{-
(c) The AQUA Project, Glasgow University, 1993-1998

\section[Simplify]{The main module of the simplifier}
-}

{-# LANGUAGE CPP #-}

{-# OPTIONS_GHC -Wno-incomplete-record-updates -Wno-incomplete-uni-patterns #-}
module GHC.Core.Opt.Simplify ( simplTopBinds, simplExpr, simplRules ) where

#include "GhclibHsVersions.h"

import GHC.Prelude

import GHC.Platform
import GHC.Driver.Session
import GHC.Core.Opt.Simplify.Monad
import GHC.Core.Type hiding ( substTy, substTyVar, extendTvSubst, extendCvSubst )
import GHC.Core.Opt.Simplify.Env
import GHC.Core.Opt.Simplify.Utils
import GHC.Core.Opt.OccurAnal ( occurAnalyseExpr )
import GHC.Core.FamInstEnv ( FamInstEnv )
import GHC.Types.Literal   ( litIsLifted ) --, mkLitInt ) -- temporalily commented out. See #8326
import GHC.Types.Id
import GHC.Types.Id.Make   ( seqId )
import GHC.Core.Make       ( FloatBind, mkImpossibleExpr, castBottomExpr )
import qualified GHC.Core.Make
import GHC.Types.Id.Info
import GHC.Types.Name           ( mkSystemVarName, isExternalName, getOccFS )
import GHC.Core.Coercion hiding ( substCo, substCoVar )
import GHC.Core.Coercion.Opt    ( optCoercion )
import GHC.Core.FamInstEnv      ( topNormaliseType_maybe )
import GHC.Core.DataCon
   ( DataCon, dataConWorkId, dataConRepStrictness
   , dataConRepArgTys, isUnboxedTupleCon
   , StrictnessMark (..) )
import GHC.Core.Opt.Monad ( Tick(..), SimplMode(..) )
import GHC.Core
import GHC.Builtin.Types.Prim( realWorldStatePrimTy )
import GHC.Builtin.Names( runRWKey )
import GHC.Types.Demand ( StrictSig(..), Demand, dmdTypeDepth, isStrictDmd
                        , mkClosedStrictSig, topDmd, seqDmd, botDiv )
import GHC.Types.Cpr    ( mkCprSig, botCpr )
import GHC.Core.Ppr     ( pprCoreExpr )
import GHC.Types.Unique ( hasKey )
import GHC.Core.Unfold
import GHC.Core.Utils
import GHC.Core.Opt.Arity ( ArityType(..), arityTypeArity, isBotArityType
                          , idArityType, etaExpandAT )
import GHC.Core.SimpleOpt ( pushCoTyArg, pushCoValArg
                          , joinPointBinding_maybe, joinPointBindings_maybe )
import GHC.Core.FVs     ( mkRuleInfo )
import GHC.Core.Rules   ( lookupRule, getRules, initRuleOpts )
import GHC.Types.Basic
import GHC.Utils.Monad  ( mapAccumLM, liftIO )
import GHC.Types.Var    ( isTyCoVar )
import GHC.Data.Maybe   ( orElse )
import Control.Monad
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Utils.Misc
import GHC.Utils.Error
import GHC.Unit.Module ( moduleName, pprModuleName )
import GHC.Core.Multiplicity
import GHC.Builtin.PrimOps ( PrimOp (SeqOp) )


{-
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in GHC.Core.Opt.Pipeline

Note [The big picture]
~~~~~~~~~~~~~~~~~~~~~~
The general shape of the simplifier is this:

  simplExpr :: SimplEnv -> InExpr -> SimplCont -> SimplM (SimplFloats, OutExpr)
  simplBind :: SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)

 * SimplEnv contains
     - Simplifier mode (which includes DynFlags for convenience)
     - Ambient substitution
     - InScopeSet

 * SimplFloats contains
     - Let-floats (which includes ok-for-spec case-floats)
     - Join floats
     - InScopeSet (including all the floats)

 * Expressions
      simplExpr :: SimplEnv -> InExpr -> SimplCont
                -> SimplM (SimplFloats, OutExpr)
   The result of simplifying an /expression/ is (floats, expr)
      - A bunch of floats (let bindings, join bindings)
      - A simplified expression.
   The overall result is effectively (let floats in expr)

 * Bindings
      simplBind :: SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)
   The result of simplifying a binding is
     - A bunch of floats, the last of which is the simplified binding
       There may be auxiliary bindings too; see prepareRhs
     - An environment suitable for simplifying the scope of the binding

   The floats may also be empty, if the binding is inlined unconditionally;
   in that case the returned SimplEnv will have an augmented substitution.

   The returned floats and env both have an in-scope set, and they are
   guaranteed to be the same.


Note [Shadowing]
~~~~~~~~~~~~~~~~
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

        case e of (a,b) -> \x -> case a of (p,q) -> \y -> r

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.

Note [In-scope set as a substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As per Note [Lookups in in-scope set], an in-scope set can act as
a substitution. Specifically, it acts as a substitution from variable to
variables /with the same unique/.

Why do we need this? Well, during the course of the simplifier, we may want to
adjust inessential properties of a variable. For instance, when performing a
beta-reduction, we change

    (\x. e) u ==> let x = u in e

We typically want to add an unfolding to `x` so that it inlines to (the
simplification of) `u`.

We do that by adding the unfolding to the binder `x`, which is added to the
in-scope set. When simplifying occurrences of `x` (every occurrence!), they are
replaced by their “updated” version from the in-scope set, hence inherit the
unfolding. This happens in `SimplEnv.substId`.

Another example. Consider

   case x of y { Node a b -> ...y...
               ; Leaf v   -> ...y... }

In the Node branch want y's unfolding to be (Node a b); in the Leaf branch we
want y's unfolding to be (Leaf v). We achieve this by adding the appropriate
unfolding to y, and re-adding it to the in-scope set. See the calls to
`addBinderUnfolding` in `Simplify.addAltUnfoldings` and elsewhere.

It's quite convenient. This way we don't need to manipulate the substitution all
the time: every update to a binder is automatically reflected to its bound
occurrences.

************************************************************************
*                                                                      *
\subsection{Bindings}
*                                                                      *
************************************************************************
-}

simplTopBinds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
-- See Note [The big picture]
simplTopBinds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
simplTopBinds SimplEnv
env0 [InBind]
binds0
  = do  {       -- Put all the top-level binders into scope at the start
                -- so that if a rewrite rule has unexpectedly brought
                -- anything into scope, then we don't get a complaint about that.
                -- It's rather as if the top-level binders were imported.
                -- See note [Glomming] in "GHC.Core.Opt.OccurAnal".
        ; SimplEnv
env1 <- {-#SCC "simplTopBinds-simplRecBndrs" #-} SimplEnv -> [InBndr] -> SimplM SimplEnv
simplRecBndrs SimplEnv
env0 ([InBind] -> [InBndr]
forall b. [Bind b] -> [b]
bindersOfBinds [InBind]
binds0)
        ; (SimplFloats
floats, SimplEnv
env2) <- {-#SCC "simplTopBinds-simpl_binds" #-} SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
simpl_binds SimplEnv
env1 [InBind]
binds0
        ; Tick -> SimplM ()
freeTick Tick
SimplifierDone
        ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, SimplEnv
env2) }
  where
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
        -- That's why we run down binds and bndrs' simultaneously.
        --
    simpl_binds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
    simpl_binds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
simpl_binds SimplEnv
env []           = (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplEnv
env)
    simpl_binds SimplEnv
env (InBind
bind:[InBind]
binds) = do { (SimplFloats
float,  SimplEnv
env1) <- SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)
simpl_bind SimplEnv
env InBind
bind
                                      ; (SimplFloats
floats, SimplEnv
env2) <- SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
simpl_binds SimplEnv
env1 [InBind]
binds
                                      ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
float SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats, SimplEnv
env2) }

    simpl_bind :: SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)
simpl_bind SimplEnv
env (Rec [(InBndr, Expr InBndr)]
pairs)
      = SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> [(InBndr, Expr InBndr)]
-> SimplM (SimplFloats, SimplEnv)
simplRecBind SimplEnv
env TopLevelFlag
TopLevel MaybeJoinCont
forall a. Maybe a
Nothing [(InBndr, Expr InBndr)]
pairs
    simpl_bind SimplEnv
env (NonRec InBndr
b Expr InBndr
r)
      = do { (SimplEnv
env', InBndr
b') <- SimplEnv
-> InBndr -> InBndr -> MaybeJoinCont -> SimplM (SimplEnv, InBndr)
addBndrRules SimplEnv
env InBndr
b (SimplEnv -> InBndr -> InBndr
lookupRecBndr SimplEnv
env InBndr
b) MaybeJoinCont
forall a. Maybe a
Nothing
           ; SimplEnv
-> TopLevelFlag
-> RecFlag
-> MaybeJoinCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
simplRecOrTopPair SimplEnv
env' TopLevelFlag
TopLevel RecFlag
NonRecursive MaybeJoinCont
forall a. Maybe a
Nothing InBndr
b InBndr
b' Expr InBndr
r }

