add_eq EqualCtList
old_eqs EqualCtList
_ = Ct -> EqualCtList -> EqualCtList
addToEqualCtList Ct
ct EqualCtList
old_eqs
addCanFunEq :: FunEqMap EqualCtList -> TyCon -> [TcType] -> Ct
-> FunEqMap EqualCtList
addCanFunEq :: FunEqMap EqualCtList
-> TyCon -> [PredType] -> Ct -> FunEqMap EqualCtList
addCanFunEq FunEqMap EqualCtList
old_eqs TyCon
fun_tc [PredType]
fun_args Ct
ct
= FunEqMap EqualCtList
-> TyCon
-> [PredType]
-> (Maybe EqualCtList -> Maybe EqualCtList)
-> FunEqMap EqualCtList
forall a.
TcAppMap a
-> TyCon -> [PredType] -> (Maybe a -> Maybe a) -> TcAppMap a
alterTcApp FunEqMap EqualCtList
old_eqs TyCon
fun_tc [PredType]
fun_args Maybe EqualCtList -> Maybe EqualCtList
upd
where
upd :: Maybe EqualCtList -> Maybe EqualCtList
upd (Just EqualCtList
old_equal_ct_list) = EqualCtList -> Maybe EqualCtList
forall a. a -> Maybe a
Just (EqualCtList -> Maybe EqualCtList)
-> EqualCtList -> Maybe EqualCtList
forall a b. (a -> b) -> a -> b
$ Ct -> EqualCtList -> EqualCtList
addToEqualCtList Ct
ct EqualCtList
old_equal_ct_list
upd Maybe EqualCtList
Nothing = EqualCtList -> Maybe EqualCtList
forall a. a -> Maybe a
Just (EqualCtList -> Maybe EqualCtList)
-> EqualCtList -> Maybe EqualCtList
forall a b. (a -> b) -> a -> b
$ Ct -> EqualCtList
unitEqualCtList Ct
ct
foldTyEqs :: (Ct -> b -> b) -> InertEqs -> b -> b
foldTyEqs :: (Ct -> b -> b) -> InertEqs -> b -> b
foldTyEqs Ct -> b -> b
k InertEqs
eqs b
z
= (EqualCtList -> b -> b) -> b -> InertEqs -> b
forall a b. (a -> b -> b) -> b -> DVarEnv a -> b
foldDVarEnv (\(EqualCtList NonEmpty Ct
cts) b
z -> (Ct -> b -> b) -> b -> NonEmpty Ct -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> b -> b
k b
z NonEmpty Ct
cts) b
z InertEqs
eqs
findTyEqs :: InertCans -> TyVar -> [Ct]
findTyEqs :: InertCans -> TcTyVar -> [Ct]
findTyEqs InertCans
icans TcTyVar
tv = [Ct] -> ([Ct] -> [Ct]) -> Maybe [Ct] -> [Ct]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] [Ct] -> [Ct]
forall a. a -> a
id ((EqualCtList -> [Ct]) -> Maybe EqualCtList -> Maybe [Ct]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap @Maybe EqualCtList -> [Ct]
equalCtListToList (Maybe EqualCtList -> Maybe [Ct])
-> Maybe EqualCtList -> Maybe [Ct]
forall a b. (a -> b) -> a -> b
$
InertEqs -> TcTyVar -> Maybe EqualCtList
forall a. DVarEnv a -> TcTyVar -> Maybe a
lookupDVarEnv (InertCans -> InertEqs
inert_eqs InertCans
icans) TcTyVar
tv)
delEq :: InertCans -> CanEqLHS -> TcType -> InertCans
delEq :: InertCans -> CanEqLHS -> PredType -> InertCans
delEq InertCans
ic CanEqLHS
lhs PredType
rhs = case CanEqLHS
lhs of
TyVarLHS TcTyVar
tv
-> InertCans
ic { inert_eqs :: InertEqs
inert_eqs = (Maybe EqualCtList -> Maybe EqualCtList)
-> InertEqs -> TcTyVar -> InertEqs
forall a. (Maybe a -> Maybe a) -> DVarEnv a -> TcTyVar -> DVarEnv a
alterDVarEnv Maybe EqualCtList -> Maybe EqualCtList
upd (InertCans -> InertEqs
inert_eqs InertCans
ic) TcTyVar
tv }
TyFamLHS TyCon
tf [PredType]
args
-> InertCans
ic { inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
-> TyCon
-> [PredType]
-> (Maybe EqualCtList -> Maybe EqualCtList)
-> FunEqMap EqualCtList
forall a.
TcAppMap a
-> TyCon -> [PredType] -> (Maybe a -> Maybe a) -> TcAppMap a
alterTcApp (InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
ic) TyCon
tf [PredType]
args Maybe EqualCtList -> Maybe EqualCtList
upd }
where
isThisOne :: Ct -> Bool
isThisOne :: Ct -> Bool
isThisOne (CEqCan { cc_rhs :: Ct -> PredType
cc_rhs = PredType
t1 }) = PredType -> PredType -> Bool
tcEqTypeNoKindCheck PredType
rhs PredType
t1
isThisOne Ct
other = String -> SDoc -> Bool
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"delEq" (CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
lhs SDoc -> SDoc -> SDoc
$$ InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ic SDoc -> SDoc -> SDoc
$$ Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
other)
upd :: Maybe EqualCtList -> Maybe EqualCtList
upd :: Maybe EqualCtList -> Maybe EqualCtList
upd (Just EqualCtList
eq_ct_list) = (Ct -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList (Bool -> Bool
not (Bool -> Bool) -> (Ct -> Bool) -> Ct -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ct -> Bool
isThisOne) EqualCtList
eq_ct_list
upd Maybe EqualCtList
Nothing = Maybe EqualCtList
forall a. Maybe a
Nothing
findEq :: InertCans -> CanEqLHS -> [Ct]
findEq :: InertCans -> CanEqLHS -> [Ct]
findEq InertCans
icans (TyVarLHS TcTyVar
tv) = InertCans -> TcTyVar -> [Ct]
findTyEqs InertCans
icans TcTyVar
tv
findEq InertCans
icans (TyFamLHS TyCon
fun_tc [PredType]
fun_args)
= [Ct] -> ([Ct] -> [Ct]) -> Maybe [Ct] -> [Ct]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] [Ct] -> [Ct]
forall a. a -> a
id ((EqualCtList -> [Ct]) -> Maybe EqualCtList -> Maybe [Ct]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap @Maybe EqualCtList -> [Ct]
equalCtListToList (Maybe EqualCtList -> Maybe [Ct])
-> Maybe EqualCtList -> Maybe [Ct]
forall a b. (a -> b) -> a -> b
$
FunEqMap EqualCtList -> TyCon -> [PredType] -> Maybe EqualCtList
forall a. FunEqMap a -> TyCon -> [PredType] -> Maybe a
findFunEq (InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
icans) TyCon
fun_tc [PredType]
fun_args)
addInertForAll :: QCInst -> TcS ()
addInertForAll :: QCInst -> TcS ()
addInertForAll QCInst
new_qci
= do { InertCans
ics <- TcS InertCans
getInertCans
; InertCans
ics1 <- InertCans -> TcS InertCans
add_qci InertCans
ics
; TcLevel
tclvl <- TcS TcLevel
getTcLevel
; let pred :: PredType
pred = QCInst -> PredType
qci_pred QCInst
new_qci
not_equality :: Bool
not_equality = PredType -> Bool
isClassPred PredType
pred Bool -> Bool -> Bool
&& Bool -> Bool
not (PredType -> Bool
isEqPred PredType
pred)
ics2 :: InertCans
ics2 | Bool
not_equality = InertCans
ics1
| Bool
otherwise = InertCans
ics1 { inert_given_eq_lvl :: TcLevel
inert_given_eq_lvl = TcLevel
tclvl
, inert_given_eqs :: Bool
inert_given_eqs = Bool
True }
; InertCans -> TcS ()
setInertCans InertCans
ics2 }
where
add_qci :: InertCans -> TcS InertCans
add_qci :: InertCans -> TcS InertCans
add_qci ics :: InertCans
ics@(IC { inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
qcis })
| (QCInst -> Bool) -> [QCInst] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any QCInst -> Bool
same_qci [QCInst]
qcis
= do { String -> SDoc -> TcS ()
traceTcS String
"skipping duplicate quantified instance" (QCInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr QCInst
new_qci)
; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return InertCans
ics }
| Bool
otherwise
= do { String -> SDoc -> TcS ()
traceTcS String
"adding new inert quantified instance" (QCInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr QCInst
new_qci)
; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return (InertCans
ics { inert_insts :: [QCInst]
inert_insts = QCInst
new_qci QCInst -> [QCInst] -> [QCInst]
forall a. a -> [a] -> [a]
: [QCInst]
qcis }) }
same_qci :: QCInst -> Bool
same_qci QCInst
old_qci = HasDebugCallStack => PredType -> PredType -> Bool
PredType -> PredType -> Bool
tcEqType (CtEvidence -> PredType
ctEvPred (QCInst -> CtEvidence
qci_ev QCInst
old_qci))
(CtEvidence -> PredType
ctEvPred (QCInst -> CtEvidence
qci_ev QCInst
new_qci))
addInertCan :: Ct -> TcS ()
addInertCan :: Ct -> TcS ()
addInertCan Ct
ct
= do { String -> SDoc -> TcS ()
traceTcS String
"addInertCan {" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Trying to insert new inert item:" SDoc -> SDoc -> SDoc
<+> Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct
; InertCans
ics <- TcS InertCans
getInertCans
; Ct
ct <- InertCans -> Ct -> TcS Ct
maybeEmitShadow InertCans
ics Ct
ct
; InertCans
ics <- InertCans -> Ct -> TcS InertCans
maybeKickOut InertCans
ics Ct
ct
; TcLevel
tclvl <- TcS TcLevel
getTcLevel
; InertCans -> TcS ()
setInertCans (TcLevel -> InertCans -> Ct -> InertCans
add_item TcLevel
tclvl InertCans
ics Ct
ct)
; String -> SDoc -> TcS ()
traceTcS String
"addInertCan }" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$ SDoc
empty }
maybeKickOut :: InertCans -> Ct -> TcS InertCans
maybeKickOut :: InertCans -> Ct -> TcS InertCans
maybeKickOut InertCans
ics Ct
ct
| CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs, cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel } <- Ct
ct
= do { (Int
_, InertCans
ics') <- CtFlavourRole -> CanEqLHS -> InertCans -> TcS (Int, InertCans)
kickOutRewritable (CtEvidence -> CtFlavour
ctEvFlavour CtEvidence
ev, EqRel
eq_rel) CanEqLHS
lhs InertCans
ics
; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return InertCans
ics' }
| Bool
otherwise
= InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return InertCans
ics
add_item :: TcLevel -> InertCans -> Ct -> InertCans
add_item :: TcLevel -> InertCans -> Ct -> InertCans
add_item TcLevel
tc_lvl
ics :: InertCans
ics@(IC { inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
funeqs, inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
eqs })
item :: Ct
item@(CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs })
= TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs TcLevel
tc_lvl Ct
item (InertCans -> InertCans) -> InertCans -> InertCans
forall a b. (a -> b) -> a -> b
$
case CanEqLHS
lhs of
TyFamLHS TyCon
tc [PredType]
tys -> InertCans
ics { inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
-> TyCon -> [PredType] -> Ct -> FunEqMap EqualCtList
addCanFunEq FunEqMap EqualCtList
funeqs TyCon
tc [PredType]
tys Ct
item }
TyVarLHS TcTyVar
tv -> InertCans
ics { inert_eqs :: InertEqs
inert_eqs = InertEqs -> TcTyVar -> Ct -> InertEqs
addTyEq InertEqs
eqs TcTyVar
tv Ct
item }
add_item TcLevel
tc_lvl ics :: InertCans
ics@(IC { inert_irreds :: InertCans -> Cts
inert_irreds = Cts
irreds }) item :: Ct
item@(CIrredCan {})
= TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs TcLevel
tc_lvl Ct
item (InertCans -> InertCans) -> InertCans -> InertCans
forall a b. (a -> b) -> a -> b
$
InertCans
ics { inert_irreds :: Cts
inert_irreds = Cts
irreds Cts -> Ct -> Cts
forall a. Bag a -> a -> Bag a
`Bag.snocBag` Ct
item }
add_item TcLevel
_ InertCans
ics item :: Ct
item@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [PredType]
cc_tyargs = [PredType]
tys })
= InertCans
ics { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct -> Class -> [PredType] -> Ct -> DictMap Ct
forall a. DictMap a -> Class -> [PredType] -> a -> DictMap a
addDict (InertCans -> DictMap Ct
inert_dicts InertCans
ics) Class
cls [PredType]
tys Ct
item }
add_item TcLevel
_ InertCans
_ Ct
item
= String -> SDoc -> InertCans
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"upd_inert set: can't happen! Inserting " (SDoc -> InertCans) -> SDoc -> InertCans
forall a b. (a -> b) -> a -> b
$
Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
item
updateGivenEqs :: TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs :: TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs TcLevel
tclvl Ct
ct inerts :: InertCans
inerts@(IC { inert_given_eq_lvl :: InertCans -> TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl })
| Bool -> Bool
not (Ct -> Bool
isGivenCt Ct
ct) = InertCans
inerts
| Ct -> Bool
not_equality Ct
ct = InertCans
inerts
| Bool
otherwise = InertCans
inerts { inert_given_eq_lvl :: TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl'
, inert_given_eqs :: Bool
inert_given_eqs = Bool
True }
where
ge_lvl' :: TcLevel
ge_lvl' | TcLevel -> CtEvidence -> Bool
mentionsOuterVar TcLevel
tclvl (Ct -> CtEvidence
ctEvidence Ct
ct)
= TcLevel
tclvl
| Bool
otherwise
= TcLevel
ge_lvl
not_equality :: Ct -> Bool
not_equality :: Ct -> Bool
not_equality (CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = TyVarLHS TcTyVar
tv }) = Bool -> Bool
not (TcLevel -> TcTyVar -> Bool
isOuterTyVar TcLevel
tclvl TcTyVar
tv)
not_equality (CDictCan {}) = Bool
True
not_equality Ct
_ = Bool
False
kickOutRewritable :: CtFlavourRole
-> CanEqLHS
-> InertCans
-> TcS (Int, InertCans)
kickOutRewritable :: CtFlavourRole -> CanEqLHS -> InertCans -> TcS (Int, InertCans)
kickOutRewritable CtFlavourRole
new_fr CanEqLHS
new_lhs InertCans
ics
= do { let (WorkList
kicked_out, InertCans
ics') = CtFlavourRole -> CanEqLHS -> InertCans -> (WorkList, InertCans)
kick_out_rewritable CtFlavourRole
new_fr CanEqLHS
new_lhs InertCans
ics
n_kicked :: Int
n_kicked = WorkList -> Int
workListSize WorkList
kicked_out
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n_kicked Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { (WorkList -> WorkList) -> TcS ()
updWorkListTcS (WorkList -> WorkList -> WorkList
appendWorkList WorkList
kicked_out)
; let kicked_given_ev_vars :: [TcTyVar]
kicked_given_ev_vars =
[ TcTyVar
ev_var | Ct
ct <- WorkList -> [Ct]
wl_eqs WorkList
kicked_out
, CtGiven { ctev_evar :: CtEvidence -> TcTyVar
ctev_evar = TcTyVar
ev_var } <- [Ct -> CtEvidence
ctEvidence Ct
ct] ]
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (CtFlavourRole
new_fr CtFlavourRole -> CtFlavourRole -> Bool
`eqCanRewriteFR` (CtFlavour
Given, EqRel
NomEq) Bool -> Bool -> Bool
&&
Bool -> Bool
not ([TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
kicked_given_ev_vars)) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcS ()
traceTcS String
"Given(s) have been kicked out; drop from famapp-cache"
([TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
kicked_given_ev_vars)
; VarSet -> TcS ()
dropFromFamAppCache ([TcTyVar] -> VarSet
mkVarSet [TcTyVar]
kicked_given_ev_vars) }
; SDoc -> TcS ()
csTraceTcS (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Kick out, lhs =" SDoc -> SDoc -> SDoc
<+> CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
new_lhs)
Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"n-kicked =" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
n_kicked
, String -> SDoc
text String
"kicked_out =" SDoc -> SDoc -> SDoc
<+> WorkList -> SDoc
forall a. Outputable a => a -> SDoc
ppr WorkList
kicked_out
, String -> SDoc
text String
"Residual inerts =" SDoc -> SDoc -> SDoc
<+> InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ics' ]) }
; (Int, InertCans) -> TcS (Int, InertCans)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
n_kicked, InertCans
ics') }
kick_out_rewritable :: CtFlavourRole
-> CanEqLHS
-> InertCans
-> (WorkList, InertCans)
kick_out_rewritable :: CtFlavourRole -> CanEqLHS -> InertCans -> (WorkList, InertCans)
kick_out_rewritable CtFlavourRole
new_fr CanEqLHS
new_lhs
ics :: InertCans
ics@(IC { inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
tv_eqs
, inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dictmap
, inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
funeqmap
, inert_irreds :: InertCans -> Cts
inert_irreds = Cts
irreds
, inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
old_insts })
| Bool -> Bool
not (CtFlavourRole
new_fr CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
new_fr)
= (WorkList
emptyWorkList, InertCans
ics)
| Bool
otherwise
= (WorkList
kicked_out, InertCans
inert_cans_in)
where
inert_cans_in :: InertCans
inert_cans_in = InertCans
ics { inert_eqs :: InertEqs
inert_eqs = InertEqs
tv_eqs_in
, inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct
dicts_in
, inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
feqs_in
, inert_irreds :: Cts
inert_irreds = Cts
irs_in
, inert_insts :: [QCInst]
inert_insts = [QCInst]
insts_in }
kicked_out :: WorkList
kicked_out :: WorkList
kicked_out = (Ct -> WorkList -> WorkList) -> WorkList -> Cts -> WorkList
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> WorkList -> WorkList
extendWorkListCt
(WorkList
emptyWorkList { wl_eqs :: [Ct]
wl_eqs = [Ct]
tv_eqs_out [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
feqs_out })
((Cts
dicts_out Cts -> Cts -> Cts
`andCts` Cts
irs_out)
Cts -> [Ct] -> Cts
`extendCtsList` [Ct]
insts_out)
([Ct]
tv_eqs_out, InertEqs
tv_eqs_in) = (EqualCtList -> ([Ct], InertEqs) -> ([Ct], InertEqs))
-> ([Ct], InertEqs) -> InertEqs -> ([Ct], InertEqs)
forall a b. (a -> b -> b) -> b -> DVarEnv a -> b
foldDVarEnv ((InertEqs -> CanEqLHS -> EqualCtList -> InertEqs)
-> EqualCtList -> ([Ct], InertEqs) -> ([Ct], InertEqs)
forall container.
(container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container) -> ([Ct], container)
kick_out_eqs InertEqs -> CanEqLHS -> EqualCtList -> InertEqs
extend_tv_eqs)
([], InertEqs
forall a. DVarEnv a
emptyDVarEnv) InertEqs
tv_eqs
([Ct]
feqs_out, FunEqMap EqualCtList
feqs_in) = (EqualCtList
-> ([Ct], FunEqMap EqualCtList) -> ([Ct], FunEqMap EqualCtList))
-> FunEqMap EqualCtList
-> ([Ct], FunEqMap EqualCtList)
-> ([Ct], FunEqMap EqualCtList)
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs ((FunEqMap EqualCtList
-> CanEqLHS -> EqualCtList -> FunEqMap EqualCtList)
-> EqualCtList
-> ([Ct], FunEqMap EqualCtList)
-> ([Ct], FunEqMap EqualCtList)
forall container.
