{-# LANGUAGE FlexibleInstances  #-}
{-# LANGUAGE GADTs              #-}
{-# LANGUAGE LambdaCase         #-}
{-# LANGUAGE StandaloneDeriving #-}

-- | This module coverage checks pattern matches. It finds
--
--     * Uncovered patterns, certifying non-exhaustivity
--     * Redundant equations
--     * Equations with an inaccessible right-hand-side
--
-- The algorithm is based on the paper
-- [Lower Your Guards: A Compositional Pattern-Match Coverage Checker"](https://dl.acm.org/doi/abs/10.1145/3408989)
--
-- There is an overview Figure 2 in there that's probably helpful.
-- Here is an overview of how it's implemented, which follows the structure of
-- the entry points such as 'pmcMatches':
--
--  1. Desugar source syntax (like 'LMatch') to guard tree variants (like
--     'GrdMatch'), with one of the desugaring functions (like 'desugarMatch').
--     See "GHC.HsToCore.Pmc.Desugar".
--     Follows Section 3.1 in the paper.
--  2. Coverage check guard trees (with a function like 'checkMatch') to get a
--     'CheckResult'. See "GHC.HsToCore.Pmc.Check".
--     The normalised refinement types 'Nabla' are tested for inhabitants by
--     "GHC.HsToCore.Pmc.Solver".
--  3. Collect redundancy information into a 'CIRB' with a function such
--     as 'cirbsMatch'. Follows the R function from Figure 6 of the paper.
--  4. Format and report uncovered patterns and redundant equations ('CIRB')
--     with 'formatReportWarnings'. Basically job of the G function, plus proper
--     pretty printing of the warnings (Section 5.4 of the paper).
--  5. Return 'Nablas' reaching syntactic sub-components for
--     Note [Long-distance information]. Collected by functions such as
--     'ldiMatch'. See Section 4.1 of the paper.
module GHC.HsToCore.Pmc (
        -- Checking and printing
        pmcPatBind, pmcMatches, pmcGRHSs,
        isMatchContextPmChecked,

        -- See Note [Long-distance information]
        addTyCs, addCoreScrutTmCs, addHsScrutTmCs
    ) where

import GHC.Prelude

import GHC.HsToCore.Errors.Types
import GHC.HsToCore.Pmc.Types
import GHC.HsToCore.Pmc.Utils
import GHC.HsToCore.Pmc.Desugar
import GHC.HsToCore.Pmc.Check
import GHC.HsToCore.Pmc.Solver
import GHC.Types.Basic (Origin(..))
import GHC.Core (CoreExpr)
import GHC.Driver.Session
import GHC.Hs
import GHC.Types.Id
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Types.Var (EvVar)
import GHC.Tc.Utils.TcType (evVarPred)
import GHC.Tc.Utils.Monad (updTopFlags)
import {-# SOURCE #-} GHC.HsToCore.Expr (dsLExpr)
import GHC.HsToCore.Monad
import GHC.Data.Bag
import GHC.Data.IOEnv (unsafeInterleaveM)
import GHC.Data.OrdList
import GHC.Utils.Monad (mapMaybeM)

import Control.Monad (when, forM_)
import qualified Data.Semigroup as Semi
import Data.List.NonEmpty ( NonEmpty(..) )
import qualified Data.List.NonEmpty as NE
import Data.Coerce

--
-- * Exported entry points to the checker
--

-- | A non-empty delta that is initialised from the ambient refinement type
-- capturing long-distance information, or the trivially habitable 'Nablas' if
-- the former is uninhabited.
-- See Note [Recovering from unsatisfiable pattern-matching constraints].
getLdiNablas :: DsM Nablas
getLdiNablas :: DsM Nablas
getLdiNablas = do
  Nablas
nablas <- DsM Nablas
getPmNablas
  Nablas -> DsM Bool
isInhabited Nablas
nablas forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
    Bool
True  -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Nablas
nablas
    Bool
False -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Nablas
initNablas

-- | We need to call the Hs desugarer to get the Core of a let-binding or where
-- clause. We don't want to run the coverage checker when doing so! Efficiency
-- is one concern, but also a lack of properly set up long-distance information
-- might trigger warnings that we normally wouldn't emit.
noCheckDs :: DsM a -> DsM a
noCheckDs :: forall a. DsM a -> DsM a
noCheckDs = forall gbl lcl a.
(DynFlags -> DynFlags) -> TcRnIf gbl lcl a -> TcRnIf gbl lcl a
updTopFlags (\DynFlags
dflags -> forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' DynFlags -> WarningFlag -> DynFlags
wopt_unset DynFlags
dflags [WarningFlag]
allPmCheckWarnings)

-- | Check a pattern binding (let, where) for exhaustiveness.
pmcPatBind :: DsMatchContext -> Id -> Pat GhcTc -> DsM ()
-- See Note [pmcPatBind only checks PatBindRhs]
pmcPatBind :: DsMatchContext -> Id -> Pat GhcTc -> DsM ()
pmcPatBind ctxt :: DsMatchContext
ctxt@(DsMatchContext HsMatchContext GhcRn
PatBindRhs SrcSpan
loc) Id
var Pat GhcTc
p = do
  !Nablas
missing <- DsM Nablas
getLdiNablas
  PmPatBind Pre
pat_bind <- forall a. DsM a -> DsM a
noCheckDs forall a b. (a -> b) -> a -> b
$ SrcSpan -> Id -> Pat GhcTc -> DsM (PmPatBind Pre)
desugarPatBind SrcSpan
loc Id
var Pat GhcTc
p
  String -> SDoc -> DsM ()
tracePm String
"pmcPatBind {" ([SDoc] -> SDoc
vcat [forall a. Outputable a => a -> SDoc
ppr DsMatchContext
ctxt, forall a. Outputable a => a -> SDoc
ppr Id
var, forall a. Outputable a => a -> SDoc
ppr Pat GhcTc
p, forall a. Outputable a => a -> SDoc
ppr PmPatBind Pre
pat_bind, forall a. Outputable a => a -> SDoc
ppr Nablas
missing])
  CheckResult (PmPatBind Post)
result <- forall a. CheckAction a -> Nablas -> DsM (CheckResult a)
unCA (PmPatBind Pre -> CheckAction (PmPatBind Post)
checkPatBind PmPatBind Pre
pat_bind) Nablas
missing
  String -> SDoc -> DsM ()
tracePm String
"}: " (forall a. Outputable a => a -> SDoc
ppr (forall a. CheckResult a -> Nablas
cr_uncov CheckResult (PmPatBind Post)
result))
  forall ann.
FormatReportWarningsMode ann
-> DsMatchContext -> [Id] -> CheckResult ann -> DsM ()
formatReportWarnings FormatReportWarningsMode (PmPatBind Post)
ReportPatBind DsMatchContext
ctxt [Id
var] CheckResult (PmPatBind Post)
result
pmcPatBind DsMatchContext
_ Id
_ Pat GhcTc
_ = forall (f :: * -> *) a. Applicative f => a -> f a
pure ()