{-
************************************************************************
*                                                                      *
        Lazy bindings
*                                                                      *
************************************************************************

simplRecBind is used for
        * recursive bindings only
-}

simplRecBind :: SimplEnv -> TopLevelFlag -> MaybeJoinCont
             -> [(InId, InExpr)]
             -> SimplM (SimplFloats, SimplEnv)
simplRecBind :: SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> [(InBndr, Expr InBndr)]
-> SimplM (SimplFloats, SimplEnv)
simplRecBind SimplEnv
env0 TopLevelFlag
top_lvl MaybeJoinCont
mb_cont [(InBndr, Expr InBndr)]
pairs0
  = do  { (SimplEnv
env_with_info, [(InBndr, InBndr, Expr InBndr)]
triples) <- (SimplEnv
 -> (InBndr, Expr InBndr)
 -> SimplM (SimplEnv, (InBndr, InBndr, Expr InBndr)))
-> SimplEnv
-> [(InBndr, Expr InBndr)]
-> SimplM (SimplEnv, [(InBndr, InBndr, Expr InBndr)])
forall (m :: * -> *) acc x y.
Monad m =>
(acc -> x -> m (acc, y)) -> acc -> [x] -> m (acc, [y])
mapAccumLM SimplEnv
-> (InBndr, Expr InBndr)
-> SimplM (SimplEnv, (InBndr, InBndr, Expr InBndr))
add_rules SimplEnv
env0 [(InBndr, Expr InBndr)]
pairs0
        ; (SimplFloats
rec_floats, SimplEnv
env1) <- SimplEnv
-> [(InBndr, InBndr, Expr InBndr)]
-> SimplM (SimplFloats, SimplEnv)
go SimplEnv
env_with_info [(InBndr, InBndr, Expr InBndr)]
triples
        ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats -> SimplFloats
mkRecFloats SimplFloats
rec_floats, SimplEnv
env1) }
  where
    add_rules :: SimplEnv -> (InBndr,InExpr) -> SimplM (SimplEnv, (InBndr, OutBndr, InExpr))
        -- Add the (substituted) rules to the binder
    add_rules :: SimplEnv
-> (InBndr, Expr InBndr)
-> SimplM (SimplEnv, (InBndr, InBndr, Expr InBndr))
add_rules SimplEnv
env (InBndr
bndr, Expr InBndr
rhs)
        = do { (SimplEnv
env', InBndr
bndr') <- SimplEnv
-> InBndr -> InBndr -> MaybeJoinCont -> SimplM (SimplEnv, InBndr)
addBndrRules SimplEnv
env InBndr
bndr (SimplEnv -> InBndr -> InBndr
lookupRecBndr SimplEnv
env InBndr
bndr) MaybeJoinCont
mb_cont
             ; (SimplEnv, (InBndr, InBndr, Expr InBndr))
-> SimplM (SimplEnv, (InBndr, InBndr, Expr InBndr))
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv
env', (InBndr
bndr, InBndr
bndr', Expr InBndr
rhs)) }

    go :: SimplEnv
-> [(InBndr, InBndr, Expr InBndr)]
-> SimplM (SimplFloats, SimplEnv)
go SimplEnv
env [] = (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplEnv
env)

    go SimplEnv
env ((InBndr
old_bndr, InBndr
new_bndr, Expr InBndr
rhs) : [(InBndr, InBndr, Expr InBndr)]
pairs)
        = do { (SimplFloats
float, SimplEnv
env1) <- SimplEnv
-> TopLevelFlag
-> RecFlag
-> MaybeJoinCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
simplRecOrTopPair SimplEnv
env TopLevelFlag
top_lvl RecFlag
Recursive MaybeJoinCont
mb_cont
                                                  InBndr
old_bndr InBndr
new_bndr Expr InBndr
rhs
             ; (SimplFloats
floats, SimplEnv
env2) <- SimplEnv
-> [(InBndr, InBndr, Expr InBndr)]
-> SimplM (SimplFloats, SimplEnv)
go SimplEnv
env1 [(InBndr, InBndr, Expr InBndr)]
pairs
             ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
float SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats, SimplEnv
env2) }

{-
simplOrTopPair is used for
        * recursive bindings (whether top level or not)
        * top-level non-recursive bindings

It assumes the binder has already been simplified, but not its IdInfo.
-}

simplRecOrTopPair :: SimplEnv
                  -> TopLevelFlag -> RecFlag -> MaybeJoinCont
                  -> InId -> OutBndr -> InExpr  -- Binder and rhs
                  -> SimplM (SimplFloats, SimplEnv)

simplRecOrTopPair :: SimplEnv
-> TopLevelFlag
-> RecFlag
-> MaybeJoinCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
simplRecOrTopPair SimplEnv
env TopLevelFlag
top_lvl RecFlag
is_rec MaybeJoinCont
mb_cont InBndr
old_bndr InBndr
new_bndr Expr InBndr
rhs
  | Just SimplEnv
env' <- SimplEnv
-> TopLevelFlag
-> InBndr
-> Expr InBndr
-> SimplEnv
-> Maybe SimplEnv
preInlineUnconditionally SimplEnv
env TopLevelFlag
top_lvl InBndr
old_bndr Expr InBndr
rhs SimplEnv
env
  = {-#SCC "simplRecOrTopPair-pre-inline-uncond" #-}
    [Char]
-> SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall a. [Char] -> a -> a
trace_bind [Char]
"pre-inline-uncond" (SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv))
-> SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall a b. (a -> b) -> a -> b
$
    do { Tick -> SimplM ()
tick (InBndr -> Tick
PreInlineUnconditionally InBndr
old_bndr)
       ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return ( SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplEnv
env' ) }

  | Just SimplCont
cont <- MaybeJoinCont
mb_cont
  = {-#SCC "simplRecOrTopPair-join" #-}
    ASSERT( isNotTopLevel top_lvl && isJoinId new_bndr )
    [Char]
-> SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall a. [Char] -> a -> a
trace_bind [Char]
"join" (SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv))
-> SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall a b. (a -> b) -> a -> b
$
    SimplEnv
-> SimplCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplEnv
-> SimplM (SimplFloats, SimplEnv)
simplJoinBind SimplEnv
env SimplCont
cont InBndr
old_bndr InBndr
new_bndr Expr InBndr
rhs SimplEnv
env

  | Bool
otherwise
  = {-#SCC "simplRecOrTopPair-normal" #-}
    [Char]
-> SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall a. [Char] -> a -> a
trace_bind [Char]
"normal" (SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv))
-> SimplM (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall a b. (a -> b) -> a -> b
$
    SimplEnv
-> TopLevelFlag
-> RecFlag
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplEnv
-> SimplM (SimplFloats, SimplEnv)
simplLazyBind SimplEnv
env TopLevelFlag
top_lvl RecFlag
is_rec InBndr
old_bndr InBndr
new_bndr Expr InBndr
rhs SimplEnv
env

  where
    dflags :: DynFlags
dflags = SimplEnv -> DynFlags
seDynFlags SimplEnv
env

    -- trace_bind emits a trace for each top-level binding, which
    -- helps to locate the tracing for inlining and rule firing
    trace_bind :: [Char] -> a -> a
trace_bind [Char]
what a
thing_inside
      | Bool -> Bool
not (DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_verbose_core2core DynFlags
dflags)
      = a
thing_inside
      | Bool
otherwise
      = DynFlags -> [Char] -> SDoc -> a -> a
TraceAction
traceAction DynFlags
dflags ([Char]
"SimplBind " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
what)
         (InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
old_bndr) a
thing_inside

--------------------------
simplLazyBind :: SimplEnv
              -> TopLevelFlag -> RecFlag
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- Not a JoinId
                                        -- The OutId has IdInfo, except arity, unfolding
                                        -- Ids only, no TyVars
              -> InExpr -> SimplEnv     -- The RHS and its environment
              -> SimplM (SimplFloats, SimplEnv)
-- Precondition: not a JoinId
-- Precondition: rhs obeys the let/app invariant
-- NOT used for JoinIds
simplLazyBind :: SimplEnv
-> TopLevelFlag
-> RecFlag
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplEnv
-> SimplM (SimplFloats, SimplEnv)
simplLazyBind SimplEnv
env TopLevelFlag
top_lvl RecFlag
is_rec InBndr
bndr InBndr
bndr1 Expr InBndr
rhs SimplEnv
rhs_se
  = ASSERT( isId bndr )
    ASSERT2( not (isJoinId bndr), ppr bndr )
    -- pprTrace "simplLazyBind" ((ppr bndr <+> ppr bndr1) $$ ppr rhs $$ ppr (seIdSubst rhs_se)) $
    do  { let   rhs_env :: SimplEnv
rhs_env     = SimplEnv
rhs_se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env
                ([InBndr]
tvs, Expr InBndr
body) = case Expr InBndr -> ([InBndr], [InBndr], Expr InBndr)
collectTyAndValBinders Expr InBndr
rhs of
                                ([InBndr]
tvs, [], Expr InBndr
body)
                                  | Expr InBndr -> Bool
forall b. Expr b -> Bool
surely_not_lam Expr InBndr
body -> ([InBndr]
tvs, Expr InBndr
body)
                                ([InBndr], [InBndr], Expr InBndr)
_                       -> ([], Expr InBndr
rhs)

                surely_not_lam :: Expr b -> Bool
surely_not_lam (Lam {})     = Bool
False
                surely_not_lam (Tick Tickish InBndr
t Expr b
e)
                  | Bool -> Bool
not (Tickish InBndr -> Bool
forall id. Tickish id -> Bool
tickishFloatable Tickish InBndr
t) = Expr b -> Bool
surely_not_lam Expr b
e
                   -- eta-reduction could float
                surely_not_lam Expr b
_            = Bool
True
                        -- Do not do the "abstract tyvar" thing if there's
                        -- a lambda inside, because it defeats eta-reduction
                        --    f = /\a. \x. g a x
                        -- should eta-reduce.