(container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container) -> ([Ct], container)
kick_out_eqs FunEqMap EqualCtList
-> CanEqLHS -> EqualCtList -> FunEqMap EqualCtList
extend_fun_eqs)
FunEqMap EqualCtList
funeqmap ([], FunEqMap EqualCtList
forall a. DictMap a
emptyFunEqs)
(Cts
dicts_out, DictMap Ct
dicts_in) = (Ct -> Bool) -> DictMap Ct -> (Cts, DictMap Ct)
partitionDicts Ct -> Bool
kick_out_ct DictMap Ct
dictmap
(Cts
irs_out, Cts
irs_in) = (Ct -> Bool) -> Cts -> (Cts, Cts)
forall a. (a -> Bool) -> Bag a -> (Bag a, Bag a)
partitionBag Ct -> Bool
kick_out_ct Cts
irreds
insts_out :: [Ct]
insts_in :: [QCInst]
([Ct]
insts_out, [QCInst]
insts_in)
| CtFlavourRole -> Bool
fr_may_rewrite (CtFlavour
Given, EqRel
NomEq)
= (QCInst -> Either Ct QCInst) -> [QCInst] -> ([Ct], [QCInst])
forall a b c. (a -> Either b c) -> [a] -> ([b], [c])
partitionWith QCInst -> Either Ct QCInst
kick_out_qci [QCInst]
old_insts
| Bool
otherwise
= ([], [QCInst]
old_insts)
kick_out_qci :: QCInst -> Either Ct QCInst
kick_out_qci QCInst
qci
| let ev :: CtEvidence
ev = QCInst -> CtEvidence
qci_ev QCInst
qci
, EqRel -> PredType -> Bool
fr_can_rewrite_ty EqRel
NomEq (CtEvidence -> PredType
ctEvPred (QCInst -> CtEvidence
qci_ev QCInst
qci))
= Ct -> Either Ct QCInst
forall a b. a -> Either a b
Left (CtEvidence -> Ct
mkNonCanonical CtEvidence
ev)
| Bool
otherwise
= QCInst -> Either Ct QCInst
forall a b. b -> Either a b
Right QCInst
qci
(CtFlavour
_, EqRel
new_role) = CtFlavourRole
new_fr
fr_tv_can_rewrite_ty :: TyVar -> EqRel -> Type -> Bool
fr_tv_can_rewrite_ty :: TcTyVar -> EqRel -> PredType -> Bool
fr_tv_can_rewrite_ty TcTyVar
new_tv EqRel
role PredType
ty
= Bool -> EqRel -> (EqRel -> TcTyVar -> Bool) -> PredType -> Bool
anyRewritableTyVar Bool
True EqRel
role EqRel -> TcTyVar -> Bool
can_rewrite PredType
ty
where
can_rewrite :: EqRel -> TyVar -> Bool
can_rewrite :: EqRel -> TcTyVar -> Bool
can_rewrite EqRel
old_role TcTyVar
tv = EqRel
new_role EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
old_role Bool -> Bool -> Bool
&& TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
new_tv
fr_tf_can_rewrite_ty :: TyCon -> [TcType] -> EqRel -> Type -> Bool
fr_tf_can_rewrite_ty :: TyCon -> [PredType] -> EqRel -> PredType -> Bool
fr_tf_can_rewrite_ty TyCon
new_tf [PredType]
new_tf_args EqRel
role PredType
ty
= EqRel -> (EqRel -> TyCon -> [PredType] -> Bool) -> PredType -> Bool
anyRewritableTyFamApp EqRel
role EqRel -> TyCon -> [PredType] -> Bool
can_rewrite PredType
ty
where
can_rewrite :: EqRel -> TyCon -> [TcType] -> Bool
can_rewrite :: EqRel -> TyCon -> [PredType] -> Bool
can_rewrite EqRel
old_role TyCon
old_tf [PredType]
old_tf_args
= EqRel
new_role EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
old_role Bool -> Bool -> Bool
&&
TyCon -> [PredType] -> TyCon -> [PredType] -> Bool
tcEqTyConApps TyCon
new_tf [PredType]
new_tf_args TyCon
old_tf [PredType]
old_tf_args
{-# INLINE fr_can_rewrite_ty #-}
fr_can_rewrite_ty :: EqRel -> Type -> Bool
fr_can_rewrite_ty :: EqRel -> PredType -> Bool
fr_can_rewrite_ty = case CanEqLHS
new_lhs of
TyVarLHS TcTyVar
new_tv -> TcTyVar -> EqRel -> PredType -> Bool
fr_tv_can_rewrite_ty TcTyVar
new_tv
TyFamLHS TyCon
new_tf [PredType]
new_tf_args -> TyCon -> [PredType] -> EqRel -> PredType -> Bool
fr_tf_can_rewrite_ty TyCon
new_tf [PredType]
new_tf_args
fr_may_rewrite :: CtFlavourRole -> Bool
fr_may_rewrite :: CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs = CtFlavourRole
new_fr CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
fs
{-# INLINE kick_out_ct #-}
kick_out_ct :: Ct -> Bool
kick_out_ct :: Ct -> Bool
kick_out_ct = case CanEqLHS
new_lhs of
TyVarLHS TcTyVar
new_tv -> \Ct
ct -> let fs :: CtFlavourRole
fs@(CtFlavour
_,EqRel
role) = Ct -> CtFlavourRole
ctFlavourRole Ct
ct in
CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs
Bool -> Bool -> Bool
&& TcTyVar -> EqRel -> PredType -> Bool
fr_tv_can_rewrite_ty TcTyVar
new_tv EqRel
role (Ct -> PredType
ctPred Ct
ct)
TyFamLHS TyCon
new_tf [PredType]
new_tf_args
-> \Ct
ct -> let fs :: CtFlavourRole
fs@(CtFlavour
_, EqRel
role) = Ct -> CtFlavourRole
ctFlavourRole Ct
ct in
CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs
Bool -> Bool -> Bool
&& TyCon -> [PredType] -> EqRel -> PredType -> Bool
fr_tf_can_rewrite_ty TyCon
new_tf [PredType]
new_tf_args EqRel
role (Ct -> PredType
ctPred Ct
ct)
extend_tv_eqs :: InertEqs -> CanEqLHS -> EqualCtList -> InertEqs
extend_tv_eqs :: InertEqs -> CanEqLHS -> EqualCtList -> InertEqs
extend_tv_eqs InertEqs
eqs (TyVarLHS TcTyVar
tv) EqualCtList
cts = InertEqs -> TcTyVar -> EqualCtList -> InertEqs
forall a. DVarEnv a -> TcTyVar -> a -> DVarEnv a
extendDVarEnv InertEqs
eqs TcTyVar
tv EqualCtList
cts
extend_tv_eqs InertEqs
eqs CanEqLHS
other EqualCtList
_cts = String -> SDoc -> InertEqs
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"extend_tv_eqs" (InertEqs -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertEqs
eqs SDoc -> SDoc -> SDoc
$$ CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
other)
extend_fun_eqs :: FunEqMap EqualCtList -> CanEqLHS -> EqualCtList
-> FunEqMap EqualCtList
extend_fun_eqs :: FunEqMap EqualCtList
-> CanEqLHS -> EqualCtList -> FunEqMap EqualCtList
extend_fun_eqs FunEqMap EqualCtList
eqs (TyFamLHS TyCon
fam_tc [PredType]
fam_args) EqualCtList
cts
= FunEqMap EqualCtList
-> TyCon -> [PredType] -> EqualCtList -> FunEqMap EqualCtList
forall a. TcAppMap a -> TyCon -> [PredType] -> a -> TcAppMap a
insertTcApp FunEqMap EqualCtList
eqs TyCon
fam_tc [PredType]
fam_args EqualCtList
cts
extend_fun_eqs FunEqMap EqualCtList
eqs CanEqLHS
other EqualCtList
_cts = String -> SDoc -> FunEqMap EqualCtList
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"extend_fun_eqs" (FunEqMap EqualCtList -> SDoc
forall a. Outputable a => a -> SDoc
ppr FunEqMap EqualCtList
eqs SDoc -> SDoc -> SDoc
$$ CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
other)
kick_out_eqs :: (container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container)
-> ([Ct], container)
kick_out_eqs :: (container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container) -> ([Ct], container)
kick_out_eqs container -> CanEqLHS -> EqualCtList -> container
extend EqualCtList
eqs ([Ct]
acc_out, container
acc_in)
= ([Ct]
eqs_out [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
`chkAppend` [Ct]
acc_out, case [Ct] -> Maybe EqualCtList
listToEqualCtList [Ct]
eqs_in of
Maybe EqualCtList
Nothing -> container
acc_in
Just eqs_in_ecl :: EqualCtList
eqs_in_ecl@(EqualCtList (Ct
eq1 :| [Ct]
_))
-> container -> CanEqLHS -> EqualCtList -> container
extend container
acc_in (Ct -> CanEqLHS
cc_lhs Ct
eq1) EqualCtList
eqs_in_ecl)
where
([Ct]
eqs_out, [Ct]
eqs_in) = (Ct -> Bool) -> [Ct] -> ([Ct], [Ct])
forall a. (a -> Bool) -> [a] -> ([a], [a])
partition Ct -> Bool
kick_out_eq (EqualCtList -> [Ct]
equalCtListToList EqualCtList
eqs)
kick_out_eq :: Ct -> Bool
kick_out_eq (CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs, cc_rhs :: Ct -> PredType
cc_rhs = PredType
rhs_ty
, cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel })
| Bool -> Bool
not (CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs)
= Bool
False
| EqRel -> PredType -> Bool
fr_can_rewrite_ty EqRel
eq_rel (CanEqLHS -> PredType
canEqLHSType CanEqLHS
lhs) = Bool
True
| Bool
kick_out_for_inertness = Bool
True
| Bool
kick_out_for_completeness = Bool
True
| Bool
otherwise = Bool
False
where
fs :: CtFlavourRole
fs = (CtEvidence -> CtFlavour
ctEvFlavour CtEvidence
ev, EqRel
eq_rel)
kick_out_for_inertness :: Bool
kick_out_for_inertness
= (CtFlavourRole
fs CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
fs)
Bool -> Bool -> Bool
&& Bool -> Bool
not (CtFlavourRole
fs CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
new_fr)
Bool -> Bool -> Bool
&& EqRel -> PredType -> Bool
fr_can_rewrite_ty EqRel
eq_rel PredType
rhs_ty
kick_out_for_completeness :: Bool
kick_out_for_completeness
= case EqRel
eq_rel of
EqRel
NomEq -> PredType
rhs_ty PredType -> PredType -> Bool
`eqType` CanEqLHS -> PredType
canEqLHSType CanEqLHS
new_lhs
EqRel
ReprEq -> CanEqLHS -> PredType -> Bool
is_can_eq_lhs_head CanEqLHS
new_lhs PredType
rhs_ty
kick_out_eq Ct
ct = String -> SDoc -> Bool
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"keep_eq" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
is_can_eq_lhs_head :: CanEqLHS -> PredType -> Bool
is_can_eq_lhs_head (TyVarLHS TcTyVar
tv) = PredType -> Bool
go
where
go :: PredType -> Bool
go (Rep.TyVarTy TcTyVar
tv') = TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv'
go (Rep.AppTy PredType
fun PredType
_) = PredType -> Bool
go PredType
fun
go (Rep.CastTy PredType
ty TcCoercion
_) = PredType -> Bool
go PredType
ty
go (Rep.TyConApp {}) = Bool
False
go (Rep.LitTy {}) = Bool
False
go (Rep.ForAllTy {}) = Bool
False
go (Rep.FunTy {}) = Bool
False
go (Rep.CoercionTy {}) = Bool
False
is_can_eq_lhs_head (TyFamLHS TyCon
fun_tc [PredType]
fun_args) = PredType -> Bool
go
where
go :: PredType -> Bool
go (Rep.TyVarTy {}) = Bool
False
go (Rep.AppTy {}) = Bool
False
go (Rep.CastTy PredType
ty TcCoercion
_) = PredType -> Bool
go PredType
ty
go (Rep.TyConApp TyCon
tc [PredType]
args) = TyCon -> [PredType] -> TyCon -> [PredType] -> Bool
tcEqTyConApps TyCon
fun_tc [PredType]
fun_args TyCon
tc [PredType]
args
go (Rep.LitTy {}) = Bool
False
go (Rep.ForAllTy {}) = Bool
False
go (Rep.FunTy {}) = Bool
False
go (Rep.CoercionTy {}) = Bool
False
kickOutAfterUnification :: TcTyVar -> TcS Int
kickOutAfterUnification :: TcTyVar -> TcS Int
kickOutAfterUnification TcTyVar
new_tv
= do { InertCans
ics <- TcS InertCans
getInertCans
; (Int
n_kicked, InertCans
ics2) <- CtFlavourRole -> CanEqLHS -> InertCans -> TcS (Int, InertCans)
kickOutRewritable (CtFlavour
Given,EqRel
NomEq)
(TcTyVar -> CanEqLHS
TyVarLHS TcTyVar
new_tv) InertCans
ics
; InertCans -> TcS ()
setInertCans InertCans
ics2
; Int -> TcS Int
forall (m :: * -> *) a. Monad m => a -> m a
return Int
n_kicked }
kickOutAfterFillingCoercionHole :: CoercionHole -> Coercion -> TcS ()
kickOutAfterFillingCoercionHole :: CoercionHole -> TcCoercion -> TcS ()
kickOutAfterFillingCoercionHole CoercionHole
hole TcCoercion
filled_co
= do { InertCans
ics <- TcS InertCans
getInertCans
; let (WorkList
kicked_out, InertCans
ics') = InertCans -> (WorkList, InertCans)
kick_out InertCans
ics
n_kicked :: Int
n_kicked = WorkList -> Int
workListSize WorkList
kicked_out
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n_kicked Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { (WorkList -> WorkList) -> TcS ()
updWorkListTcS (WorkList -> WorkList -> WorkList
appendWorkList WorkList
kicked_out)
; SDoc -> TcS ()
csTraceTcS (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Kick out, hole =" SDoc -> SDoc -> SDoc
<+> CoercionHole -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoercionHole
hole)
Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"n-kicked =" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
n_kicked
, String -> SDoc
text String
"kicked_out =" SDoc -> SDoc -> SDoc
<+> WorkList -> SDoc
forall a. Outputable a => a -> SDoc
ppr WorkList
kicked_out
, String -> SDoc
text String
"Residual inerts =" SDoc -> SDoc -> SDoc
<+> InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ics' ]) }
; InertCans -> TcS ()
setInertCans InertCans
ics' }
where
holes_of_co :: UniqSet CoercionHole
holes_of_co = TcCoercion -> UniqSet CoercionHole
coercionHolesOfCo TcCoercion
filled_co
kick_out :: InertCans -> (WorkList, InertCans)
kick_out :: InertCans -> (WorkList, InertCans)
kick_out ics :: InertCans
ics@(IC { inert_irreds :: InertCans -> Cts
inert_irreds = Cts
irreds })
= let (Cts
to_kick, Cts
to_keep) = (Ct -> Either Ct Ct) -> Cts -> (Cts, Cts)
forall a b c. (a -> Either b c) -> Bag a -> (Bag b, Bag c)
partitionBagWith Ct -> Either Ct Ct
kick_ct Cts
irreds
kicked_out :: WorkList
kicked_out = [Ct] -> WorkList -> WorkList
extendWorkListCts (Cts -> [Ct]
forall a. Bag a -> [a]
bagToList Cts
to_kick) WorkList
emptyWorkList
ics' :: InertCans
ics' = InertCans
ics { inert_irreds :: Cts
inert_irreds = Cts
to_keep }
in
(WorkList
kicked_out, InertCans
ics')
kick_ct :: Ct -> Either Ct Ct
kick_ct :: Ct -> Either Ct Ct
kick_ct ct :: Ct
ct@(CIrredCan { cc_status :: Ct -> CtIrredStatus
cc_status = BlockedCIS UniqSet CoercionHole
holes })
| CoercionHole
hole CoercionHole -> UniqSet CoercionHole -> Bool
forall a. Uniquable a => a -> UniqSet a -> Bool
`elementOfUniqSet` UniqSet CoercionHole
holes
= let new_holes :: UniqSet CoercionHole
new_holes = UniqSet CoercionHole
holes UniqSet CoercionHole -> CoercionHole -> UniqSet CoercionHole
forall a. Uniquable a => UniqSet a -> a -> UniqSet a
`delOneFromUniqSet` CoercionHole
hole
UniqSet CoercionHole
-> UniqSet CoercionHole -> UniqSet CoercionHole
forall a. UniqSet a -> UniqSet a -> UniqSet a
`unionUniqSets` UniqSet CoercionHole
holes_of_co
updated_ct :: Ct
updated_ct = Ct
ct { cc_status :: CtIrredStatus
cc_status = UniqSet CoercionHole -> CtIrredStatus
BlockedCIS UniqSet CoercionHole
new_holes }
in
if UniqSet CoercionHole -> Bool
forall a. UniqSet a -> Bool
isEmptyUniqSet UniqSet CoercionHole
new_holes
then Ct -> Either Ct Ct
forall a b. a -> Either a b
Left Ct
updated_ct
else Ct -> Either Ct Ct
forall a b. b -> Either a b
Right Ct
updated_ct
kick_ct Ct
other = Ct -> Either Ct Ct
forall a b. b -> Either a b
Right Ct
other
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask InertCans
ics item :: Ct
item@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [PredType]
cc_tyargs = [PredType]
tys })
= InertCans
ics { inert_safehask :: DictMap Ct
inert_safehask = DictMap Ct -> Class -> [PredType] -> Ct -> DictMap Ct
forall a. DictMap a -> Class -> [PredType] -> a -> DictMap a
addDict (InertCans -> DictMap Ct
inert_dicts InertCans
ics) Class
cls [PredType]
tys Ct
item }
addInertSafehask InertCans
_ Ct
item
= String -> SDoc -> InertCans
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"addInertSafehask: can't happen! Inserting " (SDoc -> InertCans) -> SDoc -> InertCans
forall a b. (a -> b) -> a -> b
$ Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
item
insertSafeOverlapFailureTcS :: InstanceWhat -> Ct -> TcS ()
insertSafeOverlapFailureTcS :: InstanceWhat -> Ct -> TcS ()
insertSafeOverlapFailureTcS InstanceWhat
what Ct
item
| InstanceWhat -> Bool
safeOverlap InstanceWhat
what = () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise = (InertCans -> InertCans) -> TcS ()
updInertCans (\InertCans
ics -> InertCans -> Ct -> InertCans
addInertSafehask InertCans
ics Ct
item)
getSafeOverlapFailures :: TcS Cts
getSafeOverlapFailures :: TcS Cts
getSafeOverlapFailures
= do { IC { inert_safehask :: InertCans -> DictMap Ct
inert_safehask = DictMap Ct
safehask } <- TcS InertCans
getInertCans
; Cts -> TcS Cts
forall (m :: * -> *) a. Monad m => a -> m a
return (Cts -> TcS Cts) -> Cts -> TcS Cts
forall a b. (a -> b) -> a -> b
$ (Ct -> Cts -> Cts) -> DictMap Ct -> Cts -> Cts
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts Ct -> Cts -> Cts
consCts DictMap Ct
safehask Cts
emptyCts }
addSolvedDict :: InstanceWhat -> CtEvidence -> Class -> [Type] -> TcS ()
addSolvedDict :: InstanceWhat -> CtEvidence -> Class -> [PredType] -> TcS ()
addSolvedDict InstanceWhat
what CtEvidence
item Class
cls [PredType]
tys
| CtEvidence -> Bool
isWanted CtEvidence
item
, InstanceWhat -> Bool
instanceReturnsDictCon InstanceWhat
what
= do { String -> SDoc -> TcS ()
traceTcS String
"updSolvedSetTcs:" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$ CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
item
; (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
ics ->
InertSet
ics { inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
-> Class -> [PredType] -> CtEvidence -> DictMap CtEvidence
forall a. DictMap a -> Class -> [PredType] -> a -> DictMap a
addDict (InertSet -> DictMap CtEvidence
inert_solved_dicts InertSet
ics) Class
cls [PredType]
tys CtEvidence
item } }
| Bool
otherwise
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
getSolvedDicts :: TcS (DictMap CtEvidence)
getSolvedDicts :: TcS (DictMap CtEvidence)
getSolvedDicts = do { InertSet
ics <- TcS InertSet
getTcSInerts; DictMap CtEvidence -> TcS (DictMap CtEvidence)
forall (m :: * -> *) a. Monad m => a -> m a
return (InertSet -> DictMap CtEvidence
inert_solved_dicts InertSet
ics) }
setSolvedDicts :: DictMap CtEvidence -> TcS ()
setSolvedDicts :: DictMap CtEvidence -> TcS ()
setSolvedDicts DictMap CtEvidence
solved_dicts
= (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
ics ->
InertSet
ics { inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
solved_dicts }
updInertTcS :: (InertSet -> InertSet) -> TcS ()
updInertTcS :: (InertSet -> InertSet) -> TcS ()
updInertTcS InertSet -> InertSet
upd_fn
= do { IORef InertSet
is_var <- TcS (IORef InertSet)
getTcSInertsRef
; TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (do { InertSet
curr_inert <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
is_var
; IORef InertSet -> InertSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef InertSet
is_var (InertSet -> InertSet
upd_fn InertSet
curr_inert) }) }
getInertCans :: TcS InertCans
getInertCans :: TcS InertCans
getInertCans = do { InertSet
inerts <- TcS InertSet
getTcSInerts; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return (InertSet -> InertCans
inert_cans InertSet