-- | Exhaustive for guard matches, is used for guards in pattern bindings and
-- in @MultiIf@ expressions. Returns the 'Nablas' covered by the RHSs.
pmcGRHSs
  :: HsMatchContext GhcRn         -- ^ Match context, for warning messages
  -> GRHSs GhcTc (LHsExpr GhcTc)  -- ^ The GRHSs to check
  -> DsM (NonEmpty Nablas)        -- ^ Covered 'Nablas' for each RHS, for long
                                  --   distance info
pmcGRHSs :: HsMatchContext GhcRn
-> GRHSs GhcTc (LHsExpr GhcTc) -> DsM (NonEmpty Nablas)
pmcGRHSs HsMatchContext GhcRn
hs_ctxt guards :: GRHSs GhcTc (LHsExpr GhcTc)
guards@(GRHSs XCGRHSs GhcTc (LHsExpr GhcTc)
_ [LGRHS GhcTc (LHsExpr GhcTc)]
grhss HsLocalBinds GhcTc
_) = do
  let combined_loc :: SrcSpan
combined_loc = forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 SrcSpan -> SrcSpan -> SrcSpan
combineSrcSpans (forall a b. (a -> b) -> [a] -> [b]
map forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA [LGRHS GhcTc (LHsExpr GhcTc)]
grhss)
      ctxt :: DsMatchContext
ctxt = HsMatchContext GhcRn -> SrcSpan -> DsMatchContext
DsMatchContext HsMatchContext GhcRn
hs_ctxt SrcSpan
combined_loc
  !Nablas
missing <- DsM Nablas
getLdiNablas
  PmGRHSs Pre
matches  <- forall a. DsM a -> DsM a
noCheckDs forall a b. (a -> b) -> a -> b
$ SrcSpan -> SDoc -> GRHSs GhcTc (LHsExpr GhcTc) -> DsM (PmGRHSs Pre)
desugarGRHSs SrcSpan
combined_loc SDoc
empty GRHSs GhcTc (LHsExpr GhcTc)
guards
  String -> SDoc -> DsM ()
tracePm String
"pmcGRHSs" (SDoc -> Int -> SDoc -> SDoc
hang ([SDoc] -> SDoc
vcat [forall a. Outputable a => a -> SDoc
ppr DsMatchContext
ctxt
                                , String -> SDoc
text String
"Guards:"])
                                Int
2
                                (forall (idR :: Pass) body passL.
(OutputableBndrId idR, Outputable body) =>
HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs HsMatchContext GhcRn
hs_ctxt GRHSs GhcTc (LHsExpr GhcTc)
guards SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Nablas
missing))
  CheckResult (PmGRHSs Post)
result <- forall a. CheckAction a -> Nablas -> DsM (CheckResult a)
unCA (PmGRHSs Pre -> CheckAction (PmGRHSs Post)
checkGRHSs PmGRHSs Pre
matches) Nablas
missing
  String -> SDoc -> DsM ()
tracePm String
"}: " (forall a. Outputable a => a -> SDoc
ppr (forall a. CheckResult a -> Nablas
cr_uncov CheckResult (PmGRHSs Post)
result))
  forall ann.
FormatReportWarningsMode ann
-> DsMatchContext -> [Id] -> CheckResult ann -> DsM ()
formatReportWarnings FormatReportWarningsMode (PmGRHSs Post)
ReportGRHSs DsMatchContext
ctxt [] CheckResult (PmGRHSs Post)
result
  forall (m :: * -> *) a. Monad m => a -> m a
return (PmGRHSs Post -> NonEmpty Nablas
ldiGRHSs (forall a. CheckResult a -> a
cr_ret CheckResult (PmGRHSs Post)
result))