        ; (SimplEnv
body_env, [InBndr]
tvs') <- {-#SCC "simplBinders" #-} SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
simplBinders SimplEnv
rhs_env [InBndr]
tvs
                -- See Note [Floating and type abstraction] in GHC.Core.Opt.Simplify.Utils

        -- Simplify the RHS
        ; let rhs_cont :: SimplCont
rhs_cont = OutType -> SimplCont
mkRhsStop (SimplEnv -> OutType -> OutType
substTy SimplEnv
body_env (Expr InBndr -> OutType
exprType Expr InBndr
body))
        ; (SimplFloats
body_floats0, Expr InBndr
body0) <- {-#SCC "simplExprF" #-} SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
body_env Expr InBndr
body SimplCont
rhs_cont

              -- Never float join-floats out of a non-join let-binding
              -- So wrap the body in the join-floats right now
              -- Hence: body_floats1 consists only of let-floats
        ; let (SimplFloats
body_floats1, Expr InBndr
body1) = SimplFloats -> Expr InBndr -> (SimplFloats, Expr InBndr)
wrapJoinFloatsX SimplFloats
body_floats0 Expr InBndr
body0

        -- ANF-ise a constructor or PAP rhs
        -- We get at most one float per argument here
        ; (LetFloats
let_floats, InBndr
bndr2, Expr InBndr
body2) <- {-#SCC "prepareBinding" #-}
                                        SimplEnv
-> TopLevelFlag
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (LetFloats, InBndr, Expr InBndr)
prepareBinding SimplEnv
env TopLevelFlag
top_lvl InBndr
bndr InBndr
bndr1 Expr InBndr
body1
        ; let body_floats2 :: SimplFloats
body_floats2 = SimplFloats
body_floats1 SimplFloats -> LetFloats -> SimplFloats
`addLetFloats` LetFloats
let_floats

        ; (SimplFloats
rhs_floats, Expr InBndr
rhs')
            <-  if Bool -> Bool
not (TopLevelFlag
-> RecFlag -> Bool -> SimplFloats -> Expr InBndr -> Bool
doFloatFromRhs TopLevelFlag
top_lvl RecFlag
is_rec Bool
False SimplFloats
body_floats2 Expr InBndr
body2)
                then                    -- No floating, revert to body1
                     {-#SCC "simplLazyBind-no-floating" #-}
                     do { Expr InBndr
rhs' <- SimplEnv
-> [InBndr] -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
mkLam SimplEnv
env [InBndr]
tvs' (SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats SimplFloats
body_floats2 Expr InBndr
body1) SimplCont
rhs_cont
                        ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, Expr InBndr
rhs') }

                else if [InBndr] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [InBndr]
tvs then   -- Simple floating
                     {-#SCC "simplLazyBind-simple-floating" #-}
                     do { Tick -> SimplM ()
tick Tick
LetFloatFromLet
                        ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
body_floats2, Expr InBndr
body2) }

                else                    -- Do type-abstraction first
                     {-#SCC "simplLazyBind-type-abstraction-first" #-}
                     do { Tick -> SimplM ()
tick Tick
LetFloatFromLet
                        ; ([InBind]
poly_binds, Expr InBndr
body3) <- DynFlags
-> TopLevelFlag
-> [InBndr]
-> SimplFloats
-> Expr InBndr
-> SimplM ([InBind], Expr InBndr)
abstractFloats (SimplEnv -> DynFlags
seDynFlags SimplEnv
env) TopLevelFlag
top_lvl
                                                                [InBndr]
tvs' SimplFloats
body_floats2 Expr InBndr
body2
                        ; let floats :: SimplFloats
floats = (SimplFloats -> InBind -> SimplFloats)
-> SimplFloats -> [InBind] -> SimplFloats
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' SimplFloats -> InBind -> SimplFloats
extendFloats (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env) [InBind]
poly_binds
                        ; Expr InBndr
rhs' <- SimplEnv
-> [InBndr] -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
mkLam SimplEnv
env [InBndr]
tvs' Expr InBndr
body3 SimplCont
rhs_cont
                        ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, Expr InBndr
rhs') }

        ; (SimplFloats
bind_float, SimplEnv
env2) <- SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
completeBind (SimplEnv
env SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
rhs_floats)
                                             TopLevelFlag
top_lvl MaybeJoinCont
forall a. Maybe a
Nothing InBndr
bndr InBndr
bndr2 Expr InBndr
rhs'
        ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
rhs_floats SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
bind_float, SimplEnv
env2) }

--------------------------
simplJoinBind :: SimplEnv
              -> SimplCont
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- The OutId has IdInfo, except arity,
                                        --   unfolding
              -> InExpr -> SimplEnv     -- The right hand side and its env
              -> SimplM (SimplFloats, SimplEnv)
simplJoinBind :: SimplEnv
-> SimplCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplEnv
-> SimplM (SimplFloats, SimplEnv)
simplJoinBind SimplEnv
env SimplCont
cont InBndr
old_bndr InBndr
new_bndr Expr InBndr
rhs SimplEnv
rhs_se
  = do  { let rhs_env :: SimplEnv
rhs_env = SimplEnv
rhs_se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env
        ; Expr InBndr
rhs' <- SimplEnv
-> InBndr -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplJoinRhs SimplEnv
rhs_env InBndr
old_bndr Expr InBndr
rhs SimplCont
cont
        ; SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
completeBind SimplEnv
env TopLevelFlag
NotTopLevel (SimplCont -> MaybeJoinCont
forall a. a -> Maybe a
Just SimplCont
cont) InBndr
old_bndr InBndr
new_bndr Expr InBndr
rhs' }

--------------------------
simplNonRecX :: SimplEnv
             -> InId            -- Old binder; not a JoinId
             -> OutExpr         -- Simplified RHS
             -> SimplM (SimplFloats, SimplEnv)
-- A specialised variant of simplNonRec used when the RHS is already
-- simplified, notably in knownCon.  It uses case-binding where necessary.
--
-- Precondition: rhs satisfies the let/app invariant

simplNonRecX :: SimplEnv -> InBndr -> Expr InBndr -> SimplM (SimplFloats, SimplEnv)
simplNonRecX SimplEnv
env InBndr
bndr Expr InBndr
new_rhs
  | ASSERT2( not (isJoinId bndr), ppr bndr )
    InBndr -> Bool
isDeadBinder InBndr
bndr   -- Not uncommon; e.g. case (a,b) of c { (p,q) -> p }
  = (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplEnv
env)    --  Here c is dead, and we avoid
                                         --  creating the binding c = (a,b)

  | Coercion Coercion
co <- Expr InBndr
new_rhs
  = (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplEnv -> InBndr -> Coercion -> SimplEnv
extendCvSubst SimplEnv
env InBndr
bndr Coercion
co)

  | Bool
otherwise
  = do  { (SimplEnv
env', InBndr
bndr') <- SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplBinder SimplEnv
env InBndr
bndr
        ; TopLevelFlag
-> SimplEnv
-> Bool
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
completeNonRecX TopLevelFlag
NotTopLevel SimplEnv
env' (InBndr -> Bool
isStrictId InBndr
bndr) InBndr
bndr InBndr
bndr' Expr InBndr
new_rhs }
                -- simplNonRecX is only used for NotTopLevel things