inerts) }
setInertCans :: InertCans -> TcS ()
setInertCans :: InertCans -> TcS ()
setInertCans InertCans
ics = (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
inerts -> InertSet
inerts { inert_cans :: InertCans
inert_cans = InertCans
ics }
updRetInertCans :: (InertCans -> (a, InertCans)) -> TcS a
updRetInertCans :: (InertCans -> (a, InertCans)) -> TcS a
updRetInertCans InertCans -> (a, InertCans)
upd_fn
= do { IORef InertSet
is_var <- TcS (IORef InertSet)
getTcSInertsRef
; TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (do { InertSet
inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
is_var
; let (a
res, InertCans
cans') = InertCans -> (a, InertCans)
upd_fn (InertSet -> InertCans
inert_cans InertSet
inerts)
; IORef InertSet -> InertSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef InertSet
is_var (InertSet
inerts { inert_cans :: InertCans
inert_cans = InertCans
cans' })
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }) }
updInertCans :: (InertCans -> InertCans) -> TcS ()
updInertCans :: (InertCans -> InertCans) -> TcS ()
updInertCans InertCans -> InertCans
upd_fn
= (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
inerts -> InertSet
inerts { inert_cans :: InertCans
inert_cans = InertCans -> InertCans
upd_fn (InertSet -> InertCans
inert_cans InertSet
inerts) }
updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertDicts DictMap Ct -> DictMap Ct
upd_fn
= (InertCans -> InertCans) -> TcS ()
updInertCans ((InertCans -> InertCans) -> TcS ())
-> (InertCans -> InertCans) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertCans
ics -> InertCans
ics { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct -> DictMap Ct
upd_fn (InertCans -> DictMap Ct
inert_dicts InertCans
ics) }
updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertSafehask DictMap Ct -> DictMap Ct
upd_fn
= (InertCans -> InertCans) -> TcS ()
updInertCans ((InertCans -> InertCans) -> TcS ())
-> (InertCans -> InertCans) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertCans
ics -> InertCans
ics { inert_safehask :: DictMap Ct
inert_safehask = DictMap Ct -> DictMap Ct
upd_fn (InertCans -> DictMap Ct
inert_safehask InertCans
ics) }
updInertIrreds :: (Cts -> Cts) -> TcS ()
updInertIrreds :: (Cts -> Cts) -> TcS ()
updInertIrreds Cts -> Cts
upd_fn
= (InertCans -> InertCans) -> TcS ()
updInertCans ((InertCans -> InertCans) -> TcS ())
-> (InertCans -> InertCans) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertCans
ics -> InertCans
ics { inert_irreds :: Cts
inert_irreds = Cts -> Cts
upd_fn (InertCans -> Cts
inert_irreds InertCans
ics) }
getInertEqs :: TcS (DTyVarEnv EqualCtList)
getInertEqs :: TcS InertEqs
getInertEqs = do { InertCans
inert <- TcS InertCans
getInertCans; InertEqs -> TcS InertEqs
forall (m :: * -> *) a. Monad m => a -> m a
return (InertCans -> InertEqs
inert_eqs InertCans
inert) }
getInnermostGivenEqLevel :: TcS TcLevel
getInnermostGivenEqLevel :: TcS TcLevel
getInnermostGivenEqLevel = do { InertCans
inert <- TcS InertCans
getInertCans
; TcLevel -> TcS TcLevel
forall (m :: * -> *) a. Monad m => a -> m a
return (InertCans -> TcLevel
inert_given_eq_lvl InertCans
inert) }
getInertInsols :: TcS Cts
getInertInsols :: TcS Cts
getInertInsols = do { InertCans
inert <- TcS InertCans
getInertCans
; Cts -> TcS Cts
forall (m :: * -> *) a. Monad m => a -> m a
return ((Ct -> Bool) -> Cts -> Cts
forall a. (a -> Bool) -> Bag a -> Bag a
filterBag Ct -> Bool
insolubleEqCt (InertCans -> Cts
inert_irreds InertCans
inert)) }
getInertGivens :: TcS [Ct]
getInertGivens :: TcS [Ct]
getInertGivens
= do { InertCans
inerts <- TcS InertCans
getInertCans
; let all_cts :: [Ct]
all_cts = (Ct -> [Ct] -> [Ct]) -> DictMap Ct -> [Ct] -> [Ct]
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts (:) (InertCans -> DictMap Ct
inert_dicts InertCans
inerts)
([Ct] -> [Ct]) -> [Ct] -> [Ct]
forall a b. (a -> b) -> a -> b
$ (EqualCtList -> [Ct] -> [Ct])
-> FunEqMap EqualCtList -> [Ct] -> [Ct]
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs (\EqualCtList
ecl [Ct]
out -> EqualCtList -> [Ct]
equalCtListToList EqualCtList
ecl [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
out)
(InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
inerts)
([Ct] -> [Ct]) -> [Ct] -> [Ct]
forall a b. (a -> b) -> a -> b
$ (EqualCtList -> [Ct]) -> [EqualCtList] -> [Ct]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap EqualCtList -> [Ct]
equalCtListToList (InertEqs -> [EqualCtList]
forall a. DVarEnv a -> [a]
dVarEnvElts (InertCans -> InertEqs
inert_eqs InertCans
inerts))
; [Ct] -> TcS [Ct]
forall (m :: * -> *) a. Monad m => a -> m a
return ((Ct -> Bool) -> [Ct] -> [Ct]
forall a. (a -> Bool) -> [a] -> [a]
filter Ct -> Bool
isGivenCt [Ct]
all_cts) }
getPendingGivenScs :: TcS [Ct]
getPendingGivenScs :: TcS [Ct]
getPendingGivenScs = do { TcLevel
lvl <- TcS TcLevel
getTcLevel
; (InertCans -> ([Ct], InertCans)) -> TcS [Ct]
forall a. (InertCans -> (a, InertCans)) -> TcS a
updRetInertCans (TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending TcLevel
lvl) }
get_sc_pending :: TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending :: TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending TcLevel
this_lvl ic :: InertCans
ic@(IC { inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dicts, inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
insts })
= ASSERT2( all isGivenCt sc_pending, ppr sc_pending )
([Ct]
sc_pending, InertCans
ic { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct
dicts', inert_insts :: [QCInst]
inert_insts = [QCInst]
insts' })
where
sc_pending :: [Ct]
sc_pending = [Ct]
sc_pend_insts [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
sc_pend_dicts
sc_pend_dicts :: [Ct]
sc_pend_dicts = (Ct -> [Ct] -> [Ct]) -> DictMap Ct -> [Ct] -> [Ct]
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts Ct -> [Ct] -> [Ct]
get_pending DictMap Ct
dicts []
dicts' :: DictMap Ct
dicts' = (Ct -> DictMap Ct -> DictMap Ct)
-> DictMap Ct -> [Ct] -> DictMap Ct
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> DictMap Ct -> DictMap Ct
add DictMap Ct
dicts [Ct]
sc_pend_dicts
([Ct]
sc_pend_insts, [QCInst]
insts') = ([Ct] -> QCInst -> ([Ct], QCInst))
-> [Ct] -> [QCInst] -> ([Ct], [QCInst])
forall (t :: * -> *) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumL [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst [] [QCInst]
insts
get_pending :: Ct -> [Ct] -> [Ct]
get_pending :: Ct -> [Ct] -> [Ct]
get_pending Ct
dict [Ct]
dicts
| Just Ct
dict' <- Ct -> Maybe Ct
isPendingScDict Ct
dict
, CtEvidence -> Bool
belongs_to_this_level (Ct -> CtEvidence
ctEvidence Ct
dict)
= Ct
dict' Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: [Ct]
dicts
| Bool
otherwise
= [Ct]
dicts
add :: Ct -> DictMap Ct -> DictMap Ct
add :: Ct -> DictMap Ct -> DictMap Ct
add ct :: Ct
ct@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [PredType]
cc_tyargs = [PredType]
tys }) DictMap Ct
dicts
= DictMap Ct -> Class -> [PredType] -> Ct -> DictMap Ct
forall a. DictMap a -> Class -> [PredType] -> a -> DictMap a
addDict DictMap Ct
dicts Class
cls [PredType]
tys Ct
ct
add Ct
ct DictMap Ct
_ = String -> SDoc -> DictMap Ct
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"getPendingScDicts" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
get_pending_inst :: [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst :: [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst [Ct]
cts qci :: QCInst
qci@(QCI { qci_ev :: QCInst -> CtEvidence
qci_ev = CtEvidence
ev })
| Just QCInst
qci' <- QCInst -> Maybe QCInst
isPendingScInst QCInst
qci
, CtEvidence -> Bool
belongs_to_this_level CtEvidence
ev
= (QCInst -> Ct
CQuantCan QCInst
qci' Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: [Ct]
cts, QCInst
qci')
| Bool
otherwise
= ([Ct]
cts, QCInst
qci)
belongs_to_this_level :: CtEvidence -> Bool
belongs_to_this_level CtEvidence
ev = CtLoc -> TcLevel
ctLocLevel (CtEvidence -> CtLoc
ctEvLoc CtEvidence
ev) TcLevel -> TcLevel -> Bool
forall a. Eq a => a -> a -> Bool
== TcLevel
this_lvl
getUnsolvedInerts :: TcS ( Bag Implication
, Cts )
getUnsolvedInerts :: TcS (Bag Implication, Cts)
getUnsolvedInerts
= do { IC { inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
tv_eqs
, inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
fun_eqs
, inert_irreds :: InertCans -> Cts
inert_irreds = Cts
irreds
, inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
idicts
} <- TcS InertCans
getInertCans
; let unsolved_tv_eqs :: Cts
unsolved_tv_eqs = (Ct -> Cts -> Cts) -> InertEqs -> Cts -> Cts
forall b. (Ct -> b -> b) -> InertEqs -> b -> b
foldTyEqs Ct -> Cts -> Cts
add_if_unsolved InertEqs
tv_eqs Cts
emptyCts
unsolved_fun_eqs :: Cts
unsolved_fun_eqs = (EqualCtList -> Cts -> Cts) -> FunEqMap EqualCtList -> Cts -> Cts
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs EqualCtList -> Cts -> Cts
add_if_unsolveds FunEqMap EqualCtList
fun_eqs Cts
emptyCts
unsolved_irreds :: Cts
unsolved_irreds = (Ct -> Bool) -> Cts -> Cts
forall a. (a -> Bool) -> Bag a -> Bag a
Bag.filterBag Ct -> Bool
is_unsolved Cts
irreds
unsolved_dicts :: Cts
unsolved_dicts = (Ct -> Cts -> Cts) -> DictMap Ct -> Cts -> Cts
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts Ct -> Cts -> Cts
add_if_unsolved DictMap Ct
idicts Cts
emptyCts
unsolved_others :: Cts
unsolved_others = Cts
unsolved_irreds Cts -> Cts -> Cts
forall a. Bag a -> Bag a -> Bag a
`unionBags` Cts
unsolved_dicts
; Bag Implication
implics <- TcS (Bag Implication)
getWorkListImplics
; String -> SDoc -> TcS ()
traceTcS String
"getUnsolvedInerts" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
" tv eqs =" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
forall a. Outputable a => a -> SDoc
ppr Cts
unsolved_tv_eqs
, String -> SDoc
text String
"fun eqs =" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
forall a. Outputable a => a -> SDoc
ppr Cts
unsolved_fun_eqs
, String -> SDoc
text String
"others =" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
forall a. Outputable a => a -> SDoc
ppr Cts
unsolved_others
, String -> SDoc
text String
"implics =" SDoc -> SDoc -> SDoc
<+> Bag Implication -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bag Implication
implics ]
; (Bag Implication, Cts) -> TcS (Bag Implication, Cts)
forall (m :: * -> *) a. Monad m => a -> m a
return ( Bag Implication
implics, Cts
unsolved_tv_eqs Cts -> Cts -> Cts
forall a. Bag a -> Bag a -> Bag a
`unionBags`
Cts
unsolved_fun_eqs Cts -> Cts -> Cts
forall a. Bag a -> Bag a -> Bag a
`unionBags`
Cts
unsolved_others) }
where
add_if_unsolved :: Ct -> Cts -> Cts
add_if_unsolved :: Ct -> Cts -> Cts
add_if_unsolved Ct
ct Cts
cts | Ct -> Bool
is_unsolved Ct
ct = Ct
ct Ct -> Cts -> Cts
`consCts` Cts
cts
| Bool
otherwise = Cts
cts
add_if_unsolveds :: EqualCtList -> Cts -> Cts
add_if_unsolveds :: EqualCtList -> Cts -> Cts
add_if_unsolveds EqualCtList
new_cts Cts
old_cts = (Ct -> Cts -> Cts) -> Cts -> [Ct] -> Cts
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> Cts -> Cts
add_if_unsolved Cts
old_cts
(EqualCtList -> [Ct]
equalCtListToList EqualCtList
new_cts)
is_unsolved :: Ct -> Bool
is_unsolved Ct
ct = Bool -> Bool
not (Ct -> Bool
isGivenCt Ct
ct)
getHasGivenEqs :: TcLevel
-> TcS ( HasGivenEqs
, Cts )
getHasGivenEqs :: TcLevel -> TcS (HasGivenEqs, Cts)
getHasGivenEqs TcLevel
tclvl
= do { inerts :: InertCans
inerts@(IC { inert_irreds :: InertCans -> Cts
inert_irreds = Cts
irreds
, inert_given_eqs :: InertCans -> Bool
inert_given_eqs = Bool
given_eqs
, inert_given_eq_lvl :: InertCans -> TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl })
<- TcS InertCans
getInertCans
; let insols :: Cts
insols = (Ct -> Bool) -> Cts -> Cts
forall a. (a -> Bool) -> Bag a -> Bag a
filterBag Ct -> Bool
insolubleEqCt Cts
irreds
has_ge :: HasGivenEqs
has_ge | TcLevel
ge_lvl TcLevel -> TcLevel -> Bool
forall a. Eq a => a -> a -> Bool
== TcLevel
tclvl = HasGivenEqs
MaybeGivenEqs
| Bool
given_eqs = HasGivenEqs
LocalGivenEqs
| Bool
otherwise = HasGivenEqs
NoGivenEqs
; String -> SDoc -> TcS ()
traceTcS String
"getHasGivenEqs" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"given_eqs:" SDoc -> SDoc -> SDoc
<+> Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bool
given_eqs
, String -> SDoc
text String
"ge_lvl:" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
ge_lvl
, String -> SDoc
text String
"ambient level:" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl
, String -> SDoc
text String
"Inerts:" SDoc -> SDoc -> SDoc
<+> InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
inerts
, String -> SDoc
text String
"Insols:" SDoc -> SDoc -> SDoc
<+> Cts -> SDoc
forall a. Outputable a => a -> SDoc
ppr Cts
insols]
; (HasGivenEqs, Cts) -> TcS (HasGivenEqs, Cts)
forall (m :: * -> *) a. Monad m => a -> m a
return (HasGivenEqs
has_ge, Cts
insols) }
mentionsOuterVar :: TcLevel -> CtEvidence -> Bool
mentionsOuterVar :: TcLevel -> CtEvidence -> Bool
mentionsOuterVar TcLevel
tclvl CtEvidence
ev
= (TcTyVar -> Bool) -> PredType -> Bool
anyFreeVarsOfType (TcLevel -> TcTyVar -> Bool
isOuterTyVar TcLevel
tclvl) (PredType -> Bool) -> PredType -> Bool
forall a b. (a -> b) -> a -> b
$
CtEvidence -> PredType
ctEvPred CtEvidence
ev
isOuterTyVar :: TcLevel -> TyCoVar -> Bool
isOuterTyVar :: TcLevel -> TcTyVar -> Bool
isOuterTyVar TcLevel
tclvl TcTyVar
tv
| TcTyVar -> Bool
isTyVar TcTyVar
tv = TcLevel
tclvl TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv
Bool -> Bool -> Bool
|| TcTyVar -> Bool
isPromotableMetaTyVar TcTyVar
tv
| Bool
otherwise = Bool
False
matchableGivens :: CtLoc -> PredType -> InertSet -> Cts
matchableGivens :: CtLoc -> PredType -> InertSet -> Cts
matchableGivens CtLoc
loc_w PredType
pred_w (IS { inert_cans :: InertSet -> InertCans
inert_cans = InertCans
inert_cans })
= (Ct -> Bool) -> Cts -> Cts
forall a. (a -> Bool) -> Bag a -> Bag a
filterBag Ct -> Bool
matchable_given Cts
all_relevant_givens
where
all_relevant_givens :: Cts
all_relevant_givens :: Cts
all_relevant_givens
| Just (Class
clas, [PredType]
_) <- PredType -> Maybe (Class, [PredType])
getClassPredTys_maybe PredType
pred_w
= DictMap Ct -> Class -> Cts
forall a. DictMap a -> Class -> Bag a
findDictsByClass (InertCans -> DictMap Ct
inert_dicts InertCans
inert_cans) Class
clas
Cts -> Cts -> Cts
forall a. Bag a -> Bag a -> Bag a
`unionBags` InertCans -> Cts
inert_irreds InertCans
inert_cans
| Bool
otherwise
= InertCans -> Cts
inert_irreds InertCans
inert_cans
matchable_given :: Ct -> Bool
matchable_given :: Ct -> Bool
matchable_given Ct
ct
| CtGiven { ctev_loc :: CtEvidence -> CtLoc
ctev_loc = CtLoc
loc_g, ctev_pred :: CtEvidence -> PredType
ctev_pred = PredType
pred_g } <- Ct -> CtEvidence
ctEvidence Ct
ct
= PredType -> CtLoc -> PredType -> CtLoc -> Bool
mightMatchLater PredType
pred_g CtLoc
loc_g PredType
pred_w CtLoc
loc_w
| Bool
otherwise
= Bool
False
mightMatchLater :: TcPredType -> CtLoc -> TcPredType -> CtLoc -> Bool
mightMatchLater :: PredType -> CtLoc -> PredType -> CtLoc -> Bool
mightMatchLater PredType
given_pred CtLoc
given_loc PredType
wanted_pred CtLoc
wanted_loc
| CtLoc -> CtLoc -> Bool
prohibitedSuperClassSolve CtLoc
given_loc CtLoc
wanted_loc
= Bool
False
| UnifyResultM TCvSubst
SurelyApart <- (TcTyVar -> BindFlag)
-> [PredType] -> [PredType] -> UnifyResultM TCvSubst
tcUnifyTysFG TcTyVar -> BindFlag
bind_meta_tv [PredType
flattened_given] [PredType
flattened_wanted]
= Bool
False
| Bool
otherwise
= Bool
True
where
in_scope :: InScopeSet
in_scope = VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$ [PredType] -> VarSet
tyCoVarsOfTypes [PredType
given_pred, PredType
wanted_pred]
([PredType
flattened_given, PredType
flattened_wanted], TyVarEnv (TyCon, [PredType])
var_mapping)
= InScopeSet
-> [PredType] -> ([PredType], TyVarEnv (TyCon, [PredType]))
flattenTysX InScopeSet
in_scope [PredType
given_pred, PredType
wanted_pred]
bind_meta_tv :: TcTyVar -> BindFlag
bind_meta_tv :: TcTyVar -> BindFlag
bind_meta_tv TcTyVar
tv | TcTyVar -> Bool
is_meta_tv TcTyVar
tv = BindFlag
BindMe
| Just (TyCon
_fam_tc, [PredType]
fam_args) <- TyVarEnv (TyCon, [PredType])
-> TcTyVar -> Maybe (TyCon, [PredType])
forall a. VarEnv a -> TcTyVar -> Maybe a
lookupVarEnv TyVarEnv (TyCon, [PredType])
var_mapping TcTyVar
tv
, (TcTyVar -> Bool) -> [PredType] -> Bool
anyFreeVarsOfTypes TcTyVar -> Bool
is_meta_tv [PredType]
fam_args
= BindFlag
BindMe
| Bool
otherwise = BindFlag
Skolem
is_meta_tv :: TcTyVar -> Bool
is_meta_tv = TcTyVar -> Bool
isMetaTyVar (TcTyVar -> Bool) -> (TcTyVar -> Bool) -> TcTyVar -> Bool
forall (f :: * -> *). Applicative f => f Bool -> f Bool -> f Bool
<&&> Bool -> Bool
not (Bool -> Bool) -> (TcTyVar -> Bool) -> TcTyVar -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcTyVar -> Bool
isCycleBreakerTyVar
prohibitedSuperClassSolve :: CtLoc -> CtLoc -> Bool
prohibitedSuperClassSolve :: CtLoc -> CtLoc -> Bool
prohibitedSuperClassSolve CtLoc
from_loc CtLoc
solve_loc
| GivenOrigin (InstSC TypeSize
given_size) <- CtLoc -> CtOrigin
ctLocOrigin CtLoc
from_loc
, ScOrigin TypeSize
wanted_size <- CtLoc -> CtOrigin
ctLocOrigin CtLoc
solve_loc
= TypeSize
given_size TypeSize -> TypeSize -> Bool
forall a. Ord a => a -> a -> Bool
>= TypeSize
wanted_size
| Bool
otherwise
= Bool
False
removeInertCts :: [Ct] -> InertCans -> InertCans
removeInertCts :: [Ct] -> InertCans -> InertCans
removeInertCts [Ct]
cts InertCans