-- | Check a list of syntactic 'Match'es (part of case, functions, etc.), each
-- with a 'Pat' and one or more 'GRHSs':
--
-- @
--   f x y | x == y    = 1   -- match on x and y with two guarded RHSs
--         | otherwise = 2
--   f _ _             = 3   -- clause with a single, un-guarded RHS
-- @
--
-- Returns one non-empty 'Nablas' for 1.) each pattern of a 'Match' and 2.)
-- each of a 'Match'es 'GRHS' for Note [Long-distance information].
--
-- Special case: When there are /no matches/, then the functionassumes it
-- checks and @-XEmptyCase@ with only a single match variable.
-- See Note [Checking EmptyCase].
pmcMatches
  :: DsMatchContext                  -- ^ Match context, for warnings messages
  -> [Id]                            -- ^ Match variables, i.e. x and y above
  -> [LMatch GhcTc (LHsExpr GhcTc)]  -- ^ List of matches
  -> DsM [(Nablas, NonEmpty Nablas)] -- ^ One covered 'Nablas' per Match and
                                     --   GRHS, for long distance info.
pmcMatches :: DsMatchContext
-> [Id]
-> [LMatch GhcTc (LHsExpr GhcTc)]
-> DsM [(Nablas, NonEmpty Nablas)]
pmcMatches DsMatchContext
ctxt [Id]
vars [LMatch GhcTc (LHsExpr GhcTc)]
matches = {-# SCC "pmcMatches" #-} do
  -- We have to force @missing@ before printing out the trace message,
  -- otherwise we get interleaved output from the solver. This function
  -- should be strict in @missing@ anyway!
  !Nablas
missing <- DsM Nablas
getLdiNablas
  String -> SDoc -> DsM ()
tracePm String
"pmcMatches {" forall a b. (a -> b) -> a -> b
$
          SDoc -> Int -> SDoc -> SDoc
hang ([SDoc] -> SDoc
vcat [forall a. Outputable a => a -> SDoc
ppr DsMatchContext
ctxt, forall a. Outputable a => a -> SDoc
ppr [Id]
vars, String -> SDoc
text String
"Matches:"])
               Int
2
               ([SDoc] -> SDoc
vcat (forall a b. (a -> b) -> [a] -> [b]
map forall a. Outputable a => a -> SDoc
ppr [LMatch GhcTc (LHsExpr GhcTc)]
matches) SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Nablas
missing)
  case forall a. [a] -> Maybe (NonEmpty a)
NE.nonEmpty [LMatch GhcTc (LHsExpr GhcTc)]
matches of
    Maybe
  (NonEmpty
     (GenLocated
        SrcSpanAnnA (Match GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))))
Nothing -> do
      -- This must be an -XEmptyCase. See Note [Checking EmptyCase]
      let var :: Id
var = forall a. [a] -> a
only [Id]
vars
      PmEmptyCase
empty_case <- forall a. DsM a -> DsM a
noCheckDs forall a b. (a -> b) -> a -> b
$ Id -> DsM PmEmptyCase
desugarEmptyCase Id
var
      CheckResult PmEmptyCase
result <- forall a. CheckAction a -> Nablas -> DsM (CheckResult a)
unCA (PmEmptyCase -> CheckAction PmEmptyCase
checkEmptyCase PmEmptyCase
empty_case) Nablas
missing
      String -> SDoc -> DsM ()
tracePm String
"}: " (forall a. Outputable a => a -> SDoc
ppr (forall a. CheckResult a -> Nablas
cr_uncov CheckResult PmEmptyCase
result))
      forall ann.
FormatReportWarningsMode ann
-> DsMatchContext -> [Id] -> CheckResult ann -> DsM ()
formatReportWarnings FormatReportWarningsMode PmEmptyCase
ReportEmptyCase DsMatchContext
ctxt [Id]
vars CheckResult PmEmptyCase
result
      forall (m :: * -> *) a. Monad m => a -> m a
return []
    Just NonEmpty
  (GenLocated
     SrcSpanAnnA (Match GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))))
matches -> do
      PmMatchGroup Pre
matches <- {-# SCC "desugarMatches" #-}
                 forall a. DsM a -> DsM a
noCheckDs forall a b. (a -> b) -> a -> b
$ [Id]
-> NonEmpty (LMatch GhcTc (LHsExpr GhcTc))
-> DsM (PmMatchGroup Pre)
desugarMatches [Id]
vars NonEmpty
  (GenLocated
     SrcSpanAnnA (Match GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))))
matches
      CheckResult (PmMatchGroup Post)
result  <- {-# SCC "checkMatchGroup" #-}
                 forall a. CheckAction a -> Nablas -> DsM (CheckResult a)
unCA (PmMatchGroup Pre -> CheckAction (PmMatchGroup Post)
checkMatchGroup PmMatchGroup Pre
matches) Nablas
missing
      String -> SDoc -> DsM ()
tracePm String
"}: " (forall a. Outputable a => a -> SDoc
ppr (forall a. CheckResult a -> Nablas
cr_uncov CheckResult (PmMatchGroup Post)
result))
      {-# SCC "formatReportWarnings" #-} forall ann.
FormatReportWarningsMode ann
-> DsMatchContext -> [Id] -> CheckResult ann -> DsM ()
formatReportWarnings FormatReportWarningsMode (PmMatchGroup Post)
ReportMatchGroup DsMatchContext
ctxt [Id]
vars CheckResult (PmMatchGroup Post)
result
      forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. NonEmpty a -> [a]
NE.toList (PmMatchGroup Post -> NonEmpty (Nablas, NonEmpty Nablas)
ldiMatchGroup (forall a. CheckResult a -> a
cr_ret CheckResult (PmMatchGroup Post)
result)))

{- Note [pmcPatBind only checks PatBindRhs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@pmcPatBind@'s sole purpose is to check vanilla pattern bindings, like
@x :: Int; Just x = e@, which is in a @PatBindRhs@ context.
But its caller is also called for individual pattern guards in a @StmtCtxt@.
For example, both pattern guards in @f x y | True <- x, False <- y = ...@ will
go through this function. It makes no sense to do coverage checking there:
  * Pattern guards may well fail. Fall-through is not an unrecoverable panic,
    but rather behavior the programmer expects, so inexhaustivity should not be
    reported.
  * Redundancy is already reported for the whole GRHS via one of the other
    exported coverage checking functions. Also reporting individual redundant
    guards is... redundant. See #17646.
Note that we can't just omit checking of @StmtCtxt@ altogether (by adjusting
'isMatchContextPmChecked'), because that affects the other checking functions,
too.
-}