--------------------------
completeNonRecX :: TopLevelFlag -> SimplEnv
                -> Bool
                -> InId                 -- Old binder; not a JoinId
                -> OutId                -- New binder
                -> OutExpr              -- Simplified RHS
                -> SimplM (SimplFloats, SimplEnv)    -- The new binding is in the floats
-- Precondition: rhs satisfies the let/app invariant
--               See Note [Core let/app invariant] in GHC.Core

completeNonRecX :: TopLevelFlag
-> SimplEnv
-> Bool
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
completeNonRecX TopLevelFlag
top_lvl SimplEnv
env Bool
is_strict InBndr
old_bndr InBndr
new_bndr Expr InBndr
new_rhs
  = ASSERT2( not (isJoinId new_bndr), ppr new_bndr )
    do  { (LetFloats
prepd_floats, InBndr
new_bndr, Expr InBndr
new_rhs)
              <- SimplEnv
-> TopLevelFlag
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (LetFloats, InBndr, Expr InBndr)
prepareBinding SimplEnv
env TopLevelFlag
top_lvl InBndr
old_bndr InBndr
new_bndr Expr InBndr
new_rhs
        ; let floats :: SimplFloats
floats = SimplEnv -> SimplFloats
emptyFloats SimplEnv
env SimplFloats -> LetFloats -> SimplFloats
`addLetFloats` LetFloats
prepd_floats
        ; (SimplFloats
rhs_floats, Expr InBndr
rhs2) <-
                if TopLevelFlag
-> RecFlag -> Bool -> SimplFloats -> Expr InBndr -> Bool
doFloatFromRhs TopLevelFlag
NotTopLevel RecFlag
NonRecursive Bool
is_strict SimplFloats
floats Expr InBndr
new_rhs
                then    -- Add the floats to the main env
                     do { Tick -> SimplM ()
tick Tick
LetFloatFromLet
                        ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, Expr InBndr
new_rhs) }
                else    -- Do not float; wrap the floats around the RHS
                     (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats SimplFloats
floats Expr InBndr
new_rhs)

        ; (SimplFloats
bind_float, SimplEnv
env2) <- SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
completeBind (SimplEnv
env SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
rhs_floats)
                                             TopLevelFlag
NotTopLevel MaybeJoinCont
forall a. Maybe a
Nothing
                                             InBndr
old_bndr InBndr
new_bndr Expr InBndr
rhs2
        ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
rhs_floats SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
bind_float, SimplEnv
env2) }


{- *********************************************************************
*                                                                      *
           prepareBinding, prepareRhs, makeTrivial
*                                                                      *
************************************************************************

Note [Cast worker/wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have a binding
   x = e |> co
we want to do something very similar to worker/wrapper:
   $wx = e
   x = $wx |> co

So now x can be inlined freely.  There's a chance that e will be a
constructor application or function, or something like that, so moving
the coercion to the usage site may well cancel the coercions and lead
to further optimisation.  Example:

     data family T a :: *
     data instance T Int = T Int

     foo :: Int -> Int -> Int
     foo m n = ...
        where
          t = T m
          go 0 = 0
          go n = case t of { T m -> go (n-m) }
                -- This case should optimise

We call this making a cast worker/wrapper, and it's done by prepareBinding.

We need to be careful with inline/noinline pragmas:
  rec { {-# NOINLINE f #-}
        f = (...g...) |> co
      ; g = ...f... }
This is legitimate -- it tells GHC to use f as the loop breaker
rather than g.  Now we do the cast thing, to get something like
  rec { $wf = ...g...
      ; f = $wf |> co
      ; g = ...f... }
Where should the NOINLINE pragma go?  If we leave it on f we'll get
  rec { $wf = ...g...
      ; {-# NOINLINE f #-}
        f = $wf |> co
      ; g = ...f... }
and that is bad: the whole point is that we want to inline that
cast!  We want to transfer the pagma to $wf:
  rec { {-# NOINLINE $wf #-}
        $wf = ...g...
      ; f = $wf |> co
      ; g = ...f... }
It's exactly like worker/wrapper for strictness analysis:
  f is the wrapper and must inline like crazy
  $wf is the worker and must carry f's original pragma
See Note [Worker-wrapper for NOINLINE functions] in
GHC.Core.Opt.WorkWrap.

See #17673, #18093, #18078.

Note [Preserve strictness in cast w/w]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the Note [Cast worker/wrappers] transformation, keep the strictness info.
Eg
        f = e `cast` co    -- f has strictness SSL
When we transform to
        f' = e             -- f' also has strictness SSL
        f = f' `cast` co   -- f still has strictness SSL

Its not wrong to drop it on the floor, but better to keep it.

Note [Cast w/w: unlifted]
~~~~~~~~~~~~~~~~~~~~~~~~~
BUT don't do cast worker/wrapper if 'e' has an unlifted type.
This *can* happen:

     foo :: Int = (error (# Int,Int #) "urk")
                  `cast` CoUnsafe (# Int,Int #) Int

If do the makeTrivial thing to the error call, we'll get
    foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
But 'v' isn't in scope!

These strange casts can happen as a result of case-of-case
        bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
                (# p,q #) -> p+q

NOTE: Nowadays we don't use casts for these error functions;
instead, we use (case erorr ... of {}). So I'm not sure
this Note makes much sense any more.
-}

prepareBinding :: SimplEnv -> TopLevelFlag
               -> InId -> OutId -> OutExpr
               -> SimplM (LetFloats, OutId, OutExpr)

prepareBinding :: SimplEnv
-> TopLevelFlag
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (LetFloats, InBndr, Expr InBndr)
prepareBinding SimplEnv
env TopLevelFlag
top_lvl InBndr
old_bndr InBndr
bndr Expr InBndr
rhs
  | Cast Expr InBndr
rhs1 Coercion
co <- Expr InBndr
rhs
    -- Try for cast worker/wrapper
    -- See Note [Cast worker/wrappers]
  , Bool -> Bool
not (Unfolding -> Bool
isStableUnfolding (InBndr -> Unfolding
realIdUnfolding InBndr
old_bndr))
        -- Don't make a cast w/w if the thing is going to be inlined anyway
  , Bool -> Bool
not (Expr InBndr -> Bool
exprIsTrivial Expr InBndr
rhs1)
        -- Nor if the RHS is trivial; then again it'll be inlined
  , let ty1 :: OutType
ty1 = Coercion -> OutType
coercionLKind Coercion
co
  , Bool -> Bool
not (HasDebugCallStack => OutType -> Bool
OutType -> Bool
isUnliftedType OutType
ty1)
        -- Not if rhs has an unlifted type; see Note [Cast w/w: unlifted]
  = do { (LetFloats
floats, InBndr
new_id) <- SimplMode
-> TopLevelFlag
-> FastString
-> IdInfo
-> Expr InBndr
-> OutType
-> SimplM (LetFloats, InBndr)
makeTrivialBinding (SimplEnv -> SimplMode
getMode SimplEnv
env) TopLevelFlag
top_lvl
                                   (InBndr -> FastString
forall a. NamedThing a => a -> FastString
getOccFS InBndr
bndr) IdInfo
worker_info Expr InBndr
rhs1 OutType
ty1
       ; let bndr' :: InBndr
bndr' = InBndr
bndr InBndr -> InlinePragma -> InBndr
`setInlinePragma` InlinePragma -> InlinePragma
mkCastWrapperInlinePrag (InBndr -> InlinePragma
idInlinePragma InBndr
bndr)
       ; (LetFloats, InBndr, Expr InBndr)
-> SimplM (LetFloats, InBndr, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
floats, InBndr
bndr', Expr InBndr -> Coercion -> Expr InBndr
forall b. Expr b -> Coercion -> Expr b
Cast (InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
new_id) Coercion
co) }

  | Bool
otherwise
  = do { (LetFloats
floats, Expr InBndr
rhs') <- SimplMode
-> TopLevelFlag
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
prepareRhs (SimplEnv -> SimplMode
getMode SimplEnv
env) TopLevelFlag
top_lvl (InBndr -> FastString
forall a. NamedThing a => a -> FastString
getOccFS InBndr
bndr) Expr InBndr
rhs
       ; (LetFloats, InBndr, Expr InBndr)
-> SimplM (LetFloats, InBndr, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
floats, InBndr
bndr, Expr InBndr
rhs') }
 where
   info :: IdInfo
info = HasDebugCallStack => InBndr -> IdInfo
InBndr -> IdInfo
idInfo InBndr
bndr
   worker_info :: IdInfo
worker_info = IdInfo
vanillaIdInfo IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo` IdInfo -> StrictSig
strictnessInfo IdInfo
info
                               IdInfo -> CprSig -> IdInfo
`setCprInfo`        IdInfo -> CprSig
cprInfo IdInfo
info
                               IdInfo -> Demand -> IdInfo
`setDemandInfo`     IdInfo -> Demand
demandInfo IdInfo
info
                               IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` IdInfo -> InlinePragma
inlinePragInfo IdInfo
info
                               IdInfo -> Int -> IdInfo
`setArityInfo`      IdInfo -> Int
arityInfo IdInfo
info
          -- We do /not/ want to transfer OccInfo, Rules, Unfolding
          -- Note [Preserve strictness in cast w/w]

mkCastWrapperInlinePrag :: InlinePragma -> InlinePragma
-- See Note [Cast wrappers]
mkCastWrapperInlinePrag :: InlinePragma -> InlinePragma
mkCastWrapperInlinePrag (InlinePragma { inl_act :: InlinePragma -> Activation
inl_act = Activation
act, inl_rule :: InlinePragma -> RuleMatchInfo
inl_rule = RuleMatchInfo
rule_info })
  = InlinePragma :: SourceText
-> InlineSpec
-> Maybe Int
-> Activation
-> RuleMatchInfo
-> InlinePragma
InlinePragma { inl_src :: SourceText
inl_src    = [Char] -> SourceText
SourceText [Char]
"{-# INLINE"
                 , inl_inline :: InlineSpec
inl_inline = InlineSpec
NoUserInline -- See Note [Wrapper NoUserInline]
                 , inl_sat :: Maybe Int
inl_sat    = Maybe Int
forall a. Maybe a
Nothing      --     in GHC.Core.Opt.WorkWrap
                 , inl_act :: Activation
inl_act    = Activation
wrap_act     -- See Note [Wrapper activation]
                 , inl_rule :: RuleMatchInfo
inl_rule   = RuleMatchInfo
rule_info }  --     in GHC.Core.Opt.WorkWrap
                                -- RuleMatchInfo is (and must be) unaffected
  where
    -- See Note [Wrapper activation] in GHC.Core.Opt.WorkWrap
    -- But simpler, because we don't need to disable during InitialPhase
    wrap_act :: Activation
wrap_act | Activation -> Bool
isNeverActive Activation
act = Activation
activateDuringFinal
             | Bool
otherwise         = Activation
act

{- Note [prepareRhs]
~~~~~~~~~~~~~~~~~~~~
prepareRhs takes a putative RHS, checks whether it's a PAP or
constructor application and, if so, converts it to ANF, so that the
resulting thing can be inlined more easily.  Thus
        x = (f a, g b)
becomes
        t1 = f a
        t2 = g b
        x = (t1,t2)