icans = (InertCans -> Ct -> InertCans) -> InertCans -> [Ct] -> InertCans
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' InertCans -> Ct -> InertCans
removeInertCt InertCans
icans [Ct]
cts
removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt InertCans
is Ct
ct =
case Ct
ct of
CDictCan { cc_class :: Ct -> Class
cc_class = Class
cl, cc_tyargs :: Ct -> [PredType]
cc_tyargs = [PredType]
tys } ->
InertCans
is { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct -> Class -> [PredType] -> DictMap Ct
forall a. DictMap a -> Class -> [PredType] -> DictMap a
delDict (InertCans -> DictMap Ct
inert_dicts InertCans
is) Class
cl [PredType]
tys }
CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs, cc_rhs :: Ct -> PredType
cc_rhs = PredType
rhs } -> InertCans -> CanEqLHS -> PredType -> InertCans
delEq InertCans
is CanEqLHS
lhs PredType
rhs
CQuantCan {} -> String -> InertCans
forall a. String -> a
panic String
"removeInertCt: CQuantCan"
CIrredCan {} -> String -> InertCans
forall a. String -> a
panic String
"removeInertCt: CIrredEvCan"
CNonCanonical {} -> String -> InertCans
forall a. String -> a
panic String
"removeInertCt: CNonCanonical"
lookupFamAppInert :: TyCon -> [Type] -> TcS (Maybe (TcCoercion, TcType, CtFlavourRole))
lookupFamAppInert :: TyCon
-> [PredType] -> TcS (Maybe (TcCoercion, PredType, CtFlavourRole))
lookupFamAppInert TyCon
fam_tc [PredType]
tys
= do { IS { inert_cans :: InertSet -> InertCans
inert_cans = IC { inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
inert_funeqs } } <- TcS InertSet
getTcSInerts
; Maybe (TcCoercion, PredType, CtFlavourRole)
-> TcS (Maybe (TcCoercion, PredType, CtFlavourRole))
forall (m :: * -> *) a. Monad m => a -> m a
return (FunEqMap EqualCtList -> Maybe (TcCoercion, PredType, CtFlavourRole)
lookup_inerts FunEqMap EqualCtList
inert_funeqs) }
where
lookup_inerts :: FunEqMap EqualCtList -> Maybe (TcCoercion, PredType, CtFlavourRole)
lookup_inerts FunEqMap EqualCtList
inert_funeqs
| Just (EqualCtList (CEqCan { cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ctev, cc_rhs :: Ct -> PredType
cc_rhs = PredType
rhs } :| [Ct]
_))
<- FunEqMap EqualCtList -> TyCon -> [PredType] -> Maybe EqualCtList
forall a. FunEqMap a -> TyCon -> [PredType] -> Maybe a
findFunEq FunEqMap EqualCtList
inert_funeqs TyCon
fam_tc [PredType]
tys
= (TcCoercion, PredType, CtFlavourRole)
-> Maybe (TcCoercion, PredType, CtFlavourRole)
forall a. a -> Maybe a
Just (HasDebugCallStack => CtEvidence -> TcCoercion
CtEvidence -> TcCoercion
ctEvCoercion CtEvidence
ctev, PredType
rhs, CtEvidence -> CtFlavourRole
ctEvFlavourRole CtEvidence
ctev)
| Bool
otherwise = Maybe (TcCoercion, PredType, CtFlavourRole)
forall a. Maybe a
Nothing
lookupInInerts :: CtLoc -> TcPredType -> TcS (Maybe CtEvidence)
lookupInInerts :: CtLoc -> PredType -> TcS (Maybe CtEvidence)
lookupInInerts CtLoc
loc PredType
pty
| ClassPred Class
cls [PredType]
tys <- PredType -> Pred
classifyPredType PredType
pty
= do { InertSet
inerts <- TcS InertSet
getTcSInerts
; Maybe CtEvidence -> TcS (Maybe CtEvidence)
forall (m :: * -> *) a. Monad m => a -> m a
return (InertSet -> CtLoc -> Class -> [PredType] -> Maybe CtEvidence
lookupSolvedDict InertSet
inerts CtLoc
loc Class
cls [PredType]
tys Maybe CtEvidence -> Maybe CtEvidence -> Maybe CtEvidence
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus`
InertCans -> CtLoc -> Class -> [PredType] -> Maybe CtEvidence
lookupInertDict (InertSet -> InertCans
inert_cans InertSet
inerts) CtLoc
loc Class
cls [PredType]
tys) }
| Bool
otherwise
= Maybe CtEvidence -> TcS (Maybe CtEvidence)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe CtEvidence
forall a. Maybe a
Nothing
lookupInertDict :: InertCans -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
lookupInertDict :: InertCans -> CtLoc -> Class -> [PredType] -> Maybe CtEvidence
lookupInertDict (IC { inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dicts }) CtLoc
loc Class
cls [PredType]
tys
= case DictMap Ct -> CtLoc -> Class -> [PredType] -> Maybe Ct
forall a. DictMap a -> CtLoc -> Class -> [PredType] -> Maybe a
findDict DictMap Ct
dicts CtLoc
loc Class
cls [PredType]
tys of
Just Ct
ct -> CtEvidence -> Maybe CtEvidence
forall a. a -> Maybe a
Just (Ct -> CtEvidence
ctEvidence Ct
ct)
Maybe Ct
_ -> Maybe CtEvidence
forall a. Maybe a
Nothing
lookupSolvedDict :: InertSet -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
lookupSolvedDict :: InertSet -> CtLoc -> Class -> [PredType] -> Maybe CtEvidence
lookupSolvedDict (IS { inert_solved_dicts :: InertSet -> DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
solved }) CtLoc
loc Class
cls [PredType]
tys
= case DictMap CtEvidence
-> CtLoc -> Class -> [PredType] -> Maybe CtEvidence
forall a. DictMap a -> CtLoc -> Class -> [PredType] -> Maybe a
findDict DictMap CtEvidence
solved CtLoc
loc Class
cls [PredType]
tys of
Just CtEvidence
ev -> CtEvidence -> Maybe CtEvidence
forall a. a -> Maybe a
Just CtEvidence
ev
Maybe CtEvidence
_ -> Maybe CtEvidence
forall a. Maybe a
Nothing
lookupFamAppCache :: TyCon -> [Type] -> TcS (Maybe (TcCoercion, TcType))
lookupFamAppCache :: TyCon -> [PredType] -> TcS (Maybe (TcCoercion, PredType))
lookupFamAppCache TyCon
fam_tc [PredType]
tys
= do { IS { inert_famapp_cache :: InertSet -> FunEqMap (TcCoercion, PredType)
inert_famapp_cache = FunEqMap (TcCoercion, PredType)
famapp_cache } <- TcS InertSet
getTcSInerts
; case FunEqMap (TcCoercion, PredType)
-> TyCon -> [PredType] -> Maybe (TcCoercion, PredType)
forall a. FunEqMap a -> TyCon -> [PredType] -> Maybe a
findFunEq FunEqMap (TcCoercion, PredType)
famapp_cache TyCon
fam_tc [PredType]
tys of
result :: Maybe (TcCoercion, PredType)
result@(Just (TcCoercion
co, PredType
ty)) ->
do { String -> SDoc -> TcS ()
traceTcS String
"famapp_cache hit" ([SDoc] -> SDoc
vcat [ PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> [PredType] -> PredType
mkTyConApp TyCon
fam_tc [PredType]
tys)
, PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr PredType
ty
, TcCoercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcCoercion
co ])
; Maybe (TcCoercion, PredType) -> TcS (Maybe (TcCoercion, PredType))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (TcCoercion, PredType)
result }
Maybe (TcCoercion, PredType)
Nothing -> Maybe (TcCoercion, PredType) -> TcS (Maybe (TcCoercion, PredType))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (TcCoercion, PredType)
forall a. Maybe a
Nothing }
extendFamAppCache :: TyCon -> [Type] -> (TcCoercion, TcType) -> TcS ()
extendFamAppCache :: TyCon -> [PredType] -> (TcCoercion, PredType) -> TcS ()
extendFamAppCache TyCon
tc [PredType]
xi_args stuff :: (TcCoercion, PredType)
stuff@(TcCoercion
_, PredType
ty)
= do { DynFlags
dflags <- TcS DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_FamAppCache DynFlags
dflags) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcS ()
traceTcS String
"extendFamAppCache" ([SDoc] -> SDoc
vcat [ TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
<+> [PredType] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [PredType]
xi_args
, PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr PredType
ty ])
; (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ is :: InertSet
is@(IS { inert_famapp_cache :: InertSet -> FunEqMap (TcCoercion, PredType)
inert_famapp_cache = FunEqMap (TcCoercion, PredType)
fc }) ->
InertSet
is { inert_famapp_cache :: FunEqMap (TcCoercion, PredType)
inert_famapp_cache = FunEqMap (TcCoercion, PredType)
-> TyCon
-> [PredType]
-> (TcCoercion, PredType)
-> FunEqMap (TcCoercion, PredType)
forall a. TcAppMap a -> TyCon -> [PredType] -> a -> TcAppMap a
insertFunEq FunEqMap (TcCoercion, PredType)
fc TyCon
tc [PredType]
xi_args (TcCoercion, PredType)
stuff } } }
dropFromFamAppCache :: VarSet -> TcS ()
dropFromFamAppCache :: VarSet -> TcS ()
dropFromFamAppCache VarSet
varset
= do { inerts :: InertSet
inerts@(IS { inert_famapp_cache :: InertSet -> FunEqMap (TcCoercion, PredType)
inert_famapp_cache = FunEqMap (TcCoercion, PredType)
famapp_cache }) <- TcS InertSet
getTcSInerts
; let filtered :: FunEqMap (TcCoercion, PredType)
filtered = ((TcCoercion, PredType) -> Bool)
-> FunEqMap (TcCoercion, PredType)
-> FunEqMap (TcCoercion, PredType)
forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap (TcCoercion, PredType) -> Bool
check FunEqMap (TcCoercion, PredType)
famapp_cache
; InertSet -> TcS ()
setTcSInerts (InertSet -> TcS ()) -> InertSet -> TcS ()
forall a b. (a -> b) -> a -> b
$ InertSet
inerts { inert_famapp_cache :: FunEqMap (TcCoercion, PredType)
inert_famapp_cache = FunEqMap (TcCoercion, PredType)
filtered } }
where
check :: (TcCoercion, TcType) -> Bool
check :: (TcCoercion, PredType) -> Bool
check (TcCoercion
co, PredType
_) = Bool -> Bool
not ((TcTyVar -> Bool) -> TcCoercion -> Bool
anyFreeVarsOfCo (TcTyVar -> VarSet -> Bool
`elemVarSet` VarSet
varset) TcCoercion
co)
foldIrreds :: (Ct -> b -> b) -> Cts -> b -> b
foldIrreds :: (Ct -> b -> b) -> Cts -> b -> b
foldIrreds Ct -> b -> b
k Cts
irreds b
z = (Ct -> b -> b) -> b -> Cts -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> b -> b
k b
z Cts
irreds
type TcAppMap a = DTyConEnv (ListMap LooseTypeMap a)
isEmptyTcAppMap :: TcAppMap a -> Bool
isEmptyTcAppMap :: TcAppMap a -> Bool
isEmptyTcAppMap TcAppMap a
m = TcAppMap a -> Bool
forall a. DTyConEnv a -> Bool
isEmptyDTyConEnv TcAppMap a
m
emptyTcAppMap :: TcAppMap a
emptyTcAppMap :: TcAppMap a
emptyTcAppMap = TcAppMap a
forall a. DTyConEnv a
emptyDTyConEnv
findTcApp :: TcAppMap a -> TyCon -> [Type] -> Maybe a
findTcApp :: TcAppMap a -> TyCon -> [PredType] -> Maybe a
findTcApp TcAppMap a
m TyCon
tc [PredType]
tys = do { ListMap LooseTypeMap a
tys_map <- TcAppMap a -> TyCon -> Maybe (ListMap LooseTypeMap a)
forall a. DTyConEnv a -> TyCon -> Maybe a
lookupDTyConEnv TcAppMap a
m TyCon
tc
; Key (ListMap LooseTypeMap) -> ListMap LooseTypeMap a -> Maybe a
forall (m :: * -> *) b. TrieMap m => Key m -> m b -> Maybe b
lookupTM [PredType]
Key (ListMap LooseTypeMap)
tys ListMap LooseTypeMap a
tys_map }
delTcApp :: TcAppMap a -> TyCon -> [Type] -> TcAppMap a
delTcApp :: TcAppMap a -> TyCon -> [PredType] -> TcAppMap a
delTcApp TcAppMap a
m TyCon
tc [PredType]
tys = (ListMap LooseTypeMap a -> ListMap LooseTypeMap a)
-> TcAppMap a -> TyCon -> TcAppMap a
forall a. (a -> a) -> DTyConEnv a -> TyCon -> DTyConEnv a
adjustDTyConEnv (Key (ListMap LooseTypeMap)
-> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => Key m -> m a -> m a
deleteTM [PredType]
Key (ListMap LooseTypeMap)
tys) TcAppMap a
m TyCon
tc
insertTcApp :: TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp :: TcAppMap a -> TyCon -> [PredType] -> a -> TcAppMap a
insertTcApp TcAppMap a
m TyCon
tc [PredType]
tys a
ct = (Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a))
-> TcAppMap a -> TyCon -> TcAppMap a
forall a.
(Maybe a -> Maybe a) -> DTyConEnv a -> TyCon -> DTyConEnv a
alterDTyConEnv Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm TcAppMap a
m TyCon
tc
where
alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm Maybe (ListMap LooseTypeMap a)
mb_tm = ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
forall a. a -> Maybe a
Just (Key (ListMap LooseTypeMap)
-> a -> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => Key m -> a -> m a -> m a
insertTM [PredType]
Key (ListMap LooseTypeMap)
tys a
ct (Maybe (ListMap LooseTypeMap a)
mb_tm Maybe (ListMap LooseTypeMap a)
-> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall a. Maybe a -> a -> a
`orElse` ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => m a
emptyTM))
alterTcApp :: forall a. TcAppMap a -> TyCon -> [Type] -> (Maybe a -> Maybe a) -> TcAppMap a
alterTcApp :: TcAppMap a
-> TyCon -> [PredType] -> (Maybe a -> Maybe a) -> TcAppMap a
alterTcApp TcAppMap a
m TyCon
tc [PredType]
tys Maybe a -> Maybe a
upd = (Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a))
-> TcAppMap a -> TyCon -> TcAppMap a
forall a.
(Maybe a -> Maybe a) -> DTyConEnv a -> TyCon -> DTyConEnv a
alterDTyConEnv Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm TcAppMap a
m TyCon
tc
where
alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm Maybe (ListMap LooseTypeMap a)
m_elt = ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
forall a. a -> Maybe a
Just (Key (ListMap LooseTypeMap)
-> (Maybe a -> Maybe a)
-> ListMap LooseTypeMap a
-> ListMap LooseTypeMap a
forall (m :: * -> *) b. TrieMap m => Key m -> XT b -> m b -> m b
alterTM [PredType]
Key (ListMap LooseTypeMap)
tys Maybe a -> Maybe a
upd (Maybe (ListMap LooseTypeMap a)
m_elt Maybe (ListMap LooseTypeMap a)
-> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall a. Maybe a -> a -> a
`orElse` ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => m a
emptyTM))
filterTcAppMap :: forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap :: (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap a -> Bool
f TcAppMap a
m = (ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a))
-> TcAppMap a -> TcAppMap a
forall a b. (a -> Maybe b) -> DTyConEnv a -> DTyConEnv b
mapMaybeDTyConEnv ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
one_tycon TcAppMap a
m
where
one_tycon :: ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
one_tycon :: ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
one_tycon ListMap LooseTypeMap a
tm
| ListMap LooseTypeMap a -> Bool
forall (m :: * -> *) a. TrieMap m => m a -> Bool
isEmptyTM ListMap LooseTypeMap a
filtered_tm = Maybe (ListMap LooseTypeMap a)
forall a. Maybe a
Nothing
| Bool
otherwise = ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
forall a. a -> Maybe a
Just ListMap LooseTypeMap a
filtered_tm
where
filtered_tm :: ListMap LooseTypeMap a
filtered_tm = (a -> Bool) -> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => (a -> Bool) -> m a -> m a
filterTM a -> Bool
f ListMap LooseTypeMap a
tm
tcAppMapToBag :: TcAppMap a -> Bag a
tcAppMapToBag :: TcAppMap a -> Bag a
tcAppMapToBag TcAppMap a
m = (a -> Bag a -> Bag a) -> TcAppMap a -> Bag a -> Bag a
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap a -> Bag a -> Bag a
forall a. a -> Bag a -> Bag a
consBag TcAppMap a
m Bag a
forall a. Bag a
emptyBag
foldTcAppMap :: (a -> b -> b) -> TcAppMap a -> b -> b
foldTcAppMap :: (a -> b -> b) -> TcAppMap a -> b -> b
foldTcAppMap a -> b -> b
k TcAppMap a
m b
z = (ListMap LooseTypeMap a -> b -> b) -> b -> TcAppMap a -> b
forall elt a. (elt -> a -> a) -> a -> DTyConEnv elt -> a
foldDTyConEnv ((a -> b -> b) -> ListMap LooseTypeMap a -> b -> b
forall (m :: * -> *) a b.
TrieMap m =>
(a -> b -> b) -> m a -> b -> b
foldTM a -> b -> b
k) b
z TcAppMap a
m
type DictMap a = TcAppMap a
emptyDictMap :: DictMap a
emptyDictMap :: DictMap a
emptyDictMap = DictMap a
forall a. DictMap a
emptyTcAppMap
findDict :: DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict :: DictMap a -> CtLoc -> Class -> [PredType] -> Maybe a
findDict DictMap a
m CtLoc
loc Class
cls [PredType]
tys
| Class -> [PredType] -> Bool
hasIPSuperClasses Class
cls [PredType]
tys
= Maybe a
forall a. Maybe a
Nothing
| Just {} <- Class -> [PredType] -> Maybe FastString
isCallStackPred Class
cls [PredType]
tys
, OccurrenceOf {} <- CtLoc -> CtOrigin
ctLocOrigin CtLoc
loc
= Maybe a
forall a. Maybe a
Nothing
| Bool
otherwise
= DictMap a -> TyCon -> [PredType] -> Maybe a
forall a. FunEqMap a -> TyCon -> [PredType] -> Maybe a
findTcApp DictMap a
m (Class -> TyCon
classTyCon Class
cls) [PredType]
tys
findDictsByClass :: DictMap a -> Class -> Bag a
findDictsByClass :: DictMap a -> Class -> Bag a
findDictsByClass DictMap a
m Class
cls
| Just ListMap LooseTypeMap a
tm <- DictMap a -> TyCon -> Maybe (ListMap LooseTypeMap a)
forall a. DTyConEnv a -> TyCon -> Maybe a
lookupDTyConEnv DictMap a
m (Class -> TyCon
classTyCon Class
cls) = (a -> Bag a -> Bag a) -> ListMap LooseTypeMap a -> Bag a -> Bag a
forall (m :: * -> *) a b.
TrieMap m =>
(a -> b -> b) -> m a -> b -> b
foldTM a -> Bag a -> Bag a
forall a. a -> Bag a -> Bag a
consBag ListMap LooseTypeMap a
tm Bag a
forall a. Bag a
emptyBag
| Bool
otherwise = Bag a
forall a. Bag a
emptyBag
delDict :: DictMap a -> Class -> [Type] -> DictMap a
delDict :: DictMap a -> Class -> [PredType] -> DictMap a
delDict DictMap a
m Class
cls [PredType]
tys = DictMap a -> TyCon -> [PredType] -> DictMap a
forall a. TcAppMap a -> TyCon -> [PredType] -> TcAppMap a
delTcApp DictMap a
m (Class -> TyCon
classTyCon Class
cls) [PredType]
tys
addDict :: DictMap a -> Class -> [Type] -> a -> DictMap a
addDict :: DictMap a -> Class -> [PredType] -> a -> DictMap a
addDict DictMap a
m Class
cls [PredType]
tys a
item = DictMap a -> TyCon -> [PredType] -> a -> DictMap a
forall a. TcAppMap a -> TyCon -> [PredType] -> a -> TcAppMap a
insertTcApp DictMap a
m (Class -> TyCon
classTyCon Class
cls) [PredType]
tys a
item
addDictsByClass :: DictMap Ct -> Class -> Bag Ct -> DictMap Ct
addDictsByClass :: DictMap Ct -> Class -> Cts -> DictMap Ct
addDictsByClass DictMap Ct
m Class
cls Cts
items
= DictMap Ct -> TyCon -> ListMap LooseTypeMap Ct -> DictMap Ct
forall a. DTyConEnv a -> TyCon -> a -> DTyConEnv a
extendDTyConEnv DictMap Ct
m (Class -> TyCon
classTyCon Class
cls) ((Ct -> ListMap LooseTypeMap Ct -> ListMap LooseTypeMap Ct)
-> ListMap LooseTypeMap Ct -> Cts -> ListMap LooseTypeMap Ct
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> ListMap LooseTypeMap Ct -> ListMap LooseTypeMap Ct
forall (m :: * -> *).