--
-- * Collecting long-distance information
--

ldiMatchGroup :: PmMatchGroup Post -> NonEmpty (Nablas, NonEmpty Nablas)
ldiMatchGroup :: PmMatchGroup Post -> NonEmpty (Nablas, NonEmpty Nablas)
ldiMatchGroup (PmMatchGroup NonEmpty (PmMatch Post)
matches) = PmMatch Post -> (Nablas, NonEmpty Nablas)
ldiMatch forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty (PmMatch Post)
matches

ldiMatch :: PmMatch Post -> (Nablas, NonEmpty Nablas)
ldiMatch :: PmMatch Post -> (Nablas, NonEmpty Nablas)
ldiMatch (PmMatch { pm_pats :: forall p. PmMatch p -> p
pm_pats = Post
red, pm_grhss :: forall p. PmMatch p -> PmGRHSs p
pm_grhss = PmGRHSs Post
grhss }) =
  (Post -> Nablas
rs_cov Post
red, PmGRHSs Post -> NonEmpty Nablas
ldiGRHSs PmGRHSs Post
grhss)

ldiGRHSs :: PmGRHSs Post -> NonEmpty Nablas
ldiGRHSs :: PmGRHSs Post -> NonEmpty Nablas
ldiGRHSs (PmGRHSs { pgs_grhss :: forall p. PmGRHSs p -> NonEmpty (PmGRHS p)
pgs_grhss = NonEmpty (PmGRHS Post)
grhss }) = PmGRHS Post -> Nablas
ldiGRHS forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty (PmGRHS Post)
grhss

ldiGRHS :: PmGRHS Post -> Nablas
ldiGRHS :: PmGRHS Post -> Nablas
ldiGRHS (PmGRHS { pg_grds :: forall p. PmGRHS p -> p
pg_grds = Post
red }) = Post -> Nablas
rs_cov Post
red

--
-- * Collecting redundancy information
--

-- | The result of redundancy checking:
--    * RHSs classified as /C/overed, /I/naccessible and /R/edundant
--    * And redundant /B/ang patterns. See Note [Dead bang patterns].
data CIRB
  = CIRB
  { CIRB -> OrdList SrcInfo
cirb_cov   :: !(OrdList SrcInfo) -- ^ Covered clauses
  , CIRB -> OrdList SrcInfo
cirb_inacc :: !(OrdList SrcInfo) -- ^ Inaccessible clauses
  , CIRB -> OrdList SrcInfo
cirb_red   :: !(OrdList SrcInfo) -- ^ Redundant clauses
  , CIRB -> OrdList SrcInfo
cirb_bangs :: !(OrdList SrcInfo) -- ^ Redundant bang patterns
  }

instance Semigroup CIRB where
  CIRB OrdList SrcInfo
a OrdList SrcInfo
b OrdList SrcInfo
c OrdList SrcInfo
d <> :: CIRB -> CIRB -> CIRB
<> CIRB OrdList SrcInfo
e OrdList SrcInfo
f OrdList SrcInfo
g OrdList SrcInfo
h = OrdList SrcInfo
-> OrdList SrcInfo -> OrdList SrcInfo -> OrdList SrcInfo -> CIRB
CIRB (OrdList SrcInfo
a OrdList SrcInfo -> OrdList SrcInfo -> OrdList SrcInfo
<> OrdList SrcInfo
e) (OrdList SrcInfo
b OrdList SrcInfo -> OrdList SrcInfo -> OrdList SrcInfo
<> OrdList SrcInfo
f) (OrdList SrcInfo
c OrdList SrcInfo -> OrdList SrcInfo -> OrdList SrcInfo
<> OrdList SrcInfo
g) (OrdList SrcInfo
d OrdList SrcInfo -> OrdList SrcInfo -> OrdList SrcInfo
<> OrdList SrcInfo
h)
    where <> :: OrdList SrcInfo -> OrdList SrcInfo -> OrdList SrcInfo
(<>) = forall a. Semigroup a => a -> a -> a
(Semi.<>)

instance Monoid CIRB where
  mempty :: CIRB
mempty = OrdList SrcInfo
-> OrdList SrcInfo -> OrdList SrcInfo -> OrdList SrcInfo -> CIRB
CIRB forall a. Monoid a => a
mempty forall a. Monoid a => a
mempty forall a. Monoid a => a
mempty forall a. Monoid a => a
mempty

-- See Note [Determining inaccessible clauses]
ensureOneNotRedundant :: CIRB -> CIRB
ensureOneNotRedundant :: CIRB -> CIRB
ensureOneNotRedundant CIRB
ci = case CIRB
ci of
  CIRB { cirb_cov :: CIRB -> OrdList SrcInfo
cirb_cov = OrdList SrcInfo
NilOL, cirb_inacc :: CIRB -> OrdList SrcInfo
cirb_inacc = OrdList SrcInfo
NilOL, cirb_red :: CIRB -> OrdList SrcInfo
cirb_red = ConsOL SrcInfo
r OrdList SrcInfo
rs }
    -> CIRB
ci { cirb_inacc :: OrdList SrcInfo
cirb_inacc = forall a. a -> OrdList a
unitOL SrcInfo
r, cirb_red :: OrdList SrcInfo
cirb_red = OrdList SrcInfo
rs }
  CIRB
_ -> CIRB
ci

-- | Only adds the redundant bangs to the @CIRB@ if there is at least one
-- non-redundant 'SrcInfo'. There is no point in remembering a redundant bang
-- if the whole match is redundant!
addRedundantBangs :: OrdList SrcInfo -> CIRB -> CIRB
addRedundantBangs :: OrdList SrcInfo -> CIRB -> CIRB
addRedundantBangs OrdList SrcInfo
_red_bangs cirb :: CIRB
cirb@CIRB { cirb_cov :: CIRB -> OrdList SrcInfo
cirb_cov = OrdList SrcInfo
NilOL, cirb_inacc :: CIRB -> OrdList SrcInfo
cirb_inacc = OrdList SrcInfo
NilOL } =
  CIRB
cirb
addRedundantBangs OrdList SrcInfo
red_bangs  CIRB
cirb =
  CIRB
cirb { cirb_bangs :: OrdList SrcInfo
cirb_bangs = CIRB -> OrdList SrcInfo
cirb_bangs CIRB
cirb forall a. Semigroup a => a -> a -> a
Semi.<> OrdList SrcInfo
red_bangs }