We also want to deal well cases like this
        v = (f e1 `cast` co) e2
Here we want to make e1,e2 trivial and get
        x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
That's what the 'go' loop in prepareRhs does
-}

prepareRhs :: SimplMode -> TopLevelFlag
           -> FastString    -- Base for any new variables
           -> OutExpr
           -> SimplM (LetFloats, OutExpr)
-- Transforms a RHS into a better RHS by ANF'ing args
-- for expandable RHSs: constructors and PAPs
-- e.g        x = Just e
-- becomes    a = e
--            x = Just a
-- See Note [prepareRhs]
prepareRhs :: SimplMode
-> TopLevelFlag
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
prepareRhs SimplMode
mode TopLevelFlag
top_lvl FastString
occ Expr InBndr
rhs0
  = do  { (Bool
_is_exp, LetFloats
floats, Expr InBndr
rhs1) <- Int -> Expr InBndr -> SimplM (Bool, LetFloats, Expr InBndr)
go Int
0 Expr InBndr
rhs0
        ; (LetFloats, Expr InBndr) -> SimplM (LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
floats, Expr InBndr
rhs1) }
  where
    go :: Int -> OutExpr -> SimplM (Bool, LetFloats, OutExpr)
    go :: Int -> Expr InBndr -> SimplM (Bool, LetFloats, Expr InBndr)
go Int
n_val_args (Cast Expr InBndr
rhs Coercion
co)
        = do { (Bool
is_exp, LetFloats
floats, Expr InBndr
rhs') <- Int -> Expr InBndr -> SimplM (Bool, LetFloats, Expr InBndr)
go Int
n_val_args Expr InBndr
rhs
             ; (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
is_exp, LetFloats
floats, Expr InBndr -> Coercion -> Expr InBndr
forall b. Expr b -> Coercion -> Expr b
Cast Expr InBndr
rhs' Coercion
co) }
    go Int
n_val_args (App Expr InBndr
fun (Type OutType
ty))
        = do { (Bool
is_exp, LetFloats
floats, Expr InBndr
rhs') <- Int -> Expr InBndr -> SimplM (Bool, LetFloats, Expr InBndr)
go Int
n_val_args Expr InBndr
fun
             ; (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
is_exp, LetFloats
floats, Expr InBndr -> Expr InBndr -> Expr InBndr
forall b. Expr b -> Expr b -> Expr b
App Expr InBndr
rhs' (OutType -> Expr InBndr
forall b. OutType -> Expr b
Type OutType
ty)) }
    go Int
n_val_args (App Expr InBndr
fun Expr InBndr
arg)
        = do { (Bool
is_exp, LetFloats
floats1, Expr InBndr
fun') <- Int -> Expr InBndr -> SimplM (Bool, LetFloats, Expr InBndr)
go (Int
n_val_argsInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Expr InBndr
fun
             ; case Bool
is_exp of
                Bool
False -> (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
False, LetFloats
emptyLetFloats, Expr InBndr -> Expr InBndr -> Expr InBndr
forall b. Expr b -> Expr b -> Expr b
App Expr InBndr
fun Expr InBndr
arg)
                Bool
True  -> do { (LetFloats
floats2, Expr InBndr
arg') <- SimplMode
-> TopLevelFlag
-> Demand
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
makeTrivial SimplMode
mode TopLevelFlag
top_lvl Demand
topDmd FastString
occ Expr InBndr
arg
                            ; (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
True, LetFloats
floats1 LetFloats -> LetFloats -> LetFloats
`addLetFlts` LetFloats
floats2, Expr InBndr -> Expr InBndr -> Expr InBndr
forall b. Expr b -> Expr b -> Expr b
App Expr InBndr
fun' Expr InBndr
arg') } }
    go Int
n_val_args (Var InBndr
fun)
        = (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
is_exp, LetFloats
emptyLetFloats, InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
fun)
        where
          is_exp :: Bool
is_exp = CheapAppFun
isExpandableApp InBndr
fun Int
n_val_args   -- The fun a constructor or PAP
                        -- See Note [CONLIKE pragma] in GHC.Types.Basic
                        -- The definition of is_exp should match that in
                        -- 'GHC.Core.Opt.OccurAnal.occAnalApp'

    go Int
n_val_args (Tick Tickish InBndr
t Expr InBndr
rhs)
        -- We want to be able to float bindings past this
        -- tick. Non-scoping ticks don't care.
        | Tickish InBndr -> TickishScoping
forall id. Tickish id -> TickishScoping
tickishScoped Tickish InBndr
t TickishScoping -> TickishScoping -> Bool
forall a. Eq a => a -> a -> Bool
== TickishScoping
NoScope
        = do { (Bool
is_exp, LetFloats
floats, Expr InBndr
rhs') <- Int -> Expr InBndr -> SimplM (Bool, LetFloats, Expr InBndr)
go Int
n_val_args Expr InBndr
rhs
             ; (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
is_exp, LetFloats
floats, Tickish InBndr -> Expr InBndr -> Expr InBndr
forall b. Tickish InBndr -> Expr b -> Expr b
Tick Tickish InBndr
t Expr InBndr
rhs') }

        -- On the other hand, for scoping ticks we need to be able to
        -- copy them on the floats, which in turn is only allowed if
        -- we can obtain non-counting ticks.
        | (Bool -> Bool
not (Tickish InBndr -> Bool
forall id. Tickish id -> Bool
tickishCounts Tickish InBndr
t) Bool -> Bool -> Bool
|| Tickish InBndr -> Bool
forall id. Tickish id -> Bool
tickishCanSplit Tickish InBndr
t)
        = do { (Bool
is_exp, LetFloats
floats, Expr InBndr
rhs') <- Int -> Expr InBndr -> SimplM (Bool, LetFloats, Expr InBndr)
go Int
n_val_args Expr InBndr
rhs
             ; let tickIt :: (a, Expr InBndr) -> (a, Expr InBndr)
tickIt (a
id, Expr InBndr
expr) = (a
id, Tickish InBndr -> Expr InBndr -> Expr InBndr
mkTick (Tickish InBndr -> Tickish InBndr
forall id. Tickish id -> Tickish id
mkNoCount Tickish InBndr
t) Expr InBndr
expr)
                   floats' :: LetFloats
floats' = LetFloats
-> ((InBndr, Expr InBndr) -> (InBndr, Expr InBndr)) -> LetFloats
mapLetFloats LetFloats
floats (InBndr, Expr InBndr) -> (InBndr, Expr InBndr)
forall a. (a, Expr InBndr) -> (a, Expr InBndr)
tickIt
             ; (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
is_exp, LetFloats
floats', Tickish InBndr -> Expr InBndr -> Expr InBndr
forall b. Tickish InBndr -> Expr b -> Expr b
Tick Tickish InBndr
t Expr InBndr
rhs') }

    go Int
_ Expr InBndr
other
        = (Bool, LetFloats, Expr InBndr)
-> SimplM (Bool, LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool
False, LetFloats
emptyLetFloats, Expr InBndr
other)

makeTrivialArg :: SimplMode -> ArgSpec -> SimplM (LetFloats, ArgSpec)
makeTrivialArg :: SimplMode -> ArgSpec -> SimplM (LetFloats, ArgSpec)
makeTrivialArg SimplMode
mode arg :: ArgSpec
arg@(ValArg { as_arg :: ArgSpec -> Expr InBndr
as_arg = Expr InBndr
e, as_dmd :: ArgSpec -> Demand
as_dmd = Demand
dmd })
  = do { (LetFloats
floats, Expr InBndr
e') <- SimplMode
-> TopLevelFlag
-> Demand
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
makeTrivial SimplMode
mode TopLevelFlag
NotTopLevel Demand
dmd ([Char] -> FastString
fsLit [Char]
"arg") Expr InBndr
e
       ; (LetFloats, ArgSpec) -> SimplM (LetFloats, ArgSpec)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
floats, ArgSpec
arg { as_arg :: Expr InBndr
as_arg = Expr InBndr
e' }) }
makeTrivialArg SimplMode
_ ArgSpec
arg
  = (LetFloats, ArgSpec) -> SimplM (LetFloats, ArgSpec)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
emptyLetFloats, ArgSpec
arg)  -- CastBy, TyArg