(TrieMap m, Key m ~ [PredType]) =>
Ct -> m Ct -> m Ct
add ListMap LooseTypeMap Ct
forall (m :: * -> *) a. TrieMap m => m a
emptyTM Cts
items)
where
add :: Ct -> m Ct -> m Ct
add ct :: Ct
ct@(CDictCan { cc_tyargs :: Ct -> [PredType]
cc_tyargs = [PredType]
tys }) m Ct
tm = Key m -> Ct -> m Ct -> m Ct
forall (m :: * -> *) a. TrieMap m => Key m -> a -> m a -> m a
insertTM [PredType]
Key m
tys Ct
ct m Ct
tm
add Ct
ct m Ct
_ = String -> SDoc -> m Ct
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"addDictsByClass" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
filterDicts :: (Ct -> Bool) -> DictMap Ct -> DictMap Ct
filterDicts :: (Ct -> Bool) -> DictMap Ct -> DictMap Ct
filterDicts Ct -> Bool
f DictMap Ct
m = (Ct -> Bool) -> DictMap Ct -> DictMap Ct
forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap Ct -> Bool
f DictMap Ct
m
partitionDicts :: (Ct -> Bool) -> DictMap Ct -> (Bag Ct, DictMap Ct)
partitionDicts :: (Ct -> Bool) -> DictMap Ct -> (Cts, DictMap Ct)
partitionDicts Ct -> Bool
f DictMap Ct
m = (Ct -> (Cts, DictMap Ct) -> (Cts, DictMap Ct))
-> DictMap Ct -> (Cts, DictMap Ct) -> (Cts, DictMap Ct)
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap Ct -> (Cts, DictMap Ct) -> (Cts, DictMap Ct)
k DictMap Ct
m (Cts
forall a. Bag a
emptyBag, DictMap Ct
forall a. DictMap a
emptyDicts)
where
k :: Ct -> (Cts, DictMap Ct) -> (Cts, DictMap Ct)
k Ct
ct (Cts
yeses, DictMap Ct
noes) | Ct -> Bool
f Ct
ct = (Ct
ct Ct -> Cts -> Cts
forall a. a -> Bag a -> Bag a
`consBag` Cts
yeses, DictMap Ct
noes)
| Bool
otherwise = (Cts
yeses, Ct -> DictMap Ct -> DictMap Ct
add Ct
ct DictMap Ct
noes)
add :: Ct -> DictMap Ct -> DictMap Ct
add ct :: Ct
ct@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [PredType]
cc_tyargs = [PredType]
tys }) DictMap Ct
m
= DictMap Ct -> Class -> [PredType] -> Ct -> DictMap Ct
forall a. DictMap a -> Class -> [PredType] -> a -> DictMap a
addDict DictMap Ct
m Class
cls [PredType]
tys Ct
ct
add Ct
ct DictMap Ct
_ = String -> SDoc -> DictMap Ct
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"partitionDicts" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
dictsToBag :: DictMap a -> Bag a
dictsToBag :: DictMap a -> Bag a
dictsToBag = DictMap a -> Bag a
forall a. DictMap a -> Bag a
tcAppMapToBag
foldDicts :: (a -> b -> b) -> DictMap a -> b -> b
foldDicts :: (a -> b -> b) -> DictMap a -> b -> b
foldDicts = (a -> b -> b) -> DictMap a -> b -> b
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap
emptyDicts :: DictMap a
emptyDicts :: DictMap a
emptyDicts = DictMap a
forall a. DictMap a
emptyTcAppMap
type FunEqMap a = TcAppMap a
emptyFunEqs :: TcAppMap a
emptyFunEqs :: TcAppMap a
emptyFunEqs = TcAppMap a
forall a. DictMap a
emptyTcAppMap
findFunEq :: FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq :: FunEqMap a -> TyCon -> [PredType] -> Maybe a
findFunEq FunEqMap a
m TyCon
tc [PredType]
tys = FunEqMap a -> TyCon -> [PredType] -> Maybe a
forall a. FunEqMap a -> TyCon -> [PredType] -> Maybe a
findTcApp FunEqMap a
m TyCon
tc [PredType]
tys
findFunEqsByTyCon :: FunEqMap a -> TyCon -> [a]
findFunEqsByTyCon :: FunEqMap a -> TyCon -> [a]
findFunEqsByTyCon FunEqMap a
m TyCon
tc
| Just ListMap LooseTypeMap a
tm <- FunEqMap a -> TyCon -> Maybe (ListMap LooseTypeMap a)
forall a. DTyConEnv a -> TyCon -> Maybe a
lookupDTyConEnv FunEqMap a
m TyCon
tc = (a -> [a] -> [a]) -> ListMap LooseTypeMap a -> [a] -> [a]
forall (m :: * -> *) a b.
TrieMap m =>
(a -> b -> b) -> m a -> b -> b
foldTM (:) ListMap LooseTypeMap a
tm []
| Bool
otherwise = []
foldFunEqs :: (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs :: (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs = (a -> b -> b) -> FunEqMap a -> b -> b
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap
insertFunEq :: FunEqMap a -> TyCon -> [Type] -> a -> FunEqMap a
insertFunEq :: FunEqMap a -> TyCon -> [PredType] -> a -> FunEqMap a
insertFunEq FunEqMap a
m TyCon
tc [PredType]
tys a
val = FunEqMap a -> TyCon -> [PredType] -> a -> FunEqMap a
forall a. TcAppMap a -> TyCon -> [PredType] -> a -> TcAppMap a
insertTcApp FunEqMap a
m TyCon
tc [PredType]
tys a
val
data TcSEnv
= TcSEnv {
TcSEnv -> EvBindsVar
tcs_ev_binds :: EvBindsVar,
TcSEnv -> IORef Int
tcs_unified :: IORef Int,
TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl :: IORef (Maybe TcLevel),
TcSEnv -> IORef Int
tcs_count :: IORef Int,
TcSEnv -> IORef InertSet
tcs_inerts :: IORef InertSet,
TcSEnv -> IORef WorkList
tcs_worklist :: IORef WorkList
}
newtype TcS a = TcS { TcS a -> TcSEnv -> TcM a
unTcS :: TcSEnv -> TcM a } deriving (a -> TcS b -> TcS a
(a -> b) -> TcS a -> TcS b
(forall a b. (a -> b) -> TcS a -> TcS b)
-> (forall a b. a -> TcS b -> TcS a) -> Functor TcS
forall a b. a -> TcS b -> TcS a
forall a b. (a -> b) -> TcS a -> TcS b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> TcS b -> TcS a
$c<$ :: forall a b. a -> TcS b -> TcS a
fmap :: (a -> b) -> TcS a -> TcS b
$cfmap :: forall a b. (a -> b) -> TcS a -> TcS b
Functor)
instance Applicative TcS where
pure :: a -> TcS a
pure a
x = (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (\TcSEnv
_ -> a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x)
<*> :: TcS (a -> b) -> TcS a -> TcS b
(<*>) = TcS (a -> b) -> TcS a -> TcS b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Monad TcS where
TcS a
m >>= :: TcS a -> (a -> TcS b) -> TcS b
>>= a -> TcS b
k = (TcSEnv -> TcM b) -> TcS b
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (\TcSEnv
ebs -> TcS a -> TcSEnv -> TcM a
forall a. TcS a -> TcSEnv -> TcM a
unTcS TcS a
m TcSEnv
ebs TcM a -> (a -> TcM b) -> TcM b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \a
r -> TcS b -> TcSEnv -> TcM b
forall a. TcS a -> TcSEnv -> TcM a
unTcS (a -> TcS b
k a
r) TcSEnv
ebs)
instance MonadFail TcS where
fail :: String -> TcS a
fail String
err = (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (\TcSEnv
_ -> String -> TcM a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail String
err)
instance MonadUnique TcS where
getUniqueSupplyM :: TcS UniqSupply
getUniqueSupplyM = TcM UniqSupply -> TcS UniqSupply
forall a. TcM a -> TcS a
wrapTcS TcM UniqSupply
forall (m :: * -> *). MonadUnique m => m UniqSupply
getUniqueSupplyM
instance HasModule TcS where
getModule :: TcS Module
getModule = TcM Module -> TcS Module
forall a. TcM a -> TcS a
wrapTcS TcM Module
forall (m :: * -> *). HasModule m => m Module
getModule
instance MonadThings TcS where
lookupThing :: Name -> TcS TyThing
lookupThing Name
n = TcM TyThing -> TcS TyThing
forall a. TcM a -> TcS a
wrapTcS (Name -> TcM TyThing
forall (m :: * -> *). MonadThings m => Name -> m TyThing
lookupThing Name
n)
wrapTcS :: TcM a -> TcS a
wrapTcS :: TcM a -> TcS a
wrapTcS = (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcS a)
-> (TcM a -> TcSEnv -> TcM a) -> TcM a -> TcS a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcM a -> TcSEnv -> TcM a
forall a b. a -> b -> a
const
wrapErrTcS :: TcM a -> TcS a
wrapErrTcS :: TcM a -> TcS a
wrapErrTcS = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS
wrapWarnTcS :: TcM a -> TcS a
wrapWarnTcS :: TcM a -> TcS a
wrapWarnTcS = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS
failTcS, panicTcS :: SDoc -> TcS a
warnTcS :: WarningFlag -> SDoc -> TcS ()
addErrTcS :: SDoc -> TcS ()
failTcS :: SDoc -> TcS a
failTcS = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (TcM a -> TcS a) -> (SDoc -> TcM a) -> SDoc -> TcS a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SDoc -> TcM a
forall a. SDoc -> TcRn a
TcM.failWith
warnTcS :: WarningFlag -> SDoc -> TcS ()
warnTcS WarningFlag
flag = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> (SDoc -> TcM ()) -> SDoc -> TcS ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WarnReason -> SDoc -> TcM ()
TcM.addWarn (WarningFlag -> WarnReason
Reason WarningFlag
flag)
addErrTcS :: SDoc -> TcS ()
addErrTcS = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> (SDoc -> TcM ()) -> SDoc -> TcS ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SDoc -> TcM ()
TcM.addErr
panicTcS :: SDoc -> TcS a
panicTcS SDoc
doc = String -> SDoc -> TcS a
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"GHC.Tc.Solver.Canonical" SDoc
doc
traceTcS :: String -> SDoc -> TcS ()
traceTcS :: String -> SDoc -> TcS ()
traceTcS String
herald SDoc
doc = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (String -> SDoc -> TcM ()
TcM.traceTc String
herald SDoc
doc)
{-# INLINE traceTcS #-}
runTcPluginTcS :: TcPluginM a -> TcS a
runTcPluginTcS :: TcPluginM a -> TcS a
runTcPluginTcS TcPluginM a
m = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (TcM a -> TcS a) -> (EvBindsVar -> TcM a) -> EvBindsVar -> TcS a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcPluginM a -> EvBindsVar -> TcM a
forall a. TcPluginM a -> EvBindsVar -> TcM a
runTcPluginM TcPluginM a
m (EvBindsVar -> TcS a) -> TcS EvBindsVar -> TcS a
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< TcS EvBindsVar
getTcEvBindsVar
instance HasDynFlags TcS where
getDynFlags :: TcS DynFlags
getDynFlags = TcM DynFlags -> TcS DynFlags
forall a. TcM a -> TcS a
wrapTcS TcM DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS = TcM GlobalRdrEnv -> TcS GlobalRdrEnv
forall a. TcM a -> TcS a
wrapTcS TcM GlobalRdrEnv
TcM.getGlobalRdrEnv
bumpStepCountTcS :: TcS ()
bumpStepCountTcS :: TcS ()
bumpStepCountTcS = (TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env -> do { let ref :: IORef Int
ref = TcSEnv -> IORef Int
tcs_count TcSEnv
env
; Int
n <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef Int
ref
; IORef Int -> Int -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef Int
ref (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) }
csTraceTcS :: SDoc -> TcS ()
csTraceTcS :: SDoc -> TcS ()
csTraceTcS SDoc
doc
= TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ TcM SDoc -> TcM ()
csTraceTcM (SDoc -> TcM SDoc
forall (m :: * -> *) a. Monad m => a -> m a
return SDoc
doc)
{-# INLINE csTraceTcS #-}
traceFireTcS :: CtEvidence -> SDoc -> TcS ()
traceFireTcS :: CtEvidence -> SDoc -> TcS ()
traceFireTcS CtEvidence
ev SDoc
doc
= (TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env -> TcM SDoc -> TcM ()
csTraceTcM (TcM SDoc -> TcM ()) -> TcM SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
do { Int
n <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef (TcSEnv -> IORef Int
tcs_count TcSEnv
env)
; TcLevel
tclvl <- TcM TcLevel
TcM.getTcLevel
; SDoc -> TcM SDoc
forall (m :: * -> *) a. Monad m => a -> m a
return (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Step" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
n
SDoc -> SDoc -> SDoc
<> SDoc -> SDoc
brackets (String -> SDoc
text String
"l:" SDoc -> SDoc -> SDoc
<> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl SDoc -> SDoc -> SDoc
<> SDoc
comma SDoc -> SDoc -> SDoc
<>
String -> SDoc
text String
"d:" SDoc -> SDoc -> SDoc
<> SubGoalDepth -> SDoc
forall a. Outputable a => a -> SDoc
ppr (CtLoc -> SubGoalDepth
ctLocDepth (CtEvidence -> CtLoc
ctEvLoc CtEvidence
ev)))
SDoc -> SDoc -> SDoc
<+> SDoc
doc SDoc -> SDoc -> SDoc
<> SDoc
colon)
Int
4 (CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
ev)) }
{-# INLINE traceFireTcS #-}
csTraceTcM :: TcM SDoc -> TcM ()
csTraceTcM :: TcM SDoc -> TcM ()
csTraceTcM TcM SDoc
mk_doc
= do { DynFlags
dflags <- TcM DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when ( DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_cs_trace DynFlags
dflags
Bool -> Bool -> Bool
|| DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_tc_trace DynFlags
dflags )
( do { SDoc
msg <- TcM SDoc
mk_doc
; Bool -> DumpOptions -> String -> DumpFormat -> SDoc -> TcM ()
TcM.dumpTcRn Bool
False
(DumpFlag -> DumpOptions
dumpOptionsFromFlag DumpFlag
Opt_D_dump_cs_trace)
String
"" DumpFormat
FormatText
SDoc
msg }) }
{-# INLINE csTraceTcM #-}
runTcS :: TcS a
-> TcM (a, EvBindMap)
runTcS :: TcS a -> TcM (a, EvBindMap)
runTcS TcS a
tcs
= do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
; a
res <- EvBindsVar -> TcS a -> TcM a
forall a. EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds EvBindsVar
ev_binds_var TcS a
tcs
; EvBindMap
ev_binds <- EvBindsVar -> TcM EvBindMap
TcM.getTcEvBindsMap EvBindsVar
ev_binds_var
; (a, EvBindMap) -> TcM (a, EvBindMap)
forall (m :: * -> *) a. Monad m => a -> m a
return (a
res, EvBindMap
ev_binds) }
runTcSDeriveds :: TcS a -> TcM a
runTcSDeriveds :: TcS a -> TcM a
runTcSDeriveds TcS a
tcs
= do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
; EvBindsVar -> TcS a -> TcM a
forall a. EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds EvBindsVar
ev_binds_var TcS a
tcs }
runTcSEqualities :: TcS a -> TcM a
runTcSEqualities :: TcS a -> TcM a
runTcSEqualities TcS a
thing_inside
= do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newNoTcEvBinds
; EvBindsVar -> TcS a -> TcM a
forall a. EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds EvBindsVar
ev_binds_var TcS a
thing_inside }
runTcSInerts :: InertSet -> TcS a -> TcM (a, InertSet)
runTcSInerts :: InertSet -> TcS a -> TcM (a, InertSet)
runTcSInerts InertSet
inerts TcS a
tcs = do
EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
Bool -> EvBindsVar -> TcS (a, InertSet) -> TcM (a, InertSet)
forall a. Bool -> EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds' Bool
False EvBindsVar
ev_binds_var (TcS (a, InertSet) -> TcM (a, InertSet))
-> TcS (a, InertSet) -> TcM (a, InertSet)
forall a b. (a -> b) -> a -> b
$ do
InertSet -> TcS ()
setTcSInerts InertSet
inerts
a
a <- TcS a
tcs
InertSet
new_inerts <- TcS InertSet
getTcSInerts
(a, InertSet) -> TcS (a, InertSet)
forall (m :: * -> *) a. Monad m => a -> m a
return (a
a, InertSet
new_inerts)
runTcSWithEvBinds :: EvBindsVar
-> TcS a
-> TcM a
runTcSWithEvBinds :: EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds = Bool -> EvBindsVar -> TcS a -> TcM a
forall a. Bool -> EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds' Bool
True
runTcSWithEvBinds' :: Bool
-> EvBindsVar
-> TcS a
-> TcM a
runTcSWithEvBinds' :: Bool -> EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds' Bool
restore_cycles EvBindsVar
ev_binds_var TcS a
tcs
= do { IORef Int
unified_var <- Int -> TcRnIf TcGblEnv TcLclEnv (IORef Int)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Int
0
; IORef Int
step_count <- Int -> TcRnIf TcGblEnv TcLclEnv (IORef Int)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Int
0
; IORef InertSet
inert_var <- InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef InertSet
emptyInert
; IORef WorkList
wl_var <- WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef WorkList
emptyWorkList
; IORef (Maybe TcLevel)
unif_lvl_var <- Maybe TcLevel -> TcRnIf TcGblEnv TcLclEnv (IORef (Maybe TcLevel))
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Maybe TcLevel
forall a. Maybe a
Nothing
; let env :: TcSEnv
env = TcSEnv :: EvBindsVar
-> IORef Int
-> IORef (Maybe TcLevel)
-> IORef Int
-> IORef InertSet
-> IORef WorkList
-> TcSEnv
TcSEnv { tcs_ev_binds :: EvBindsVar
tcs_ev_binds = EvBindsVar
ev_binds_var
, tcs_unified :: IORef Int
tcs_unified = IORef Int
unified_var
, tcs_unif_lvl :: IORef (Maybe TcLevel)
tcs_unif_lvl = IORef (Maybe TcLevel)
unif_lvl_var
, tcs_count :: IORef Int
tcs_count = IORef Int
step_count
, tcs_inerts :: IORef InertSet
tcs_inerts = IORef InertSet
inert_var
, tcs_worklist :: IORef WorkList
tcs_worklist = IORef WorkList
wl_var }
; a
res <- TcS a -> TcSEnv -> TcM a
forall a. TcS a -> TcSEnv -> TcM a
unTcS TcS a
tcs TcSEnv
env
; Int
count <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef Int
step_count
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
count Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
TcM SDoc -> TcM ()
csTraceTcM (TcM SDoc -> TcM ()) -> TcM SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$ SDoc -> TcM SDoc
forall (m :: * -> *) a. Monad m => a -> m a
return (String -> SDoc
text String
"Constraint solver steps =" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
count)
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
restore_cycles (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
do { InertSet
inert_set <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
inert_var
; InertSet -> TcM ()
restoreTyVarCycles InertSet
inert_set }
#if defined(DEBUG)
; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
; checkForCyclicBinds ev_binds
#endif
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }
#if defined(DEBUG)
checkForCyclicBinds :: EvBindMap -> TcM ()
checkForCyclicBinds ev_binds_map
| null cycles
= return ()
| null coercion_cycles
= TcM.traceTc "Cycle in evidence binds" $ ppr cycles
| otherwise
= pprPanic "Cycle in coercion bindings" $ ppr coercion_cycles
where
ev_binds = evBindMapBinds ev_binds_map
cycles :: [[EvBind]]
cycles = [c | CyclicSCC c <- stronglyConnCompFromEdgedVerticesUniq edges]
coercion_cycles = [c | c <- cycles, any is_co_bind c]
is_co_bind (EvBind { eb_lhs = b }) = isEqPrimPred (varType b)
edges :: [ Node EvVar EvBind ]
edges = [ DigraphNode bind bndr (nonDetEltsUniqSet (evVarsOfTerm rhs))
| bind@(EvBind { eb_lhs = bndr, eb_rhs = rhs}) <- bagToList ev_binds ]
#endif
setEvBindsTcS :: EvBindsVar -> TcS a -> TcS a
setEvBindsTcS :: EvBindsVar -> TcS a -> TcS a
setEvBindsTcS EvBindsVar