-- | Checks the 'Nablas' in a 'RedSets' for inhabitants and returns
--    1. Whether the Covered set was inhabited
--    2. Whether the Diverging set was inhabited
--    3. All source bangs whose 'Nablas' were empty, which means they are
--       redundant.
testRedSets :: RedSets -> DsM (Bool, Bool, OrdList SrcInfo)
testRedSets :: Post -> DsM (Bool, Bool, OrdList SrcInfo)
testRedSets RedSets { rs_cov :: Post -> Nablas
rs_cov = Nablas
cov, rs_div :: Post -> Nablas
rs_div = Nablas
div, rs_bangs :: Post -> OrdList (Nablas, SrcInfo)
rs_bangs = OrdList (Nablas, SrcInfo)
bangs } = do
  Bool
is_covered  <- Nablas -> DsM Bool
isInhabited Nablas
cov
  Bool
may_diverge <- Nablas -> DsM Bool
isInhabited Nablas
div
  [SrcInfo]
red_bangs   <- forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (m :: * -> *) a b.
Applicative m =>
(a -> m (Maybe b)) -> [a] -> m [b]
mapMaybeM (forall a. OrdList a -> [a]
fromOL OrdList (Nablas, SrcInfo)
bangs) forall a b. (a -> b) -> a -> b
$ \(Nablas
nablas, SrcInfo
bang) ->
    Nablas -> DsM Bool
isInhabited Nablas
nablas forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
      Bool
True  -> forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Maybe a
Nothing
      Bool
False -> forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall a. a -> Maybe a
Just SrcInfo
bang)
  forall (f :: * -> *) a. Applicative f => a -> f a
pure (Bool
is_covered, Bool
may_diverge, forall a. [a] -> OrdList a
toOL [SrcInfo]
red_bangs)

cirbsMatchGroup :: PmMatchGroup Post -> DsM CIRB
cirbsMatchGroup :: PmMatchGroup Post -> DsM CIRB
cirbsMatchGroup (PmMatchGroup NonEmpty (PmMatch Post)
matches) =
  forall a. Semigroup a => NonEmpty a -> a
Semi.sconcat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse PmMatch Post -> DsM CIRB
cirbsMatch NonEmpty (PmMatch Post)
matches

cirbsMatch :: PmMatch Post -> DsM CIRB
cirbsMatch :: PmMatch Post -> DsM CIRB
cirbsMatch PmMatch { pm_pats :: forall p. PmMatch p -> p
pm_pats = Post
red, pm_grhss :: forall p. PmMatch p -> PmGRHSs p
pm_grhss = PmGRHSs Post
grhss } = do
  (Bool
_is_covered, Bool
may_diverge, OrdList SrcInfo
red_bangs) <- Post -> DsM (Bool, Bool, OrdList SrcInfo)
testRedSets Post
red
  -- Don't look at is_covered: If it is True, all children are redundant anyway,
  -- unless there is a 'considerAccessible', which may break that rule
  -- intentionally. See Note [considerAccessible] in "GHC.HsToCore.Pmc.Check".
  CIRB
cirb <- PmGRHSs Post -> DsM CIRB
cirbsGRHSs PmGRHSs Post
grhss
  forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ OrdList SrcInfo -> CIRB -> CIRB
addRedundantBangs OrdList SrcInfo
red_bangs
       -- See Note [Determining inaccessible clauses]
       forall a b. (a -> b) -> a -> b
$ forall a. Bool -> (a -> a) -> a -> a
applyWhen Bool
may_diverge CIRB -> CIRB
ensureOneNotRedundant
       forall a b. (a -> b) -> a -> b
$ CIRB
cirb

cirbsGRHSs :: PmGRHSs Post -> DsM CIRB
cirbsGRHSs :: PmGRHSs Post -> DsM CIRB
cirbsGRHSs (PmGRHSs { pgs_grhss :: forall p. PmGRHSs p -> NonEmpty (PmGRHS p)
pgs_grhss = NonEmpty (PmGRHS Post)
grhss }) = forall a. Semigroup a => NonEmpty a -> a
Semi.sconcat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse PmGRHS Post -> DsM CIRB
cirbsGRHS NonEmpty (PmGRHS Post)
grhss

cirbsGRHS :: PmGRHS Post -> DsM CIRB
cirbsGRHS :: PmGRHS Post -> DsM CIRB
cirbsGRHS PmGRHS { pg_grds :: forall p. PmGRHS p -> p
pg_grds = Post
red, pg_rhs :: forall p. PmGRHS p -> SrcInfo
pg_rhs = SrcInfo
info } = do
  (Bool
is_covered, Bool
may_diverge, OrdList SrcInfo
red_bangs) <- Post -> DsM (Bool, Bool, OrdList SrcInfo)
testRedSets Post
red
  let cirb :: CIRB
cirb | Bool
is_covered  = forall a. Monoid a => a
mempty { cirb_cov :: OrdList SrcInfo
cirb_cov   = forall a. a -> OrdList a
unitOL SrcInfo
info }
           | Bool
may_diverge = forall a. Monoid a => a
mempty { cirb_inacc :: OrdList SrcInfo
cirb_inacc = forall a. a -> OrdList a
unitOL SrcInfo
info }
           | Bool
otherwise   = forall a. Monoid a => a
mempty { cirb_red :: OrdList SrcInfo
cirb_red   = forall a. a -> OrdList a
unitOL SrcInfo
info }
  forall (f :: * -> *) a. Applicative f => a -> f a
pure (OrdList SrcInfo -> CIRB -> CIRB
addRedundantBangs OrdList SrcInfo
red_bangs CIRB
cirb)

cirbsEmptyCase :: PmEmptyCase -> DsM CIRB
cirbsEmptyCase :: PmEmptyCase -> DsM CIRB
cirbsEmptyCase PmEmptyCase
_ = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Monoid a => a
mempty

cirbsPatBind :: PmPatBind Post -> DsM CIRB
cirbsPatBind :: PmPatBind Post -> DsM CIRB
cirbsPatBind = coerce :: forall a b. Coercible a b => a -> b
coerce PmGRHS Post -> DsM CIRB
cirbsGRHS

{- Note [Determining inaccessible clauses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  f _  True = ()
  f () True = ()
  f _  _    = ()
Is f's second clause redundant? The perhaps surprising answer is, no, it isn't!
@f (error "boom") False@ will force the error with clause 2, but will return
() if it was deleted, so clearly not redundant. Yet for now combination of
arguments we can ever reach clause 2's RHS, so we say it has inaccessible RHS
(as opposed to being completely redundant).