makeTrivial :: SimplMode -> TopLevelFlag -> Demand
            -> FastString  -- ^ A "friendly name" to build the new binder from
            -> OutExpr     -- ^ This expression satisfies the let/app invariant
            -> SimplM (LetFloats, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
-- For the Demand argument, see Note [Keeping demand info in StrictArg Plan A]
makeTrivial :: SimplMode
-> TopLevelFlag
-> Demand
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
makeTrivial SimplMode
mode TopLevelFlag
top_lvl Demand
dmd FastString
occ_fs Expr InBndr
expr
  | Expr InBndr -> Bool
exprIsTrivial Expr InBndr
expr                          -- Already trivial
  Bool -> Bool -> Bool
|| Bool -> Bool
not (TopLevelFlag -> Expr InBndr -> OutType -> Bool
bindingOk TopLevelFlag
top_lvl Expr InBndr
expr OutType
expr_ty)       -- Cannot trivialise
                                                --   See Note [Cannot trivialise]
  = (LetFloats, Expr InBndr) -> SimplM (LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
emptyLetFloats, Expr InBndr
expr)

  | Cast Expr InBndr
expr' Coercion
co <- Expr InBndr
expr
  = do { (LetFloats
floats, Expr InBndr
triv_expr) <- SimplMode
-> TopLevelFlag
-> Demand
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
makeTrivial SimplMode
mode TopLevelFlag
top_lvl Demand
dmd FastString
occ_fs Expr InBndr
expr'
       ; (LetFloats, Expr InBndr) -> SimplM (LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
floats, Expr InBndr -> Coercion -> Expr InBndr
forall b. Expr b -> Coercion -> Expr b
Cast Expr InBndr
triv_expr Coercion
co) }

  | Bool
otherwise
  = do { (LetFloats
floats, InBndr
new_id) <- SimplMode
-> TopLevelFlag
-> FastString
-> IdInfo
-> Expr InBndr
-> OutType
-> SimplM (LetFloats, InBndr)
makeTrivialBinding SimplMode
mode TopLevelFlag
top_lvl FastString
occ_fs
                                                IdInfo
id_info Expr InBndr
expr OutType
expr_ty
       ; (LetFloats, Expr InBndr) -> SimplM (LetFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (LetFloats
floats, InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
new_id) }
  where
    id_info :: IdInfo
id_info = IdInfo
vanillaIdInfo IdInfo -> Demand -> IdInfo
`setDemandInfo` Demand
dmd
    expr_ty :: OutType
expr_ty = Expr InBndr -> OutType
exprType Expr InBndr
expr

makeTrivialBinding :: SimplMode -> TopLevelFlag
                   -> FastString  -- ^ a "friendly name" to build the new binder from
                   -> IdInfo
                   -> OutExpr     -- ^ This expression satisfies the let/app invariant
                   -> OutType     -- Type of the expression
                   -> SimplM (LetFloats, OutId)
makeTrivialBinding :: SimplMode
-> TopLevelFlag
-> FastString
-> IdInfo
-> Expr InBndr
-> OutType
-> SimplM (LetFloats, InBndr)
makeTrivialBinding SimplMode
mode TopLevelFlag
top_lvl FastString
occ_fs IdInfo
info Expr InBndr
expr OutType
expr_ty
  = do  { (LetFloats
floats, Expr InBndr
expr1) <- SimplMode
-> TopLevelFlag
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
prepareRhs SimplMode
mode TopLevelFlag
top_lvl FastString
occ_fs Expr InBndr
expr
        ; Unique
uniq <- SimplM Unique
forall (m :: * -> *). MonadUnique m => m Unique
getUniqueM
        ; let name :: Name
name = Unique -> FastString -> Name
mkSystemVarName Unique
uniq FastString
occ_fs
              var :: InBndr
var  = HasDebugCallStack => Name -> OutType -> OutType -> IdInfo -> InBndr
Name -> OutType -> OutType -> IdInfo -> InBndr
mkLocalIdWithInfo Name
name OutType
Many OutType
expr_ty IdInfo
info

        -- Now something very like completeBind,
        -- but without the postInlineUnconditionally part
        ; (ArityType
arity_type, Expr InBndr
expr2) <- SimplMode
-> InBndr -> Expr InBndr -> SimplM (ArityType, Expr InBndr)
tryEtaExpandRhs SimplMode
mode InBndr
var Expr InBndr
expr1
        ; Unfolding
unf <- DynFlags
-> TopLevelFlag
-> UnfoldingSource
-> InBndr
-> Expr InBndr
-> SimplM Unfolding
mkLetUnfolding (SimplMode -> DynFlags
sm_dflags SimplMode
mode) TopLevelFlag
top_lvl UnfoldingSource
InlineRhs InBndr
var Expr InBndr
expr2

        ; let final_id :: InBndr
final_id = InBndr -> ArityType -> Unfolding -> InBndr
addLetBndrInfo InBndr
var ArityType
arity_type Unfolding
unf
              bind :: InBind
bind     = InBndr -> Expr InBndr -> InBind
forall b. b -> Expr b -> Bind b
NonRec InBndr
final_id Expr InBndr
expr2

        ; (LetFloats, InBndr) -> SimplM (LetFloats, InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return ( LetFloats
floats LetFloats -> LetFloats -> LetFloats
`addLetFlts` InBind -> LetFloats
unitLetFloat InBind
bind, InBndr
final_id ) }

bindingOk :: TopLevelFlag -> CoreExpr -> Type -> Bool
-- True iff we can have a binding of this expression at this level
-- Precondition: the type is the type of the expression
bindingOk :: TopLevelFlag -> Expr InBndr -> OutType -> Bool
bindingOk TopLevelFlag
top_lvl Expr InBndr
expr OutType
expr_ty
  | TopLevelFlag -> Bool
isTopLevel TopLevelFlag
top_lvl = Expr InBndr -> OutType -> Bool
exprIsTopLevelBindable Expr InBndr
expr OutType
expr_ty
  | Bool
otherwise          = Bool
True

{- Note [Cannot trivialise]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
   f :: Int -> Addr#

   foo :: Bar
   foo = Bar (f 3)

Then we can't ANF-ise foo, even though we'd like to, because
we can't make a top-level binding for the Addr# (f 3). And if
so we don't want to turn it into
   foo = let x = f 3 in Bar x
because we'll just end up inlining x back, and that makes the
simplifier loop.  Better not to ANF-ise it at all.

Literal strings are an exception.

   foo = Ptr "blob"#

We want to turn this into:

   foo1 = "blob"#
   foo = Ptr foo1

See Note [Core top-level string literals] in GHC.Core.

************************************************************************
*                                                                      *
          Completing a lazy binding
*                                                                      *
************************************************************************

completeBind
  * deals only with Ids, not TyVars
  * takes an already-simplified binder and RHS
  * is used for both recursive and non-recursive bindings
  * is used for both top-level and non-top-level bindings

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
  - top-level bindings (when let-to-case is impossible)
  - many situations where the "rhs" is known to be a WHNF
                (so let-to-case is inappropriate).

Nor does it do the atomic-argument thing
-}

completeBind :: SimplEnv
             -> TopLevelFlag            -- Flag stuck into unfolding
             -> MaybeJoinCont           -- Required only for join point
             -> InId                    -- Old binder
             -> OutId -> OutExpr        -- New binder and RHS
             -> SimplM (SimplFloats, SimplEnv)
-- completeBind may choose to do its work
--      * by extending the substitution (e.g. let x = y in ...)
--      * or by adding to the floats in the envt
--
-- Binder /can/ be a JoinId
-- Precondition: rhs obeys the let/app invariant
completeBind :: SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplM (SimplFloats, SimplEnv)
completeBind SimplEnv
env TopLevelFlag
top_lvl MaybeJoinCont
mb_cont InBndr
old_bndr InBndr
new_bndr Expr InBndr
new_rhs
 | InBndr -> Bool
isCoVar InBndr
old_bndr
 = case Expr InBndr
new_rhs of
     Coercion Coercion
co -> (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplEnv -> InBndr -> Coercion -> SimplEnv
extendCvSubst SimplEnv
env InBndr
old_bndr Coercion
co)
     Expr InBndr
_           -> (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> InBind -> (SimplFloats, SimplEnv)
mkFloatBind SimplEnv
env (InBndr -> Expr InBndr -> InBind
forall b. b -> Expr b -> Bind b
NonRec InBndr
new_bndr Expr InBndr
new_rhs))

 | Bool
otherwise
 = ASSERT( isId new_bndr )
   do { let old_info :: IdInfo
old_info = HasDebugCallStack => InBndr -> IdInfo
InBndr -> IdInfo
idInfo InBndr
old_bndr
            old_unf :: Unfolding
old_unf  = IdInfo -> Unfolding
unfoldingInfo IdInfo
old_info
            occ_info :: OccInfo
occ_info = IdInfo -> OccInfo
occInfo IdInfo
old_info