ref (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \ TcSEnv
env -> TcSEnv -> TcM a
thing_inside (TcSEnv
env { tcs_ev_binds :: EvBindsVar
tcs_ev_binds = EvBindsVar
ref })
nestImplicTcS :: EvBindsVar
-> TcLevel -> TcS a
-> TcS a
nestImplicTcS :: EvBindsVar -> TcLevel -> TcS a -> TcS a
nestImplicTcS EvBindsVar
ref TcLevel
inner_tclvl (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \ TcSEnv { tcs_unified :: TcSEnv -> IORef Int
tcs_unified = IORef Int
unified_var
, tcs_inerts :: TcSEnv -> IORef InertSet
tcs_inerts = IORef InertSet
old_inert_var
, tcs_count :: TcSEnv -> IORef Int
tcs_count = IORef Int
count
, tcs_unif_lvl :: TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl = IORef (Maybe TcLevel)
unif_lvl
} ->
do { InertSet
inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
old_inert_var
; let nest_inert :: InertSet
nest_inert = InertSet
inerts { inert_cycle_breakers :: [(TcTyVar, PredType)]
inert_cycle_breakers = []
, inert_cans :: InertCans
inert_cans = (InertSet -> InertCans
inert_cans InertSet
inerts)
{ inert_given_eqs :: Bool
inert_given_eqs = Bool
False } }
; IORef InertSet
new_inert_var <- InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef InertSet
nest_inert
; IORef WorkList
new_wl_var <- WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef WorkList
emptyWorkList
; let nest_env :: TcSEnv
nest_env = TcSEnv :: EvBindsVar
-> IORef Int
-> IORef (Maybe TcLevel)
-> IORef Int
-> IORef InertSet
-> IORef WorkList
-> TcSEnv
TcSEnv { tcs_count :: IORef Int
tcs_count = IORef Int
count
, tcs_unif_lvl :: IORef (Maybe TcLevel)
tcs_unif_lvl = IORef (Maybe TcLevel)
unif_lvl
, tcs_ev_binds :: EvBindsVar
tcs_ev_binds = EvBindsVar
ref
, tcs_unified :: IORef Int
tcs_unified = IORef Int
unified_var
, tcs_inerts :: IORef InertSet
tcs_inerts = IORef InertSet
new_inert_var
, tcs_worklist :: IORef WorkList
tcs_worklist = IORef WorkList
new_wl_var }
; a
res <- TcLevel -> TcM a -> TcM a
forall a. TcLevel -> TcM a -> TcM a
TcM.setTcLevel TcLevel
inner_tclvl (TcM a -> TcM a) -> TcM a -> TcM a
forall a b. (a -> b) -> a -> b
$
TcSEnv -> TcM a
thing_inside TcSEnv
nest_env
; InertSet
out_inert_set <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
new_inert_var
; InertSet -> TcM ()
restoreTyVarCycles InertSet
out_inert_set
#if defined(DEBUG)
; ev_binds <- TcM.getTcEvBindsMap ref
; checkForCyclicBinds ev_binds
#endif
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }
nestTcS :: TcS a -> TcS a
nestTcS :: TcS a -> TcS a
nestTcS (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \ env :: TcSEnv
env@(TcSEnv { tcs_inerts :: TcSEnv -> IORef InertSet
tcs_inerts = IORef InertSet
inerts_var }) ->
do { InertSet
inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
inerts_var
; IORef InertSet
new_inert_var <- InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef InertSet
inerts
; IORef WorkList
new_wl_var <- WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef WorkList
emptyWorkList
; let nest_env :: TcSEnv
nest_env = TcSEnv
env { tcs_inerts :: IORef InertSet
tcs_inerts = IORef InertSet
new_inert_var
, tcs_worklist :: IORef WorkList
tcs_worklist = IORef WorkList
new_wl_var }
; a
res <- TcSEnv -> TcM a
thing_inside TcSEnv
nest_env
; InertSet
new_inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
new_inert_var
; let old_ic :: InertCans
old_ic = InertSet -> InertCans
inert_cans InertSet
inerts
new_ic :: InertCans
new_ic = InertSet -> InertCans
inert_cans InertSet
new_inerts
nxt_ic :: InertCans
nxt_ic = InertCans
old_ic { inert_safehask :: DictMap Ct
inert_safehask = InertCans -> DictMap Ct
inert_safehask InertCans
new_ic }
; IORef InertSet -> InertSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef InertSet
inerts_var
(InertSet
inerts { inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = InertSet -> DictMap CtEvidence
inert_solved_dicts InertSet
new_inerts
, inert_cans :: InertCans
inert_cans = InertCans
nxt_ic })
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }
emitImplicationTcS :: TcLevel -> SkolemInfo
-> [TcTyVar]
-> [EvVar]
-> Cts
-> TcS TcEvBinds
emitImplicationTcS :: TcLevel
-> SkolemInfo -> [TcTyVar] -> [TcTyVar] -> Cts -> TcS TcEvBinds
emitImplicationTcS TcLevel
new_tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
givens Cts
wanteds
= do { let wc :: WantedConstraints
wc = WantedConstraints
emptyWC { wc_simple :: Cts
wc_simple = Cts
wanteds }
; Implication
imp <- TcM Implication -> TcS Implication
forall a. TcM a -> TcS a
wrapTcS (TcM Implication -> TcS Implication)
-> TcM Implication -> TcS Implication
forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
; Implication
imp <- TcM Implication
TcM.newImplication
; Implication -> TcM Implication
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication
imp { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
new_tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_given :: [TcTyVar]
ic_given = [TcTyVar]
givens
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wc
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds_var
, ic_info :: SkolemInfo
ic_info = SkolemInfo
skol_info }) }
; Implication -> TcS ()
emitImplication Implication
imp
; TcEvBinds -> TcS TcEvBinds
forall (m :: * -> *) a. Monad m => a -> m a
return (EvBindsVar -> TcEvBinds
TcEvBinds (Implication -> EvBindsVar
ic_binds Implication
imp)) }
emitTvImplicationTcS :: TcLevel -> SkolemInfo
-> [TcTyVar]
-> Cts
-> TcS ()
emitTvImplicationTcS :: TcLevel -> SkolemInfo -> [TcTyVar] -> Cts -> TcS ()
emitTvImplicationTcS TcLevel
new_tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs Cts
wanteds
= do { let wc :: WantedConstraints
wc = WantedConstraints
emptyWC { wc_simple :: Cts
wc_simple = Cts
wanteds }
; Implication
imp <- TcM Implication -> TcS Implication
forall a. TcM a -> TcS a
wrapTcS (TcM Implication -> TcS Implication)
-> TcM Implication -> TcS Implication
forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newNoTcEvBinds
; Implication
imp <- TcM Implication
TcM.newImplication
; Implication -> TcM Implication
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication
imp { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
new_tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wc
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds_var
, ic_info :: SkolemInfo
ic_info = SkolemInfo
skol_info }) }
; Implication -> TcS ()
emitImplication Implication
imp }
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = (TcSEnv -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet))
-> TcS (IORef InertSet)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (IORef InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall (m :: * -> *) a. Monad m => a -> m a
return (IORef InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet))
-> (TcSEnv -> IORef InertSet)
-> TcSEnv
-> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcSEnv -> IORef InertSet
tcs_inerts)
getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef = (TcSEnv -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList))
-> TcS (IORef WorkList)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (IORef WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall (m :: * -> *) a. Monad m => a -> m a
return (IORef WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList))
-> (TcSEnv -> IORef WorkList)
-> TcSEnv
-> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcSEnv -> IORef WorkList
tcs_worklist)
getTcSInerts :: TcS InertSet
getTcSInerts :: TcS InertSet
getTcSInerts = TcS (IORef InertSet)
getTcSInertsRef TcS (IORef InertSet)
-> (IORef InertSet -> TcS InertSet) -> TcS InertSet
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= IORef InertSet -> TcS InertSet
forall a. TcRef a -> TcS a
readTcRef
setTcSInerts :: InertSet -> TcS ()
setTcSInerts :: InertSet -> TcS ()
setTcSInerts InertSet
ics = do { IORef InertSet
r <- TcS (IORef InertSet)
getTcSInertsRef; IORef InertSet -> InertSet -> TcS ()
forall a. TcRef a -> a -> TcS ()
writeTcRef IORef InertSet
r InertSet
ics }
getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics
= do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; WorkList
wl_curr <- IORef WorkList -> TcS WorkList
forall a. TcRef a -> TcS a
readTcRef IORef WorkList
wl_var
; Bag Implication -> TcS (Bag Implication)
forall (m :: * -> *) a. Monad m => a -> m a
return (WorkList -> Bag Implication
wl_implics WorkList
wl_curr) }
pushLevelNoWorkList :: SDoc -> TcS a -> TcS (TcLevel, a)
#if defined(DEBUG)
pushLevelNoWorkList err_doc (TcS thing_inside)
= TcS (\env -> TcM.pushTcLevelM $
thing_inside (env { tcs_worklist = wl_panic })
)
where
wl_panic = pprPanic "GHC.Tc.Solver.Monad.buildImplication" err_doc
#else
pushLevelNoWorkList :: SDoc -> TcS a -> TcS (TcLevel, a)
pushLevelNoWorkList SDoc
_ (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM (TcLevel, a)) -> TcS (TcLevel, a)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (\TcSEnv
env -> TcM a -> TcM (TcLevel, a)
forall a. TcM a -> TcM (TcLevel, a)
TcM.pushTcLevelM (TcSEnv -> TcM a
thing_inside TcSEnv
env))
#endif
updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS WorkList -> WorkList
f
= do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; IORef WorkList -> (WorkList -> WorkList) -> TcS ()
forall a. TcRef a -> (a -> a) -> TcS ()
updTcRef IORef WorkList
wl_var WorkList -> WorkList
f }
emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC [CtEvidence]
evs
| [CtEvidence] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [CtEvidence]
evs
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise
= [Ct] -> TcS ()
emitWork ((CtEvidence -> Ct) -> [CtEvidence] -> [Ct]
forall a b. (a -> b) -> [a] -> [b]
map CtEvidence -> Ct
mkNonCanonical [CtEvidence]
evs)
emitWork :: [Ct] -> TcS ()
emitWork :: [Ct] -> TcS ()
emitWork [] = () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
emitWork [Ct]
cts
= do { String -> SDoc -> TcS ()
traceTcS String
"Emitting fresh work" ([SDoc] -> SDoc
vcat ((Ct -> SDoc) -> [Ct] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Ct]
cts))
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS ([Ct] -> WorkList -> WorkList
extendWorkListCts [Ct]
cts) }
emitImplication :: Implication -> TcS ()
emitImplication :: Implication -> TcS ()
emitImplication Implication
implic
= (WorkList -> WorkList) -> TcS ()
updWorkListTcS (Implication -> WorkList -> WorkList
extendWorkListImplic Implication
implic)
newTcRef :: a -> TcS (TcRef a)
newTcRef :: a -> TcS (TcRef a)
newTcRef a
x = TcM (TcRef a) -> TcS (TcRef a)
forall a. TcM a -> TcS a
wrapTcS (a -> TcM (TcRef a)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef a
x)
readTcRef :: TcRef a -> TcS a
readTcRef :: TcRef a -> TcS a
readTcRef TcRef a
ref = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (TcRef a -> TcM a
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef TcRef a
ref)
writeTcRef :: TcRef a -> a -> TcS ()
writeTcRef :: TcRef a -> a -> TcS ()
writeTcRef TcRef a
ref a
val = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcRef a -> a -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef TcRef a
ref a
val)
updTcRef :: TcRef a -> (a->a) -> TcS ()
updTcRef :: TcRef a -> (a -> a) -> TcS ()
updTcRef TcRef a
ref a -> a
upd_fn = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcRef a -> (a -> a) -> TcM ()
forall a gbl lcl. TcRef a -> (a -> a) -> TcRnIf gbl lcl ()
TcM.updTcRef TcRef a
ref a -> a
upd_fn)
getTcEvBindsVar :: TcS EvBindsVar
getTcEvBindsVar :: TcS EvBindsVar
getTcEvBindsVar = (TcSEnv -> TcM EvBindsVar) -> TcS EvBindsVar
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (EvBindsVar -> TcM EvBindsVar
forall (m :: * -> *) a. Monad m => a -> m a
return (EvBindsVar -> TcM EvBindsVar)
-> (TcSEnv -> EvBindsVar) -> TcSEnv -> TcM EvBindsVar
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcSEnv -> EvBindsVar
tcs_ev_binds)
getTcLevel :: TcS TcLevel
getTcLevel :: TcS TcLevel
getTcLevel = TcM TcLevel -> TcS TcLevel
forall a. TcM a -> TcS a
wrapTcS TcM TcLevel
TcM.getTcLevel
getTcEvTyCoVars :: EvBindsVar -> TcS TyCoVarSet
getTcEvTyCoVars :: EvBindsVar -> TcS VarSet
getTcEvTyCoVars EvBindsVar
ev_binds_var
= TcM VarSet -> TcS VarSet
forall a. TcM a -> TcS a
wrapTcS (TcM VarSet -> TcS VarSet) -> TcM VarSet -> TcS VarSet
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> TcM VarSet
TcM.getTcEvTyCoVars EvBindsVar
ev_binds_var
getTcEvBindsMap :: EvBindsVar -> TcS EvBindMap
getTcEvBindsMap :: EvBindsVar -> TcS EvBindMap
getTcEvBindsMap EvBindsVar
ev_binds_var
= TcM EvBindMap -> TcS EvBindMap
forall a. TcM a -> TcS a
wrapTcS (TcM EvBindMap -> TcS EvBindMap) -> TcM EvBindMap -> TcS EvBindMap
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> TcM EvBindMap
TcM.getTcEvBindsMap EvBindsVar
ev_binds_var
setTcEvBindsMap :: EvBindsVar -> EvBindMap -> TcS ()
setTcEvBindsMap :: EvBindsVar -> EvBindMap -> TcS ()
setTcEvBindsMap EvBindsVar
ev_binds_var EvBindMap
binds
= TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> EvBindMap -> TcM ()
TcM.setTcEvBindsMap EvBindsVar
ev_binds_var EvBindMap
binds
unifyTyVar :: TcTyVar -> TcType -> TcS ()
unifyTyVar :: TcTyVar -> PredType -> TcS ()
unifyTyVar TcTyVar
tv PredType
ty
= ASSERT2( isMetaTyVar tv, ppr tv )
(TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ TcSEnv
env ->
do { String -> SDoc -> TcM ()
TcM.traceTc String
"unifyTyVar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":=" SDoc -> SDoc -> SDoc
<+> PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr PredType
ty)
; TcTyVar -> PredType -> TcM ()
TcM.writeMetaTyVar TcTyVar
tv PredType
ty
; IORef Int -> (Int -> Int) -> TcM ()
forall a gbl lcl. TcRef a -> (a -> a) -> TcRnIf gbl lcl ()
TcM.updTcRef (TcSEnv -> IORef Int
tcs_unified TcSEnv
env) (Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) }
reportUnifications :: TcS a -> TcS (Int, a)
reportUnifications :: TcS a -> TcS (Int, a)
reportUnifications (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM (Int, a)) -> TcS (Int, a)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM (Int, a)) -> TcS (Int, a))
-> (TcSEnv -> TcM (Int, a)) -> TcS (Int, a)
forall a b. (a -> b) -> a -> b
$ \ TcSEnv
env ->
do { IORef Int
inner_unified <- Int -> TcRnIf TcGblEnv TcLclEnv (IORef Int)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Int
0
; a
res <- TcSEnv -> TcM a
thing_inside (TcSEnv
env { tcs_unified :: IORef Int
tcs_unified = IORef Int
inner_unified })
; Int
n_unifs <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef Int
inner_unified
; IORef Int -> (Int -> Int) -> TcM ()
forall a gbl lcl. TcRef a -> (a -> a) -> TcRnIf gbl lcl ()
TcM.updTcRef (TcSEnv -> IORef Int
tcs_unified TcSEnv
env) (Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n_unifs)
; (Int, a) -> TcM (Int, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
n_unifs, a
res) }
getDefaultInfo :: TcS ([Type], (Bool, Bool))
getDefaultInfo :: TcS ([PredType], (Bool, Bool))
getDefaultInfo = TcM ([PredType], (Bool, Bool)) -> TcS ([PredType], (Bool, Bool))
forall a. TcM a -> TcS a
wrapTcS TcM ([PredType], (Bool, Bool))
TcM.tcGetDefaultTys
getInstEnvs :: TcS InstEnvs
getInstEnvs :: TcS InstEnvs
getInstEnvs = TcM InstEnvs -> TcS InstEnvs
forall a. TcM a -> TcS a
wrapTcS (TcM InstEnvs -> TcS InstEnvs) -> TcM InstEnvs -> TcS InstEnvs
forall a b. (a -> b) -> a -> b
$ TcM InstEnvs
TcM.tcGetInstEnvs
getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs = TcM (FamInstEnv, FamInstEnv) -> TcS (FamInstEnv, FamInstEnv)
forall a. TcM a -> TcS a
wrapTcS (TcM (FamInstEnv, FamInstEnv) -> TcS (FamInstEnv, FamInstEnv))
-> TcM (FamInstEnv, FamInstEnv) -> TcS (FamInstEnv, FamInstEnv)
forall a b. (a -> b) -> a -> b
$ TcM (FamInstEnv, FamInstEnv)
FamInst.tcGetFamInstEnvs
getTopEnv :: TcS HscEnv
getTopEnv :: TcS HscEnv
getTopEnv = TcM HscEnv -> TcS HscEnv
forall a. TcM a -> TcS a
wrapTcS (TcM HscEnv -> TcS HscEnv) -> TcM HscEnv -> TcS HscEnv
forall a b. (a -> b) -> a -> b
$ TcM HscEnv
forall gbl lcl. TcRnIf gbl lcl HscEnv
TcM.getTopEnv
getGblEnv :: TcS TcGblEnv
getGblEnv :: TcS TcGblEnv
getGblEnv = TcM TcGblEnv -> TcS TcGblEnv
forall a. TcM a -> TcS a
wrapTcS (TcM TcGblEnv -> TcS TcGblEnv) -> TcM TcGblEnv -> TcS TcGblEnv
forall a b. (a -> b) -> a -> b
$ TcM TcGblEnv
forall gbl lcl. TcRnIf gbl lcl gbl
TcM.getGblEnv
getLclEnv :: TcS TcLclEnv
getLclEnv :: TcS TcLclEnv
getLclEnv = TcM TcLclEnv -> TcS TcLclEnv
forall a. TcM a -> TcS a
wrapTcS (TcM TcLclEnv -> TcS TcLclEnv) -> TcM TcLclEnv -> TcS TcLclEnv
forall a b. (a -> b) -> a -> b
$ TcM TcLclEnv
forall gbl lcl. TcRnIf gbl lcl lcl
TcM.getLclEnv
tcLookupClass :: Name -> TcS Class
tcLookupClass :: Name -> TcS Class
tcLookupClass Name
c = TcM Class -> TcS Class
forall a. TcM a -> TcS a
wrapTcS (TcM Class -> TcS Class) -> TcM Class -> TcS Class
forall a b. (a -> b) -> a -> b
$ Name -> TcM Class
TcM.tcLookupClass Name
c
tcLookupId :: Name -> TcS Id
tcLookupId :: Name -> TcS TcTyVar
tcLookupId Name
n = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (TcM TcTyVar -> TcS TcTyVar) -> TcM TcTyVar -> TcS TcTyVar
forall a b. (a -> b) -> a -> b
$ Name -> TcM TcTyVar
TcM.tcLookupId Name
n
addUsedGREs :: [GlobalRdrElt] -> TcS ()
addUsedGREs :: [GlobalRdrElt] -> TcS ()
addUsedGREs [GlobalRdrElt]
gres = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ [GlobalRdrElt] -> TcM ()
TcM.addUsedGREs [GlobalRdrElt]