We detect an inaccessible RHS simply by pretending it's redundant, until we see
-}

--
-- * Formatting and reporting warnings
--

-- | A datatype to accommodate the different call sites of
-- 'formatReportWarnings'. Used for extracting 'CIRB's from a concrete 'ann'
-- through 'collectInMode'. Since this is only possible for a couple of
-- well-known 'ann's, this is a GADT.
data FormatReportWarningsMode ann where
  ReportPatBind :: FormatReportWarningsMode (PmPatBind Post)
  ReportGRHSs   :: FormatReportWarningsMode (PmGRHSs Post)
  ReportMatchGroup:: FormatReportWarningsMode (PmMatchGroup Post)
  ReportEmptyCase:: FormatReportWarningsMode PmEmptyCase

deriving instance Eq (FormatReportWarningsMode ann)

-- | A function collecting 'CIRB's for each of the different
-- 'FormatReportWarningsMode's.
collectInMode :: FormatReportWarningsMode ann -> ann -> DsM CIRB
collectInMode :: forall ann. FormatReportWarningsMode ann -> ann -> DsM CIRB
collectInMode FormatReportWarningsMode ann
ReportPatBind    = PmPatBind Post -> DsM CIRB
cirbsPatBind
collectInMode FormatReportWarningsMode ann
ReportGRHSs      = PmGRHSs Post -> DsM CIRB
cirbsGRHSs
collectInMode FormatReportWarningsMode ann
ReportMatchGroup = PmMatchGroup Post -> DsM CIRB
cirbsMatchGroup
collectInMode FormatReportWarningsMode ann
ReportEmptyCase  = PmEmptyCase -> DsM CIRB
cirbsEmptyCase

-- | Given a 'FormatReportWarningsMode', this function will emit warnings
-- for a 'CheckResult'.
formatReportWarnings :: FormatReportWarningsMode ann -> DsMatchContext -> [Id] -> CheckResult ann -> DsM ()
formatReportWarnings :: forall ann.
FormatReportWarningsMode ann
-> DsMatchContext -> [Id] -> CheckResult ann -> DsM ()
formatReportWarnings FormatReportWarningsMode ann
report_mode DsMatchContext
ctx [Id]
vars cr :: CheckResult ann
cr@CheckResult { cr_ret :: forall a. CheckResult a -> a
cr_ret = ann
ann } = do
  CIRB
cov_info <- forall ann. FormatReportWarningsMode ann -> ann -> DsM CIRB
collectInMode FormatReportWarningsMode ann
report_mode ann
ann
  DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
  forall ann.
DynFlags
-> FormatReportWarningsMode ann
-> DsMatchContext
-> [Id]
-> CheckResult CIRB
-> DsM ()
reportWarnings DynFlags
dflags FormatReportWarningsMode ann
report_mode DsMatchContext
ctx [Id]
vars CheckResult ann
cr{cr_ret :: CIRB
cr_ret=CIRB
cov_info}

-- | Issue all the warnings
-- (redundancy, inaccessibility, exhaustiveness, redundant bangs).
reportWarnings :: DynFlags -> FormatReportWarningsMode ann -> DsMatchContext -> [Id] -> CheckResult CIRB -> DsM ()
reportWarnings :: forall ann.
DynFlags
-> FormatReportWarningsMode ann
-> DsMatchContext
-> [Id]
-> CheckResult CIRB
-> DsM ()
reportWarnings DynFlags
dflags FormatReportWarningsMode ann
report_mode (DsMatchContext HsMatchContext GhcRn
kind SrcSpan
loc) [Id]
vars
  CheckResult { cr_ret :: forall a. CheckResult a -> a
cr_ret    = CIRB { cirb_inacc :: CIRB -> OrdList SrcInfo
cirb_inacc = OrdList SrcInfo
inaccessible_rhss
                                 , cirb_red :: CIRB -> OrdList SrcInfo
cirb_red   = OrdList SrcInfo
redundant_rhss
                                 , cirb_bangs :: CIRB -> OrdList SrcInfo
cirb_bangs = OrdList SrcInfo
redundant_bangs }
              , cr_uncov :: forall a. CheckResult a -> Nablas
cr_uncov  = Nablas
uncovered
              , cr_approx :: forall a. CheckResult a -> Precision
cr_approx = Precision
precision }
  = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Bool
flag_i Bool -> Bool -> Bool
|| Bool
flag_u Bool -> Bool -> Bool
|| Bool
flag_b) forall a b. (a -> b) -> a -> b
$ do
      [Nabla]
unc_examples <- GenerateInhabitingPatternsMode
-> [Id] -> Int -> Nablas -> DsM [Nabla]
getNFirstUncovered GenerateInhabitingPatternsMode
gen_mode [Id]
vars (Int
maxPatterns forall a. Num a => a -> a -> a
+ Int
1) Nablas
uncovered
      let exists_r :: Bool
exists_r = Bool
flag_i Bool -> Bool -> Bool
&& forall (f :: * -> *) a. Foldable f => f a -> Bool
notNull OrdList SrcInfo
redundant_rhss
          exists_i :: Bool
exists_i = Bool
flag_i Bool -> Bool -> Bool
&& forall (f :: * -> *) a. Foldable f => f a -> Bool
notNull OrdList SrcInfo
inaccessible_rhss
          exists_u :: Bool
exists_u = Bool
flag_u Bool -> Bool -> Bool
&& forall (f :: * -> *) a. Foldable f => f a -> Bool
notNull [Nabla]
unc_examples
          exists_b :: Bool
exists_b = Bool
flag_b Bool -> Bool -> Bool
&& forall (f :: * -> *) a. Foldable f => f a -> Bool
notNull OrdList SrcInfo
redundant_bangs
          approx :: Bool
approx   = Precision
precision forall a. Eq a => a -> a -> Bool
== Precision
Approximate