         -- Do eta-expansion on the RHS of the binding
         -- See Note [Eta-expanding at let bindings] in GHC.Core.Opt.Simplify.Utils
      ; (ArityType
new_arity, Expr InBndr
final_rhs) <- SimplMode
-> InBndr -> Expr InBndr -> SimplM (ArityType, Expr InBndr)
tryEtaExpandRhs (SimplEnv -> SimplMode
getMode SimplEnv
env) InBndr
new_bndr Expr InBndr
new_rhs

        -- Simplify the unfolding
      ; Unfolding
new_unfolding <- SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> Expr InBndr
-> OutType
-> ArityType
-> Unfolding
-> SimplM Unfolding
simplLetUnfolding SimplEnv
env TopLevelFlag
top_lvl MaybeJoinCont
mb_cont InBndr
old_bndr
                          Expr InBndr
final_rhs (InBndr -> OutType
idType InBndr
new_bndr) ArityType
new_arity Unfolding
old_unf

      ; let final_bndr :: InBndr
final_bndr = InBndr -> ArityType -> Unfolding -> InBndr
addLetBndrInfo InBndr
new_bndr ArityType
new_arity Unfolding
new_unfolding
        -- See Note [In-scope set as a substitution]

      ; if SimplEnv
-> TopLevelFlag -> InBndr -> OccInfo -> Expr InBndr -> Bool
postInlineUnconditionally SimplEnv
env TopLevelFlag
top_lvl InBndr
final_bndr OccInfo
occ_info Expr InBndr
final_rhs

        then -- Inline and discard the binding
             do  { Tick -> SimplM ()
tick (InBndr -> Tick
PostInlineUnconditionally InBndr
old_bndr)
                 ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return ( SimplEnv -> SimplFloats
emptyFloats SimplEnv
env
                          , SimplEnv -> InBndr -> SimplSR -> SimplEnv
extendIdSubst SimplEnv
env InBndr
old_bndr (SimplSR -> SimplEnv) -> SimplSR -> SimplEnv
forall a b. (a -> b) -> a -> b
$
                            Expr InBndr -> Maybe Int -> SimplSR
DoneEx Expr InBndr
final_rhs (InBndr -> Maybe Int
isJoinId_maybe InBndr
new_bndr)) }
                -- Use the substitution to make quite, quite sure that the
                -- substitution will happen, since we are going to discard the binding

        else -- Keep the binding
             -- pprTrace "Binding" (ppr final_bndr <+> ppr new_unfolding) $
             (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> InBind -> (SimplFloats, SimplEnv)
mkFloatBind SimplEnv
env (InBndr -> Expr InBndr -> InBind
forall b. b -> Expr b -> Bind b
NonRec InBndr
final_bndr Expr InBndr
final_rhs)) }

addLetBndrInfo :: OutId -> ArityType -> Unfolding -> OutId
addLetBndrInfo :: InBndr -> ArityType -> Unfolding -> InBndr
addLetBndrInfo InBndr
new_bndr ArityType
new_arity_type Unfolding
new_unf
  = InBndr
new_bndr InBndr -> IdInfo -> InBndr
`setIdInfo` IdInfo
info5
  where
    new_arity :: Int
new_arity = ArityType -> Int
arityTypeArity ArityType
new_arity_type
    is_bot :: Bool
is_bot    = ArityType -> Bool
isBotArityType ArityType
new_arity_type

    info1 :: IdInfo
info1 = HasDebugCallStack => InBndr -> IdInfo
InBndr -> IdInfo
idInfo InBndr
new_bndr IdInfo -> Int -> IdInfo
`setArityInfo` Int
new_arity

    -- Unfolding info: Note [Setting the new unfolding]
    info2 :: IdInfo
info2 = IdInfo
info1 IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo` Unfolding
new_unf

    -- Demand info: Note [Setting the demand info]
    -- We also have to nuke demand info if for some reason
    -- eta-expansion *reduces* the arity of the binding to less
    -- than that of the strictness sig. This can happen: see Note [Arity decrease].
    info3 :: IdInfo
info3 | Unfolding -> Bool
isEvaldUnfolding Unfolding
new_unf
            Bool -> Bool -> Bool
|| (case IdInfo -> StrictSig
strictnessInfo IdInfo
info2 of
                  StrictSig DmdType
dmd_ty -> Int
new_arity Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< DmdType -> Int
dmdTypeDepth DmdType
dmd_ty)
          = IdInfo -> Maybe IdInfo
zapDemandInfo IdInfo
info2 Maybe IdInfo -> IdInfo -> IdInfo
forall a. Maybe a -> a -> a
`orElse` IdInfo
info2
          | Bool
otherwise
          = IdInfo
info2

    -- Bottoming bindings: see Note [Bottoming bindings]
    info4 :: IdInfo
info4 | Bool
is_bot    = IdInfo
info3 IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo` StrictSig
bot_sig
                              IdInfo -> CprSig -> IdInfo
`setCprInfo`        CprSig
bot_cpr
          | Bool
otherwise = IdInfo
info3

    bot_sig :: StrictSig
bot_sig = [Demand] -> Divergence -> StrictSig
mkClosedStrictSig (Int -> Demand -> [Demand]
forall a. Int -> a -> [a]
replicate Int
new_arity Demand
topDmd) Divergence
botDiv
    bot_cpr :: CprSig
bot_cpr = Int -> CprResult -> CprSig
mkCprSig Int
new_arity CprResult
botCpr

     -- Zap call arity info. We have used it by now (via
     -- `tryEtaExpandRhs`), and the simplifier can invalidate this
     -- information, leading to broken code later (e.g. #13479)
    info5 :: IdInfo
info5 = IdInfo -> IdInfo
zapCallArityInfo IdInfo
info4


{- Note [Arity decrease]
~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking the arity of a binding should not decrease.  But it *can*
legitimately happen because of RULES.  Eg
        f = g @Int
where g has arity 2, will have arity 2.  But if there's a rewrite rule
        g @Int --> h
where h has arity 1, then f's arity will decrease.  Here's a real-life example,
which is in the output of Specialise:

     Rec {
        $dm {Arity 2} = \d.\x. op d
        {-# RULES forall d. $dm Int d = $s$dm #-}

        dInt = MkD .... opInt ...
        opInt {Arity 1} = $dm dInt

        $s$dm {Arity 0} = \x. op dInt }

Here opInt has arity 1; but when we apply the rule its arity drops to 0.
That's why Specialise goes to a little trouble to pin the right arity
on specialised functions too.

Note [Bottoming bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
   let x = error "urk"
   in ...(case x of <alts>)...
or
   let f = \x. error (x ++ "urk")
   in ...(case f "foo" of <alts>)...

Then we'd like to drop the dead <alts> immediately.  So it's good to
propagate the info that x's RHS is bottom to x's IdInfo as rapidly as
possible.

We use tryEtaExpandRhs on every binding, and it turns out that the
arity computation it performs (via GHC.Core.Opt.Arity.findRhsArity) already
does a simple bottoming-expression analysis.  So all we need to do
is propagate that info to the binder's IdInfo.

This showed up in #12150; see comment:16.

Note [Setting the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the unfolding is a value, the demand info may
go pear-shaped, so we nuke it.  Example:
     let x = (a,b) in
     case x of (p,q) -> h p q x
Here x is certainly demanded. But after we've nuked
the case, we'll get just
     let x = (a,b) in h a b x
and now x is not demanded (I'm assuming h is lazy)
This really happens.  Similarly
     let f = \x -> e in ...f..f...
After inlining f at some of its call sites the original binding may
(for example) be no longer strictly demanded.
The solution here is a bit ad hoc...


************************************************************************
*                                                                      *
\subsection[Simplify-simplExpr]{The main function: simplExpr}
*                                                                      *
************************************************************************

The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

        let t = f x
        in fst t
==>
        let t = let a = e1
                    b = e2
                in (a,b)
        in fst t
==>
        let a = e1
            b = e2
            t = (a,b)
        in
        a       -- Can't inline a this round, cos it appears twice
==>
        e1

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

        let f = g d
        in \x -> ...f...
==>
        let f = let d1 = ..d.. in \y -> e
        in \x -> ...f...
==>
        let d1 = ..d..
        in \x -> ...(\y ->e)...