gres
addUsedGRE :: Bool -> GlobalRdrElt -> TcS ()
addUsedGRE :: Bool -> GlobalRdrElt -> TcS ()
addUsedGRE Bool
warn_if_deprec GlobalRdrElt
gre = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ Bool -> GlobalRdrElt -> TcM ()
TcM.addUsedGRE Bool
warn_if_deprec GlobalRdrElt
gre
keepAlive :: Name -> TcS ()
keepAlive :: Name -> TcS ()
keepAlive = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> (Name -> TcM ()) -> Name -> TcS ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> TcM ()
TcM.keepAlive
checkWellStagedDFun :: CtLoc -> InstanceWhat -> PredType -> TcS ()
checkWellStagedDFun :: CtLoc -> InstanceWhat -> PredType -> TcS ()
checkWellStagedDFun CtLoc
loc InstanceWhat
what PredType
pred
| TopLevInstance { iw_dfun_id :: InstanceWhat -> TcTyVar
iw_dfun_id = TcTyVar
dfun_id } <- InstanceWhat
what
, let bind_lvl :: Int
bind_lvl = TcTyVar -> Int
TcM.topIdLvl TcTyVar
dfun_id
, Int
bind_lvl Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
impLevel
= TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ CtLoc -> TcM () -> TcM ()
forall a. CtLoc -> TcM a -> TcM a
TcM.setCtLocM CtLoc
loc (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
do { ThStage
use_stage <- TcM ThStage
TcM.getStage
; SDoc -> Int -> Int -> TcM ()
TcM.checkWellStaged SDoc
pp_thing Int
bind_lvl (ThStage -> Int
thLevel ThStage
use_stage) }
| Bool
otherwise
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
where
pp_thing :: SDoc
pp_thing = String -> SDoc
text String
"instance for" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr PredType
pred)
pprEq :: TcType -> TcType -> SDoc
pprEq :: PredType -> PredType -> SDoc
pprEq PredType
ty1 PredType
ty2 = PredType -> SDoc
pprParendType PredType
ty1 SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'~' SDoc -> SDoc -> SDoc
<+> PredType -> SDoc
pprParendType PredType
ty2
isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe PredType)
isFilledMetaTyVar_maybe TcTyVar
tv = TcM (Maybe PredType) -> TcS (Maybe PredType)
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM (Maybe PredType)
TcM.isFilledMetaTyVar_maybe TcTyVar
tv)
isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar TcTyVar
tv = TcM Bool -> TcS Bool
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM Bool
TcM.isFilledMetaTyVar TcTyVar
tv)
zonkTyCoVarsAndFV :: TcTyCoVarSet -> TcS TcTyCoVarSet
zonkTyCoVarsAndFV :: VarSet -> TcS VarSet
zonkTyCoVarsAndFV VarSet
tvs = TcM VarSet -> TcS VarSet
forall a. TcM a -> TcS a
wrapTcS (VarSet -> TcM VarSet
TcM.zonkTyCoVarsAndFV VarSet
tvs)
zonkTyCoVarsAndFVList :: [TcTyCoVar] -> TcS [TcTyCoVar]
zonkTyCoVarsAndFVList :: [TcTyVar] -> TcS [TcTyVar]
zonkTyCoVarsAndFVList [TcTyVar]
tvs = TcM [TcTyVar] -> TcS [TcTyVar]
forall a. TcM a -> TcS a
wrapTcS ([TcTyVar] -> TcM [TcTyVar]
TcM.zonkTyCoVarsAndFVList [TcTyVar]
tvs)
zonkCo :: Coercion -> TcS Coercion
zonkCo :: TcCoercion -> TcS TcCoercion
zonkCo = TcM TcCoercion -> TcS TcCoercion
forall a. TcM a -> TcS a
wrapTcS (TcM TcCoercion -> TcS TcCoercion)
-> (TcCoercion -> TcM TcCoercion) -> TcCoercion -> TcS TcCoercion
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcCoercion -> TcM TcCoercion
TcM.zonkCo
zonkTcType :: TcType -> TcS TcType
zonkTcType :: PredType -> TcS PredType
zonkTcType PredType
ty = TcM PredType -> TcS PredType
forall a. TcM a -> TcS a
wrapTcS (PredType -> TcM PredType
TcM.zonkTcType PredType
ty)
zonkTcTypes :: [TcType] -> TcS [TcType]
zonkTcTypes :: [PredType] -> TcS [PredType]
zonkTcTypes [PredType]
tys = TcM [PredType] -> TcS [PredType]
forall a. TcM a -> TcS a
wrapTcS ([PredType] -> TcM [PredType]
TcM.zonkTcTypes [PredType]
tys)
zonkTcTyVar :: TcTyVar -> TcS TcType
zonkTcTyVar :: TcTyVar -> TcS PredType
zonkTcTyVar TcTyVar
tv = TcM PredType -> TcS PredType
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM PredType
TcM.zonkTcTyVar TcTyVar
tv)
zonkSimples :: Cts -> TcS Cts
zonkSimples :: Cts -> TcS Cts
zonkSimples Cts
cts = TcM Cts -> TcS Cts
forall a. TcM a -> TcS a
wrapTcS (Cts -> TcM Cts
TcM.zonkSimples Cts
cts)
zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC WantedConstraints
wc = TcM WantedConstraints -> TcS WantedConstraints
forall a. TcM a -> TcS a
wrapTcS (WantedConstraints -> TcM WantedConstraints
TcM.zonkWC WantedConstraints
wc)
zonkTyCoVarKind :: TcTyCoVar -> TcS TcTyCoVar
zonkTyCoVarKind :: TcTyVar -> TcS TcTyVar
zonkTyCoVarKind TcTyVar
tv = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM TcTyVar
TcM.zonkTyCoVarKind TcTyVar
tv)
pprKicked :: Int -> SDoc
pprKicked :: Int -> SDoc
pprKicked Int
0 = SDoc
empty
pprKicked Int
n = SDoc -> SDoc
parens (Int -> SDoc
int Int
n SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"kicked out")
resetUnificationFlag :: TcS Bool
resetUnificationFlag :: TcS Bool
resetUnificationFlag
= (TcSEnv -> TcM Bool) -> TcS Bool
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM Bool) -> TcS Bool)
-> (TcSEnv -> TcM Bool) -> TcS Bool
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env ->
do { let ref :: IORef (Maybe TcLevel)
ref = TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl TcSEnv
env
; TcLevel
ambient_lvl <- TcM TcLevel
TcM.getTcLevel
; Maybe TcLevel
mb_lvl <- IORef (Maybe TcLevel) -> TcRnIf TcGblEnv TcLclEnv (Maybe TcLevel)
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef (Maybe TcLevel)
ref
; String -> SDoc -> TcM ()
TcM.traceTc String
"resetUnificationFlag" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ambient:" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
ambient_lvl
, String -> SDoc
text String
"unif_lvl:" SDoc -> SDoc -> SDoc
<+> Maybe TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr Maybe TcLevel
mb_lvl ]
; case Maybe TcLevel
mb_lvl of
Maybe TcLevel
Nothing -> Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Just TcLevel
unif_lvl | TcLevel
ambient_lvl TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
unif_lvl
-> Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
| Bool
otherwise
-> do { IORef (Maybe TcLevel) -> Maybe TcLevel -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef (Maybe TcLevel)
ref Maybe TcLevel
forall a. Maybe a
Nothing
; Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True } }
setUnificationFlag :: TcLevel -> TcS ()
setUnificationFlag :: TcLevel -> TcS ()
setUnificationFlag TcLevel
lvl
= (TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env ->
do { let ref :: IORef (Maybe TcLevel)
ref = TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl TcSEnv
env
; Maybe TcLevel
mb_lvl <- IORef (Maybe TcLevel) -> TcRnIf TcGblEnv TcLclEnv (Maybe TcLevel)
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef (Maybe TcLevel)
ref
; case Maybe TcLevel
mb_lvl of
Just TcLevel
unif_lvl | TcLevel
lvl TcLevel -> TcLevel -> Bool
`deeperThanOrSame` TcLevel
unif_lvl
-> () -> TcM ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Maybe TcLevel
_ -> IORef (Maybe TcLevel) -> Maybe TcLevel -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef (Maybe TcLevel)
ref (TcLevel -> Maybe TcLevel
forall a. a -> Maybe a
Just TcLevel
lvl) }
instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcThetaType)
instDFunType :: TcTyVar -> [Maybe PredType] -> TcS ([PredType], [PredType])
instDFunType TcTyVar
dfun_id [Maybe PredType]
inst_tys
= TcM ([PredType], [PredType]) -> TcS ([PredType], [PredType])
forall a. TcM a -> TcS a
wrapTcS (TcM ([PredType], [PredType]) -> TcS ([PredType], [PredType]))
-> TcM ([PredType], [PredType]) -> TcS ([PredType], [PredType])
forall a b. (a -> b) -> a -> b
$ TcTyVar -> [Maybe PredType] -> TcM ([PredType], [PredType])
TcM.instDFunType TcTyVar
dfun_id [Maybe PredType]
inst_tys
newFlexiTcSTy :: Kind -> TcS TcType
newFlexiTcSTy :: PredType -> TcS PredType
newFlexiTcSTy PredType
knd = TcM PredType -> TcS PredType
forall a. TcM a -> TcS a
wrapTcS (PredType -> TcM PredType
TcM.newFlexiTyVarTy PredType
knd)
cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar TcTyVar
tv = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM TcTyVar
TcM.cloneMetaTyVar TcTyVar
tv)
instFlexi :: [TKVar] -> TcS TCvSubst
instFlexi :: [TcTyVar] -> TcS TCvSubst
instFlexi = TCvSubst -> [TcTyVar] -> TcS TCvSubst
instFlexiX TCvSubst
emptyTCvSubst
instFlexiX :: TCvSubst -> [TKVar] -> TcS TCvSubst
instFlexiX :: TCvSubst -> [TcTyVar] -> TcS TCvSubst
instFlexiX TCvSubst
subst [TcTyVar]
tvs
= TcM TCvSubst -> TcS TCvSubst
forall a. TcM a -> TcS a
wrapTcS ((TCvSubst -> TcTyVar -> TcM TCvSubst)
-> TCvSubst -> [TcTyVar] -> TcM TCvSubst
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldlM TCvSubst -> TcTyVar -> TcM TCvSubst
instFlexiHelper TCvSubst
subst [TcTyVar]
tvs)
instFlexiHelper :: TCvSubst -> TKVar -> TcM TCvSubst
instFlexiHelper :: TCvSubst -> TcTyVar -> TcM TCvSubst
instFlexiHelper TCvSubst
subst TcTyVar
tv
= do { Unique
uniq <- TcRnIf TcGblEnv TcLclEnv Unique
forall gbl lcl. TcRnIf gbl lcl Unique
TcM.newUnique
; TcTyVarDetails
details <- MetaInfo -> TcM TcTyVarDetails
TcM.newMetaDetails MetaInfo
TauTv
; let name :: Name
name = Name -> Unique -> Name
setNameUnique (TcTyVar -> Name
tyVarName TcTyVar
tv) Unique
uniq
kind :: PredType
kind = TCvSubst -> PredType -> PredType
substTyUnchecked TCvSubst
subst (TcTyVar -> PredType
tyVarKind TcTyVar
tv)
ty' :: PredType
ty' = TcTyVar -> PredType
mkTyVarTy (Name -> PredType -> TcTyVarDetails -> TcTyVar
mkTcTyVar Name
name PredType
kind TcTyVarDetails
details)
; String -> SDoc -> TcM ()
TcM.traceTc String
"instFlexi" (PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr PredType
ty')
; TCvSubst -> TcM TCvSubst
forall (m :: * -> *) a. Monad m => a -> m a
return (TCvSubst -> TcTyVar -> PredType -> TCvSubst
extendTvSubst TCvSubst
subst TcTyVar
tv PredType
ty') }
matchGlobalInst :: DynFlags
-> Bool
-> Class -> [Type] -> TcS TcM.ClsInstResult
matchGlobalInst :: DynFlags -> Bool -> Class -> [PredType] -> TcS ClsInstResult
matchGlobalInst DynFlags
dflags Bool
short_cut Class
cls [PredType]
tys
= TcM ClsInstResult -> TcS ClsInstResult
forall a. TcM a -> TcS a
wrapTcS (DynFlags -> Bool -> Class -> [PredType] -> TcM ClsInstResult
TcM.matchGlobalInst DynFlags
dflags Bool
short_cut Class
cls [PredType]
tys)
tcInstSkolTyVarsX :: TCvSubst -> [TyVar] -> TcS (TCvSubst, [TcTyVar])
tcInstSkolTyVarsX :: TCvSubst -> [TcTyVar] -> TcS (TCvSubst, [TcTyVar])
tcInstSkolTyVarsX TCvSubst
subst [TcTyVar]
tvs = TcM (TCvSubst, [TcTyVar]) -> TcS (TCvSubst, [TcTyVar])
forall a. TcM a -> TcS a
wrapTcS (TcM (TCvSubst, [TcTyVar]) -> TcS (TCvSubst, [TcTyVar]))
-> TcM (TCvSubst, [TcTyVar]) -> TcS (TCvSubst, [TcTyVar])
forall a b. (a -> b) -> a -> b
$ TCvSubst -> [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
TcM.tcInstSkolTyVarsX TCvSubst
subst [TcTyVar]
tvs
data MaybeNew = Fresh CtEvidence | Cached EvExpr
isFresh :: MaybeNew -> Bool
isFresh :: MaybeNew -> Bool
isFresh (Fresh {}) = Bool
True
isFresh (Cached {}) = Bool
False
freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals [MaybeNew]
mns = [ CtEvidence
ctev | Fresh CtEvidence
ctev <- [MaybeNew]
mns ]
getEvExpr :: MaybeNew -> EvExpr
getEvExpr :: MaybeNew -> EvExpr
getEvExpr (Fresh CtEvidence
ctev) = CtEvidence -> EvExpr
ctEvExpr CtEvidence
ctev
getEvExpr (Cached EvExpr
evt) = EvExpr
evt
setEvBind :: EvBind -> TcS ()
setEvBind :: EvBind -> TcS ()
setEvBind EvBind
ev_bind
= do { EvBindsVar
evb <- TcS EvBindsVar
getTcEvBindsVar
; TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> EvBind -> TcM ()
TcM.addTcEvBind EvBindsVar
evb EvBind
ev_bind }
useVars :: CoVarSet -> TcS ()
useVars :: VarSet -> TcS ()
useVars VarSet
co_vars
= do { EvBindsVar
ev_binds_var <- TcS EvBindsVar
getTcEvBindsVar
; let ref :: IORef VarSet
ref = EvBindsVar -> IORef VarSet
ebv_tcvs EvBindsVar
ev_binds_var
; TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { VarSet
tcvs <- IORef VarSet -> TcM VarSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef VarSet
ref
; let tcvs' :: VarSet
tcvs' = VarSet
tcvs VarSet -> VarSet -> VarSet
`unionVarSet` VarSet
co_vars
; IORef VarSet -> VarSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef VarSet
ref VarSet
tcvs' } }
setWantedEq :: TcEvDest -> Coercion -> TcS ()
setWantedEq :: TcEvDest -> TcCoercion -> TcS ()
setWantedEq (HoleDest CoercionHole
hole) TcCoercion
co
= do { VarSet -> TcS ()
useVars (TcCoercion -> VarSet
coVarsOfCo TcCoercion
co)
; CoercionHole -> TcCoercion -> TcS ()
fillCoercionHole CoercionHole
hole TcCoercion
co }
setWantedEq (EvVarDest TcTyVar
ev) TcCoercion
_ = String -> SDoc -> TcS ()
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"setWantedEq" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
ev)
setWantedEvTerm :: TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm :: TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm (HoleDest CoercionHole
hole) EvTerm
tm
| Just TcCoercion
co <- EvTerm -> Maybe TcCoercion
evTermCoercion_maybe EvTerm
tm
= do { VarSet -> TcS ()
useVars (TcCoercion -> VarSet
coVarsOfCo TcCoercion
co)
; CoercionHole -> TcCoercion -> TcS ()
fillCoercionHole CoercionHole
hole TcCoercion
co }
| Bool
otherwise
=
do { let co_var :: TcTyVar
co_var = CoercionHole -> TcTyVar
coHoleCoVar CoercionHole
hole
; EvBind -> TcS ()
setEvBind (TcTyVar -> EvTerm -> EvBind
mkWantedEvBind TcTyVar
co_var EvTerm
tm)
; CoercionHole -> TcCoercion -> TcS ()
fillCoercionHole CoercionHole
hole (TcTyVar -> TcCoercion
mkTcCoVarCo TcTyVar
co_var) }
setWantedEvTerm (EvVarDest TcTyVar
ev_id) EvTerm
tm
= EvBind -> TcS ()
setEvBind (TcTyVar -> EvTerm -> EvBind
mkWantedEvBind TcTyVar
ev_id EvTerm
tm)
fillCoercionHole :: CoercionHole -> Coercion -> TcS ()
fillCoercionHole :: CoercionHole -> TcCoercion -> TcS ()
fillCoercionHole CoercionHole
hole TcCoercion
co
= do { TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ CoercionHole -> TcCoercion -> TcM ()
TcM.fillCoercionHole CoercionHole
hole TcCoercion
co
; CoercionHole -> TcCoercion -> TcS ()
kickOutAfterFillingCoercionHole CoercionHole
hole TcCoercion
co }
setEvBindIfWanted :: CtEvidence -> EvTerm -> TcS ()
setEvBindIfWanted :: CtEvidence -> EvTerm -> TcS ()
setEvBindIfWanted CtEvidence
ev EvTerm
tm
= case CtEvidence
ev of
CtWanted { ctev_dest :: CtEvidence -> TcEvDest
ctev_dest = TcEvDest
dest } -> TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm TcEvDest
dest EvTerm
tm
CtEvidence
_ -> () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
newTcEvBinds :: TcS EvBindsVar
newTcEvBinds :: TcS EvBindsVar
newTcEvBinds = TcM EvBindsVar -> TcS EvBindsVar
forall a. TcM a -> TcS a
wrapTcS TcM EvBindsVar
TcM.newTcEvBinds
newNoTcEvBinds :: TcS EvBindsVar
newNoTcEvBinds :: TcS EvBindsVar
newNoTcEvBinds = TcM EvBindsVar -> TcS EvBindsVar
forall a. TcM a -> TcS a
wrapTcS TcM EvBindsVar
TcM.newNoTcEvBinds
newEvVar :: TcPredType -> TcS EvVar
newEvVar :: PredType -> TcS TcTyVar
newEvVar PredType
pred = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (PredType -> TcM TcTyVar
forall gbl lcl. PredType -> TcRnIf gbl lcl TcTyVar
TcM.newEvVar PredType
pred)
newGivenEvVar :: CtLoc -> (TcPredType, EvTerm) -> TcS CtEvidence
newGivenEvVar :: CtLoc -> (PredType, EvTerm) -> TcS CtEvidence
newGivenEvVar CtLoc
loc (PredType
pred, EvTerm
rhs)
= do { TcTyVar
new_ev <- PredType -> EvTerm -> TcS TcTyVar
newBoundEvVarId PredType
pred EvTerm
rhs
; CtEvidence -> TcS CtEvidence
forall (m :: * -> *) a. Monad m => a -> m a
return (CtGiven :: PredType -> TcTyVar -> CtLoc -> CtEvidence
CtGiven { ctev_pred :: PredType
ctev_pred = PredType
pred, ctev_evar :: TcTyVar
ctev_evar = TcTyVar
new_ev, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc }) }
newBoundEvVarId :: TcPredType -> EvTerm -> TcS EvVar
newBoundEvVarId :: PredType -> EvTerm -> TcS TcTyVar
newBoundEvVarId PredType
pred EvTerm
rhs
= do { TcTyVar
new_ev <- PredType -> TcS TcTyVar
newEvVar PredType
pred
; EvBind -> TcS ()
setEvBind (TcTyVar -> EvTerm -> EvBind
mkGivenEvBind TcTyVar
new_ev EvTerm
rhs)
; TcTyVar -> TcS TcTyVar
forall (m :: * -> *) a. Monad m => a -> m a
return TcTyVar
new_ev }
newGivenEvVars :: CtLoc -> [(TcPredType, EvTerm)] -> TcS [CtEvidence]
newGivenEvVars :: CtLoc -> [(PredType, EvTerm)] -> TcS [CtEvidence]
newGivenEvVars CtLoc
loc [(PredType, EvTerm)]
pts = ((PredType, EvTerm) -> TcS CtEvidence)
-> [(PredType, EvTerm)] -> TcS [CtEvidence]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (CtLoc -> (PredType, EvTerm) -> TcS CtEvidence
newGivenEvVar CtLoc
loc) [(PredType, EvTerm)]
pts
emitNewWantedEq :: CtLoc -> Role -> TcType -> TcType -> TcS Coercion
emitNewWantedEq :: CtLoc -> Role -> PredType -> PredType -> TcS TcCoercion
emitNewWantedEq CtLoc
loc Role
role PredType
ty1 PredType
ty2
= do { (CtEvidence
ev, TcCoercion
co) <- CtLoc
-> Role -> PredType -> PredType -> TcS (CtEvidence, TcCoercion)
newWantedEq CtLoc
loc Role
role PredType
ty1 PredType
ty2
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS (Ct -> WorkList -> WorkList
extendWorkListEq (CtEvidence -> Ct
mkNonCanonical CtEvidence
ev))
; TcCoercion -> TcS TcCoercion
forall (m :: * -> *) a. Monad m => a -> m a
return TcCoercion
co }
newWantedEq :: CtLoc -> Role -> TcType -> TcType
-> TcS (CtEvidence, Coercion)
newWantedEq :: CtLoc
-> Role -> PredType -> PredType -> TcS (CtEvidence, TcCoercion)
newWantedEq = ShadowInfo
-> CtLoc
-> Role
-> PredType
-> PredType
-> TcS (CtEvidence, TcCoercion)
newWantedEq_SI ShadowInfo
WDeriv
newWantedEq_SI :: ShadowInfo -> CtLoc -> Role