      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Bool
approx Bool -> Bool -> Bool
&& (Bool
exists_u Bool -> Bool -> Bool
|| Bool
exists_i)) forall a b. (a -> b) -> a -> b
$
        forall a. SrcSpan -> DsM a -> DsM a
putSrcSpanDs SrcSpan
loc (DsMessage -> DsM ()
diagnosticDs (Int -> DsMessage
DsMaxPmCheckModelsReached (DynFlags -> Int
maxPmCheckModels DynFlags
dflags)))

      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
exists_b forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ OrdList SrcInfo
redundant_bangs forall a b. (a -> b) -> a -> b
$ \(SrcInfo (L SrcSpan
l SDoc
q)) ->
        forall a. SrcSpan -> DsM a -> DsM a
putSrcSpanDs SrcSpan
l (DsMessage -> DsM ()
diagnosticDs (HsMatchContext GhcRn -> SDoc -> DsMessage
DsRedundantBangPatterns HsMatchContext GhcRn
kind SDoc
q))

      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
exists_r forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ OrdList SrcInfo
redundant_rhss forall a b. (a -> b) -> a -> b
$ \(SrcInfo (L SrcSpan
l SDoc
q)) ->
        forall a. SrcSpan -> DsM a -> DsM a
putSrcSpanDs SrcSpan
l (DsMessage -> DsM ()
diagnosticDs (HsMatchContext GhcRn -> SDoc -> DsMessage
DsOverlappingPatterns HsMatchContext GhcRn
kind SDoc
q))
      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
exists_i forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ OrdList SrcInfo
inaccessible_rhss forall a b. (a -> b) -> a -> b
$ \(SrcInfo (L SrcSpan
l SDoc
q)) ->
        forall a. SrcSpan -> DsM a -> DsM a
putSrcSpanDs SrcSpan
l (DsMessage -> DsM ()
diagnosticDs (HsMatchContext GhcRn -> SDoc -> DsMessage
DsInaccessibleRhs HsMatchContext GhcRn
kind SDoc
q))

      forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
exists_u forall a b. (a -> b) -> a -> b
$
        forall a. SrcSpan -> DsM a -> DsM a
putSrcSpanDs SrcSpan
loc (DsMessage -> DsM ()
diagnosticDs (HsMatchContext GhcRn
-> ExhaustivityCheckType -> Int -> [Id] -> [Nabla] -> DsMessage
DsNonExhaustivePatterns HsMatchContext GhcRn
kind ExhaustivityCheckType
check_type Int
maxPatterns [Id]
vars [Nabla]
unc_examples))
  where
    flag_i :: Bool
flag_i = forall id. DynFlags -> HsMatchContext id -> Bool
overlapping DynFlags
dflags HsMatchContext GhcRn
kind
    flag_u :: Bool
flag_u = forall id. DynFlags -> HsMatchContext id -> Bool
exhaustive DynFlags
dflags HsMatchContext GhcRn
kind
    flag_b :: Bool
flag_b = DynFlags -> Bool
redundantBang DynFlags
dflags
    check_type :: ExhaustivityCheckType
check_type = Maybe WarningFlag -> ExhaustivityCheckType
ExhaustivityCheckType (forall id. HsMatchContext id -> Maybe WarningFlag
exhaustiveWarningFlag HsMatchContext GhcRn
kind)
    gen_mode :: GenerateInhabitingPatternsMode
gen_mode = case FormatReportWarningsMode ann
report_mode of -- See Note [Case split inhabiting patterns]
      FormatReportWarningsMode ann
ReportEmptyCase -> GenerateInhabitingPatternsMode
CaseSplitTopLevel
      FormatReportWarningsMode ann
_               -> GenerateInhabitingPatternsMode
MinimalCover

    maxPatterns :: Int
maxPatterns = DynFlags -> Int
maxUncoveredPatterns DynFlags
dflags

getNFirstUncovered :: GenerateInhabitingPatternsMode -> [Id] -> Int -> Nablas -> DsM [Nabla]
getNFirstUncovered :: GenerateInhabitingPatternsMode
-> [Id] -> Int -> Nablas -> DsM [Nabla]
getNFirstUncovered GenerateInhabitingPatternsMode
mode [Id]
vars Int
n (MkNablas Bag Nabla
nablas) = Int -> [Nabla] -> DsM [Nabla]
go Int
n (forall a. Bag a -> [a]
bagToList Bag Nabla
nablas)
  where
    go :: Int -> [Nabla] -> DsM [Nabla]
go Int
0 [Nabla]
_              = forall (f :: * -> *) a. Applicative f => a -> f a
pure []
    go Int
_ []             = forall (f :: * -> *) a. Applicative f => a -> f a
pure []
    go Int
n (Nabla
nabla:[Nabla]
nablas) = do
      [Nabla]
front <- GenerateInhabitingPatternsMode
-> [Id] -> Int -> Nabla -> DsM [Nabla]
generateInhabitingPatterns GenerateInhabitingPatternsMode
mode [Id]
vars Int
n Nabla
nabla
      [Nabla]
back <- Int -> [Nabla] -> DsM [Nabla]
go (Int
n forall a. Num a => a -> a -> a
- forall (t :: * -> *) a. Foldable t => t a -> Int
length [Nabla]
front) [Nabla]
nablas
      forall (f :: * -> *) a. Applicative f => a -> f a
pure ([Nabla]
front forall a. [a] -> [a] -> [a]
++ [Nabla]
back)