-> TcType -> TcType
-> TcS (CtEvidence, Coercion)
newWantedEq_SI :: ShadowInfo
-> CtLoc
-> Role
-> PredType
-> PredType
-> TcS (CtEvidence, TcCoercion)
newWantedEq_SI ShadowInfo
si CtLoc
loc Role
role PredType
ty1 PredType
ty2
= do { CoercionHole
hole <- TcM CoercionHole -> TcS CoercionHole
forall a. TcM a -> TcS a
wrapTcS (TcM CoercionHole -> TcS CoercionHole)
-> TcM CoercionHole -> TcS CoercionHole
forall a b. (a -> b) -> a -> b
$ PredType -> TcM CoercionHole
TcM.newCoercionHole PredType
pty
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new coercion hole" (CoercionHole -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoercionHole
hole SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr PredType
pty)
; (CtEvidence, TcCoercion) -> TcS (CtEvidence, TcCoercion)
forall (m :: * -> *) a. Monad m => a -> m a
return ( CtWanted :: PredType -> TcEvDest -> ShadowInfo -> CtLoc -> CtEvidence
CtWanted { ctev_pred :: PredType
ctev_pred = PredType
pty, ctev_dest :: TcEvDest
ctev_dest = CoercionHole -> TcEvDest
HoleDest CoercionHole
hole
, ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
si
, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc}
, CoercionHole -> TcCoercion
mkHoleCo CoercionHole
hole ) }
where
pty :: PredType
pty = Role -> PredType -> PredType -> PredType
mkPrimEqPredRole Role
role PredType
ty1 PredType
ty2
newWantedEvVarNC :: CtLoc -> TcPredType -> TcS CtEvidence
newWantedEvVarNC :: CtLoc -> PredType -> TcS CtEvidence
newWantedEvVarNC = ShadowInfo -> CtLoc -> PredType -> TcS CtEvidence
newWantedEvVarNC_SI ShadowInfo
WDeriv
newWantedEvVarNC_SI :: ShadowInfo -> CtLoc -> TcPredType -> TcS CtEvidence
newWantedEvVarNC_SI :: ShadowInfo -> CtLoc -> PredType -> TcS CtEvidence
newWantedEvVarNC_SI ShadowInfo
si CtLoc
loc PredType
pty
= do { TcTyVar
new_ev <- PredType -> TcS TcTyVar
newEvVar PredType
pty
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new wanted" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
new_ev SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr PredType
pty SDoc -> SDoc -> SDoc
$$
CtLoc -> SDoc
pprCtLoc CtLoc
loc)
; CtEvidence -> TcS CtEvidence
forall (m :: * -> *) a. Monad m => a -> m a
return (CtWanted :: PredType -> TcEvDest -> ShadowInfo -> CtLoc -> CtEvidence
CtWanted { ctev_pred :: PredType
ctev_pred = PredType
pty, ctev_dest :: TcEvDest
ctev_dest = TcTyVar -> TcEvDest
EvVarDest TcTyVar
new_ev
, ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
si
, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc })}
newWantedEvVar :: CtLoc -> TcPredType -> TcS MaybeNew
newWantedEvVar :: CtLoc -> PredType -> TcS MaybeNew
newWantedEvVar = ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWantedEvVar_SI ShadowInfo
WDeriv
newWantedEvVar_SI :: ShadowInfo -> CtLoc -> TcPredType -> TcS MaybeNew
newWantedEvVar_SI :: ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWantedEvVar_SI ShadowInfo
si CtLoc
loc PredType
pty
= do { Maybe CtEvidence
mb_ct <- CtLoc -> PredType -> TcS (Maybe CtEvidence)
lookupInInerts CtLoc
loc PredType
pty
; case Maybe CtEvidence
mb_ct of
Just CtEvidence
ctev
| Bool -> Bool
not (CtEvidence -> Bool
isDerived CtEvidence
ctev)
-> do { String -> SDoc -> TcS ()
traceTcS String
"newWantedEvVar/cache hit" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$ CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
ctev
; MaybeNew -> TcS MaybeNew
forall (m :: * -> *) a. Monad m => a -> m a
return (MaybeNew -> TcS MaybeNew) -> MaybeNew -> TcS MaybeNew
forall a b. (a -> b) -> a -> b
$ EvExpr -> MaybeNew
Cached (CtEvidence -> EvExpr
ctEvExpr CtEvidence
ctev) }
Maybe CtEvidence
_ -> do { CtEvidence
ctev <- ShadowInfo -> CtLoc -> PredType -> TcS CtEvidence
newWantedEvVarNC_SI ShadowInfo
si CtLoc
loc PredType
pty
; MaybeNew -> TcS MaybeNew
forall (m :: * -> *) a. Monad m => a -> m a
return (CtEvidence -> MaybeNew
Fresh CtEvidence
ctev) } }
newWanted :: CtLoc -> PredType -> TcS MaybeNew
newWanted :: CtLoc -> PredType -> TcS MaybeNew
newWanted = ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWanted_SI ShadowInfo
WDeriv
newWanted_SI :: ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWanted_SI :: ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWanted_SI ShadowInfo
si CtLoc
loc PredType
pty
| Just (Role
role, PredType
ty1, PredType
ty2) <- PredType -> Maybe (Role, PredType, PredType)
getEqPredTys_maybe PredType
pty
= CtEvidence -> MaybeNew
Fresh (CtEvidence -> MaybeNew)
-> ((CtEvidence, TcCoercion) -> CtEvidence)
-> (CtEvidence, TcCoercion)
-> MaybeNew
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (CtEvidence, TcCoercion) -> CtEvidence
forall a b. (a, b) -> a
fst ((CtEvidence, TcCoercion) -> MaybeNew)
-> TcS (CtEvidence, TcCoercion) -> TcS MaybeNew
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ShadowInfo
-> CtLoc
-> Role
-> PredType
-> PredType
-> TcS (CtEvidence, TcCoercion)
newWantedEq_SI ShadowInfo
si CtLoc
loc Role
role PredType
ty1 PredType
ty2
| Bool
otherwise
= ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWantedEvVar_SI ShadowInfo
si CtLoc
loc PredType
pty
newWantedNC :: CtLoc -> PredType -> TcS CtEvidence
newWantedNC :: CtLoc -> PredType -> TcS CtEvidence
newWantedNC CtLoc
loc PredType
pty
| Just (Role
role, PredType
ty1, PredType
ty2) <- PredType -> Maybe (Role, PredType, PredType)
getEqPredTys_maybe PredType
pty
= (CtEvidence, TcCoercion) -> CtEvidence
forall a b. (a, b) -> a
fst ((CtEvidence, TcCoercion) -> CtEvidence)
-> TcS (CtEvidence, TcCoercion) -> TcS CtEvidence
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> CtLoc
-> Role -> PredType -> PredType -> TcS (CtEvidence, TcCoercion)
newWantedEq CtLoc
loc Role
role PredType
ty1 PredType
ty2
| Bool
otherwise
= CtLoc -> PredType -> TcS CtEvidence
newWantedEvVarNC CtLoc
loc PredType
pty
emitNewDeriveds :: CtLoc -> [TcPredType] -> TcS ()
emitNewDeriveds :: CtLoc -> [PredType] -> TcS ()
emitNewDeriveds CtLoc
loc [PredType]
preds
| [PredType] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [PredType]
preds
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise
= do { [CtEvidence]
evs <- (PredType -> TcS CtEvidence) -> [PredType] -> TcS [CtEvidence]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (CtLoc -> PredType -> TcS CtEvidence
newDerivedNC CtLoc
loc) [PredType]
preds
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new deriveds" ([CtEvidence] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [CtEvidence]
evs)
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS ([CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds [CtEvidence]
evs) }
emitNewDerivedEq :: CtLoc -> Role -> TcType -> TcType -> TcS ()
emitNewDerivedEq :: CtLoc -> Role -> PredType -> PredType -> TcS ()
emitNewDerivedEq CtLoc
loc Role
role PredType
ty1 PredType
ty2
= do { CtEvidence
ev <- CtLoc -> PredType -> TcS CtEvidence
newDerivedNC CtLoc
loc (Role -> PredType -> PredType -> PredType
mkPrimEqPredRole Role
role PredType
ty1 PredType
ty2)
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new derived equality" (CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
ev SDoc -> SDoc -> SDoc
$$ CtLoc -> SDoc
pprCtLoc CtLoc
loc)
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS (Ct -> WorkList -> WorkList
extendWorkListEq (CtEvidence -> Ct
mkNonCanonical CtEvidence
ev)) }
newDerivedNC :: CtLoc -> TcPredType -> TcS CtEvidence
newDerivedNC :: CtLoc -> PredType -> TcS CtEvidence
newDerivedNC CtLoc
loc PredType
pred
= CtEvidence -> TcS CtEvidence
forall (m :: * -> *) a. Monad m => a -> m a
return (CtEvidence -> TcS CtEvidence) -> CtEvidence -> TcS CtEvidence
forall a b. (a -> b) -> a -> b
$ CtDerived :: PredType -> CtLoc -> CtEvidence
CtDerived { ctev_pred :: PredType
ctev_pred = PredType
pred, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc }
checkReductionDepth :: CtLoc -> TcType
-> TcS ()
checkReductionDepth :: CtLoc -> PredType -> TcS ()
checkReductionDepth CtLoc
loc PredType
ty
= do { DynFlags
dflags <- TcS DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (DynFlags -> SubGoalDepth -> Bool
subGoalDepthExceeded DynFlags
dflags (CtLoc -> SubGoalDepth
ctLocDepth CtLoc
loc)) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapErrTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$
CtLoc -> PredType -> TcM ()
forall a. CtLoc -> PredType -> TcM a
solverDepthErrorTcS CtLoc
loc PredType
ty }
matchFam :: TyCon -> [Type] -> TcS (Maybe (CoercionN, TcType))
matchFam :: TyCon -> [PredType] -> TcS (Maybe (TcCoercion, PredType))
matchFam TyCon
tycon [PredType]
args = (Maybe (TcCoercion, PredType) -> Maybe (TcCoercion, PredType))
-> TcS (Maybe (TcCoercion, PredType))
-> TcS (Maybe (TcCoercion, PredType))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (((TcCoercion, PredType) -> (TcCoercion, PredType))
-> Maybe (TcCoercion, PredType) -> Maybe (TcCoercion, PredType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((TcCoercion -> TcCoercion)
-> (TcCoercion, PredType) -> (TcCoercion, PredType)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first TcCoercion -> TcCoercion
mkTcSymCo)) (TcS (Maybe (TcCoercion, PredType))
-> TcS (Maybe (TcCoercion, PredType)))
-> TcS (Maybe (TcCoercion, PredType))
-> TcS (Maybe (TcCoercion, PredType))
forall a b. (a -> b) -> a -> b
$ TcM (Maybe (TcCoercion, PredType))
-> TcS (Maybe (TcCoercion, PredType))
forall a. TcM a -> TcS a
wrapTcS (TcM (Maybe (TcCoercion, PredType))
-> TcS (Maybe (TcCoercion, PredType)))
-> TcM (Maybe (TcCoercion, PredType))
-> TcS (Maybe (TcCoercion, PredType))
forall a b. (a -> b) -> a -> b
$ TyCon -> [PredType] -> TcM (Maybe (TcCoercion, PredType))
matchFamTcM TyCon
tycon [PredType]
args
matchFamTcM :: TyCon -> [Type] -> TcM (Maybe (CoercionN, TcType))
matchFamTcM :: TyCon -> [PredType] -> TcM (Maybe (TcCoercion, PredType))
matchFamTcM TyCon
tycon [PredType]
args
= do { (FamInstEnv, FamInstEnv)
fam_envs <- TcM (FamInstEnv, FamInstEnv)
FamInst.tcGetFamInstEnvs
; let match_fam_result :: Maybe (TcCoercion, PredType)
match_fam_result
= (FamInstEnv, FamInstEnv)
-> Role -> TyCon -> [PredType] -> Maybe (TcCoercion, PredType)
reduceTyFamApp_maybe (FamInstEnv, FamInstEnv)
fam_envs Role
Nominal TyCon
tycon [PredType]
args
; String -> SDoc -> TcM ()
TcM.traceTc String
"matchFamTcM" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Matching:" SDoc -> SDoc -> SDoc
<+> PredType -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> [PredType] -> PredType
mkTyConApp TyCon
tycon [PredType]
args)
, Maybe (TcCoercion, PredType) -> SDoc
forall a a. (Outputable a, Outputable a) => Maybe (a, a) -> SDoc
ppr_res Maybe (TcCoercion, PredType)
match_fam_result ]
; Maybe (TcCoercion, PredType) -> TcM (Maybe (TcCoercion, PredType))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (TcCoercion, PredType)
match_fam_result }
where
ppr_res :: Maybe (a, a) -> SDoc
ppr_res Maybe (a, a)
Nothing = String -> SDoc
text String
"Match failed"
ppr_res (Just (a
co,a
ty)) = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Match succeeded:")
Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Rewrites to:" SDoc -> SDoc -> SDoc
<+> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
ty
, String -> SDoc
text String
"Coercion:" SDoc -> SDoc -> SDoc
<+> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
co ])
breakTyVarCycle :: CtLoc
-> TcType
-> TcS TcType
breakTyVarCycle :: CtLoc -> PredType -> TcS PredType
breakTyVarCycle CtLoc
loc = PredType -> TcS PredType
go
where
go :: PredType -> TcS PredType
go PredType
ty | Just PredType
ty' <- PredType -> Maybe PredType
rewriterView PredType
ty = PredType -> TcS PredType
go PredType
ty'
go (Rep.TyConApp TyCon
tc [PredType]
tys)
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc
= do { let ([PredType]
fun_args, [PredType]
extra_args) = Int -> [PredType] -> ([PredType], [PredType])
forall a. Int -> [a] -> ([a], [a])
splitAt (TyCon -> Int
tyConArity TyCon
tc) [PredType]
tys
fun_app :: PredType
fun_app = TyCon -> [PredType] -> PredType
mkTyConApp TyCon
tc [PredType]
fun_args
fun_app_kind :: PredType
fun_app_kind = HasDebugCallStack => PredType -> PredType
PredType -> PredType
tcTypeKind PredType
fun_app
; TcTyVar
new_tv <- TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (PredType -> TcM TcTyVar
TcM.newCycleBreakerTyVar PredType
fun_app_kind)
; let new_ty :: PredType
new_ty = TcTyVar -> PredType
mkTyVarTy TcTyVar
new_tv
given_pred :: PredType
given_pred = PredType -> PredType -> PredType -> PredType -> PredType
mkHeteroPrimEqPred PredType
fun_app_kind PredType
fun_app_kind
PredType
fun_app PredType
new_ty
given_term :: EvTerm
given_term = TcCoercion -> EvTerm
evCoercion (TcCoercion -> EvTerm) -> TcCoercion -> EvTerm
forall a b. (a -> b) -> a -> b
$ PredType -> TcCoercion
mkNomReflCo PredType
new_ty
; CtEvidence
new_given <- CtLoc -> (PredType, EvTerm) -> TcS CtEvidence
newGivenEvVar CtLoc
loc (PredType
given_pred, EvTerm
given_term)
; String -> SDoc -> TcS ()
traceTcS String
"breakTyVarCycle replacing type family" (CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
new_given)
; [CtEvidence] -> TcS ()
emitWorkNC [CtEvidence
new_given]
; (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \InertSet
is ->
InertSet
is { inert_cycle_breakers :: [(TcTyVar, PredType)]
inert_cycle_breakers = (TcTyVar
new_tv, PredType
fun_app) (TcTyVar, PredType)
-> [(TcTyVar, PredType)] -> [(TcTyVar, PredType)]
forall a. a -> [a] -> [a]
:
InertSet -> [(TcTyVar, PredType)]
inert_cycle_breakers InertSet
is }
; [PredType]
extra_args' <- (PredType -> TcS PredType) -> [PredType] -> TcS [PredType]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM PredType -> TcS PredType
go [PredType]
extra_args
; PredType -> TcS PredType
forall (m :: * -> *) a. Monad m => a -> m a
return (PredType -> [PredType] -> PredType
mkAppTys PredType
new_ty [PredType]
extra_args') }
| Bool
otherwise
= TyCon -> [PredType] -> PredType
mkTyConApp TyCon
tc ([PredType] -> PredType) -> TcS [PredType] -> TcS PredType
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (PredType -> TcS PredType) -> [PredType] -> TcS [PredType]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM PredType -> TcS PredType
go [PredType]
tys
go (Rep.AppTy PredType
ty1 PredType
ty2) = PredType -> PredType -> PredType
mkAppTy (PredType -> PredType -> PredType)
-> TcS PredType -> TcS (PredType -> PredType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PredType -> TcS PredType
go PredType
ty1 TcS (PredType -> PredType) -> TcS PredType -> TcS PredType
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PredType -> TcS PredType
go PredType
ty2
go (Rep.FunTy AnonArgFlag
vis PredType
w PredType
arg PredType
res) = AnonArgFlag -> PredType -> PredType -> PredType -> PredType
mkFunTy AnonArgFlag
vis (PredType -> PredType -> PredType -> PredType)
-> TcS PredType -> TcS (PredType -> PredType -> PredType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PredType -> TcS PredType
go PredType
w TcS (PredType -> PredType -> PredType)
-> TcS PredType -> TcS (PredType -> PredType)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PredType -> TcS PredType
go PredType
arg TcS (PredType -> PredType) -> TcS PredType -> TcS PredType
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PredType -> TcS PredType
go PredType
res
go (Rep.CastTy PredType
ty TcCoercion
co) = PredType -> TcCoercion -> PredType
mkCastTy (PredType -> TcCoercion -> PredType)
-> TcS PredType -> TcS (TcCoercion -> PredType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PredType -> TcS PredType
go PredType
ty TcS (TcCoercion -> PredType) -> TcS TcCoercion -> TcS PredType
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> TcCoercion -> TcS TcCoercion
forall (f :: * -> *) a. Applicative f => a -> f a
pure TcCoercion
co
go ty :: PredType
ty@(Rep.TyVarTy {}) = PredType -> TcS PredType
forall (m :: * -> *) a. Monad m => a -> m a
return PredType
ty
go ty :: PredType
ty@(Rep.LitTy {}) = PredType -> TcS PredType
forall (m :: * -> *) a. Monad m => a -> m a
return PredType
ty
go ty :: PredType
ty@(Rep.ForAllTy {}) = PredType -> TcS PredType
forall (m :: * -> *) a. Monad m => a -> m a
return PredType
ty
go ty :: PredType
ty@(Rep.CoercionTy {}) = PredType -> TcS PredType
forall (m :: * -> *) a. Monad m => a -> m a
return PredType
ty
restoreTyVarCycles :: InertSet -> TcM ()
restoreTyVarCycles :: InertSet -> TcM ()
restoreTyVarCycles InertSet
is
= [(TcTyVar, PredType)] -> ((TcTyVar, PredType) -> TcM ()) -> TcM ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ (InertSet -> [(TcTyVar, PredType)]
inert_cycle_breakers InertSet
is) (((TcTyVar, PredType) -> TcM ()) -> TcM ())
-> ((TcTyVar, PredType) -> TcM ()) -> TcM ()
forall a b. (a -> b) -> a -> b
$ \ (TcTyVar
cycle_breaker_tv, PredType
orig_ty) ->
TcTyVar -> PredType -> TcM ()
TcM.writeMetaTyVar TcTyVar
cycle_breaker_tv PredType
orig_ty
rewriterView :: TcType -> Maybe TcType
rewriterView :: PredType -> Maybe PredType
rewriterView ty :: PredType
ty@(Rep.TyConApp TyCon
tc [PredType]
_)
| TyCon -> Bool
isForgetfulSynTyCon TyCon
tc Bool -> Bool -> Bool
|| (TyCon -> Bool
isTypeSynonymTyCon TyCon
tc Bool -> Bool -> Bool
&& Bool -> Bool
not (TyCon -> Bool
isFamFreeTyCon TyCon
tc))
= PredType -> Maybe PredType
tcView PredType
ty
rewriterView PredType
_other = Maybe PredType
forall a. Maybe a
Nothing