--
-- * Adding external long-distance information
--

-- | Locally update 'dsl_nablas' with the given action, but defer evaluation
-- with 'unsafeInterleaveM' in order not to do unnecessary work.
locallyExtendPmNablas :: (Nablas -> DsM Nablas) -> DsM a -> DsM a
locallyExtendPmNablas :: forall a. (Nablas -> DsM Nablas) -> DsM a -> DsM a
locallyExtendPmNablas Nablas -> DsM Nablas
ext DsM a
k = do
  Nablas
nablas <- DsM Nablas
getLdiNablas
  Nablas
nablas' <- forall env a. IOEnv env a -> IOEnv env a
unsafeInterleaveM forall a b. (a -> b) -> a -> b
$ Nablas -> DsM Nablas
ext Nablas
nablas
  forall a. Nablas -> DsM a -> DsM a
updPmNablas Nablas
nablas' DsM a
k

-- | Add in-scope type constraints if the coverage checker might run and then
-- run the given action.
addTyCs :: Origin -> Bag EvVar -> DsM a -> DsM a
addTyCs :: forall a. Origin -> Bag Id -> DsM a -> DsM a
addTyCs Origin
origin Bag Id
ev_vars DsM a
m = do
  DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
  forall a. Bool -> (a -> a) -> a -> a
applyWhen (DynFlags -> Origin -> Bool
needToRunPmCheck DynFlags
dflags Origin
origin)
            (forall a. (Nablas -> DsM Nablas) -> DsM a -> DsM a
locallyExtendPmNablas forall a b. (a -> b) -> a -> b
$ \Nablas
nablas ->
              Nablas -> PhiCts -> DsM Nablas
addPhiCtsNablas Nablas
nablas (PredType -> PhiCt
PhiTyCt forall b c a. (b -> c) -> (a -> b) -> a -> c
. Id -> PredType
evVarPred forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Bag Id
ev_vars))
            DsM a
m

-- | Add equalities for the 'CoreExpr' scrutinees to the local 'DsM' environment,
-- e.g. when checking a case expression:
--     case e of x { matches }
-- When checking matches we record that (x ~ e) where x is the initial
-- uncovered. All matches will have to satisfy this equality.
-- This is also used for the Arrows \cases command, where these equalities have
-- to be added for multiple scrutinees rather than just one.
addCoreScrutTmCs :: [CoreExpr] -> [Id] -> DsM a -> DsM a
addCoreScrutTmCs :: forall a. [CoreExpr] -> [Id] -> DsM a -> DsM a
addCoreScrutTmCs []         [Id]
_      DsM a
k = DsM a
k
addCoreScrutTmCs (CoreExpr
scr:[CoreExpr]
scrs) (Id
x:[Id]
xs) DsM a
k =
  forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. (Nablas -> DsM Nablas) -> DsM a -> DsM a
locallyExtendPmNablas (forall a. [CoreExpr] -> [Id] -> DsM a -> DsM a
addCoreScrutTmCs [CoreExpr]
scrs [Id]
xs DsM a
k) forall a b. (a -> b) -> a -> b
$ \Nablas
nablas ->
    Nablas -> PhiCts -> DsM Nablas
addPhiCtsNablas Nablas
nablas (forall a. a -> Bag a
unitBag (Id -> CoreExpr -> PhiCt
PhiCoreCt Id
x CoreExpr
scr))
addCoreScrutTmCs [CoreExpr]
_   [Id]
_   DsM a
_ = forall a. String -> a
panic String
"addCoreScrutTmCs: numbers of scrutinees and match ids differ"

-- | 'addCoreScrutTmCs', but desugars the 'LHsExpr's first.
addHsScrutTmCs :: [LHsExpr GhcTc] -> [Id] -> DsM a -> DsM a
addHsScrutTmCs :: forall a. [LHsExpr GhcTc] -> [Id] -> DsM a -> DsM a
addHsScrutTmCs [LHsExpr GhcTc]
scrs [Id]
vars DsM a
k = do
  [CoreExpr]
scr_es <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse LHsExpr GhcTc -> DsM CoreExpr
dsLExpr [LHsExpr GhcTc]
scrs
  forall a. [CoreExpr] -> [Id] -> DsM a -> DsM a
addCoreScrutTmCs [CoreExpr]
scr_es [Id]
vars DsM a
k

{- Note [Long-distance information]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

  data Color = R | G | B
  f :: Color -> Int
  f R = …
  f c = … (case c of
          G -> True
          B -> False) …

Humans can make the "long-distance connection" between the outer pattern match
and the nested case pattern match to see that the inner pattern match is
exhaustive: @c@ can't be @R@ anymore because it was matched in the first clause
of @f@.

To achieve similar reasoning in the coverage checker, we keep track of the set
of values that can reach a particular program point (often loosely referred to
as "Covered set") in 'GHC.HsToCore.Monad.dsl_nablas'.
We fill that set with Covered Nablas returned by the exported checking
functions, which the call sites put into place with
'GHC.HsToCore.Monad.updPmNablas'.
Call sites also extend this set with facts from type-constraint dictionaries,
case scrutinees, etc. with the exported functions 'addTyCs', 'addCoreScrutTmCs'
and 'addHsScrutTmCs'.

Note [Recovering from unsatisfiable pattern-matching constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following code (see #12957 and #15450):

  f :: Int ~ Bool => ()
  f = case True of { False -> () }

We want to warn that the pattern-matching in `f` is non-exhaustive. But GHC
used not to do this; in fact, it would warn that the match was /redundant/!
This is because the constraint (Int ~ Bool) in `f` is unsatisfiable, and the
coverage checker deems any matches with unsatisfiable constraint sets to be
unreachable.

We make sure to always start from an inhabited 'Nablas' by calling
'getLdiNablas', which falls back to the trivially inhabited 'Nablas' if the
long-distance info returned by 'GHC.HsToCore.Monad.getPmNablas' is empty.
-}