Only in this second round can the \y be applied, and it
might do the same again.
-}

simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
simplExpr :: SimplEnv -> Expr InBndr -> SimplM (Expr InBndr)
simplExpr SimplEnv
env (Type OutType
ty)
  = do { OutType
ty' <- SimplEnv -> OutType -> SimplM OutType
simplType SimplEnv
env OutType
ty  -- See Note [Avoiding space leaks in OutType]
       ; Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (OutType -> Expr InBndr
forall b. OutType -> Expr b
Type OutType
ty') }

simplExpr SimplEnv
env Expr InBndr
expr
  = SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
env Expr InBndr
expr (OutType -> SimplCont
mkBoringStop OutType
expr_out_ty)
  where
    expr_out_ty :: OutType
    expr_out_ty :: OutType
expr_out_ty = SimplEnv -> OutType -> OutType
substTy SimplEnv
env (Expr InBndr -> OutType
exprType Expr InBndr
expr)
    -- NB: Since 'expr' is term-valued, not (Type ty), this call
    --     to exprType will succeed.  exprType fails on (Type ty).

simplExprC :: SimplEnv
           -> InExpr     -- A term-valued expression, never (Type ty)
           -> SimplCont
           -> SimplM OutExpr
        -- Simplify an expression, given a continuation
simplExprC :: SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
env Expr InBndr
expr SimplCont
cont
  = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seLetFloats env) ) $
    do  { (SimplFloats
floats, Expr InBndr
expr') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
expr SimplCont
cont
        ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
          -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
          -- pprTrace "simplExprC ret4" (ppr (seLetFloats env')) $
          Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats SimplFloats
floats Expr InBndr
expr') }

--------------------------------------------------
simplExprF :: SimplEnv
           -> InExpr     -- A term-valued expression, never (Type ty)
           -> SimplCont
           -> SimplM (SimplFloats, OutExpr)

simplExprF :: SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
e SimplCont
cont
  = {- pprTrace "simplExprF" (vcat
      [ ppr e
      , text "cont =" <+> ppr cont
      , text "inscope =" <+> ppr (seInScope env)
      , text "tvsubst =" <+> ppr (seTvSubst env)
      , text "idsubst =" <+> ppr (seIdSubst env)
      , text "cvsubst =" <+> ppr (seCvSubst env)
      ]) $ -}
    SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF1 SimplEnv
env Expr InBndr
e SimplCont
cont

simplExprF1 :: SimplEnv -> InExpr -> SimplCont
            -> SimplM (SimplFloats, OutExpr)

simplExprF1 :: SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF1 SimplEnv
_ (Type OutType
ty) SimplCont
cont
  = [Char] -> SDoc -> SimplM (SimplFloats, Expr InBndr)
forall a. HasCallStack => [Char] -> SDoc -> a
pprPanic [Char]
"simplExprF: type" (OutType -> SDoc
forall a. Outputable a => a -> SDoc
ppr OutType
ty SDoc -> SDoc -> SDoc
<+> [Char] -> SDoc
text[Char]
"cont: " SDoc -> SDoc -> SDoc
<+> SimplCont -> SDoc
forall a. Outputable a => a -> SDoc
ppr SimplCont
cont)
    -- simplExprF does only with term-valued expressions
    -- The (Type ty) case is handled separately by simplExpr
    -- and by the other callers of simplExprF

simplExprF1 SimplEnv
env (Var InBndr
v)        SimplCont
cont = {-#SCC "simplIdF" #-} SimplEnv
-> InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplIdF SimplEnv
env InBndr
v SimplCont
cont
simplExprF1 SimplEnv
env (Lit Literal
lit)      SimplCont
cont = {-#SCC "rebuild" #-} SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (Literal -> Expr InBndr
forall b. Literal -> Expr b
Lit Literal
lit) SimplCont
cont
simplExprF1 SimplEnv
env (Tick Tickish InBndr
t Expr InBndr
expr)  SimplCont
cont = {-#SCC "simplTick" #-} SimplEnv
-> Tickish InBndr
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplTick SimplEnv
env Tickish InBndr
t Expr InBndr
expr SimplCont
cont
simplExprF1 SimplEnv
env (Cast Expr InBndr
body Coercion
co) SimplCont
cont = {-#SCC "simplCast" #-} SimplEnv
-> Expr InBndr
-> Coercion
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplCast SimplEnv
env Expr InBndr
body Coercion
co SimplCont
cont
simplExprF1 SimplEnv
env (Coercion Coercion
co)  SimplCont
cont = {-#SCC "simplCoercionF" #-} SimplEnv
-> Coercion -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplCoercionF SimplEnv
env Coercion
co SimplCont
cont

simplExprF1 SimplEnv
env (App Expr InBndr
fun Expr InBndr
arg) SimplCont
cont
  = {-#SCC "simplExprF1-App" #-} case Expr InBndr
arg of
      Type OutType
ty -> do { -- The argument type will (almost) certainly be used
                      -- in the output program, so just force it now.
                      -- See Note [Avoiding space leaks in OutType]
                      OutType
arg' <- SimplEnv -> OutType -> SimplM OutType
simplType SimplEnv
env OutType
ty

                      -- But use substTy, not simplType, to avoid forcing
                      -- the hole type; it will likely not be needed.
                      -- See Note [The hole type in ApplyToTy]
                    ; let hole' :: OutType
hole' = SimplEnv -> OutType -> OutType
substTy SimplEnv
env (Expr InBndr -> OutType
exprType Expr InBndr
fun)

                    ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
fun (SimplCont -> SimplM (SimplFloats, Expr InBndr))
-> SimplCont -> SimplM (SimplFloats, Expr InBndr)
forall a b. (a -> b) -> a -> b
$
                      ApplyToTy :: OutType -> OutType -> SimplCont -> SimplCont
ApplyToTy { sc_arg_ty :: OutType
sc_arg_ty  = OutType
arg'
                                , sc_hole_ty :: OutType
sc_hole_ty = OutType
hole'
                                , sc_cont :: SimplCont
sc_cont    = SimplCont
cont } }
      Expr InBndr
_       ->
          -- Crucially, sc_hole_ty is a /lazy/ binding.  It will
          -- be forced only if we need to run contHoleType.
          -- When these are forced, we might get quadratic behavior;
          -- this quadratic blowup could be avoided by drilling down
          -- to the function and getting its multiplicities all at once
          -- (instead of one-at-a-time). But in practice, we have not
          -- observed the quadratic behavior, so this extra entanglement
          -- seems not worthwhile.
        SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
fun (SimplCont -> SimplM (SimplFloats, Expr InBndr))
-> SimplCont -> SimplM (SimplFloats, Expr InBndr)
forall a b. (a -> b) -> a -> b
$
        ApplyToVal :: DupFlag
-> OutType -> Expr InBndr -> SimplEnv -> SimplCont -> SimplCont
ApplyToVal { sc_arg :: Expr InBndr
sc_arg = Expr InBndr
arg, sc_env :: SimplEnv
sc_env = SimplEnv
env
                   , sc_hole_ty :: OutType
sc_hole_ty = SimplEnv -> OutType -> OutType
substTy SimplEnv
env (Expr InBndr -> OutType
exprType Expr InBndr
fun)
                   , sc_dup :: DupFlag
sc_dup = DupFlag
NoDup, sc_cont :: SimplCont
sc_cont = SimplCont
cont }

simplExprF1 SimplEnv
env expr :: Expr InBndr
expr@(Lam {}) SimplCont
cont
  = {-#SCC "simplExprF1-Lam" #-}
    SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
env [InBndr]
zapped_bndrs Expr InBndr
body SimplCont
cont
        -- The main issue here is under-saturated lambdas
        --   (\x1. \x2. e) arg1
        -- Here x1 might have "occurs-once" occ-info, because occ-info
        -- is computed assuming that a group of lambdas is applied
        -- all at once.  If there are too few args, we must zap the
        -- occ-info, UNLESS the remaining binders are one-shot
  where
    ([InBndr]
bndrs, Expr InBndr
body) = Expr InBndr -> ([InBndr], Expr InBndr)
forall b. Expr b -> ([b], Expr b)
collectBinders Expr InBndr
expr
    zapped_bndrs :: [InBndr]
zapped_bndrs | Bool
need_to_zap = (InBndr -> InBndr) -> [InBndr] -> [InBndr]
forall a b. (a -> b) -> [a] -> [b]
map InBndr -> InBndr
zap [InBndr]
bndrs
                 | Bool
otherwise   = [InBndr]
bndrs

    need_to_zap :: Bool
need_to_zap = (InBndr -> Bool) -> [InBndr] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any InBndr -> Bool
zappable_bndr (Int -> [InBndr] -> [InBndr]
forall a. Int -> [a] -> [a]
drop Int
n_args [InBndr]
bndrs)
    n_args :: Int
n_args = SimplCont -> Int
countArgs SimplCont
cont
        -- NB: countArgs counts all the args (incl type args)
        -- and likewise drop counts all binders (incl type lambdas)

    zappable_bndr :: InBndr -> Bool
zappable_bndr InBndr
b = InBndr -> Bool
isId InBndr
b Bool -> Bool -> Bool
&& Bool -> Bool
not (InBndr -> Bool
isOneShotBndr InBndr
b)
    zap :: InBndr -> InBndr
zap InBndr
b | InBndr -> Bool
isTyVar InBndr
b = InBndr
b
          | Bool
otherwise = InBndr -> InBndr
zapLamIdInfo InBndr
b

simplExprF1 SimplEnv
env (Case Expr InBndr
scrut InBndr
bndr OutType
_ [Alt InBndr]
alts) SimplCont
cont
  = {-#SCC "simplExprF1-Case" #-}
    SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
scrut (Select :: DupFlag
-> InBndr -> [Alt InBndr] -> SimplEnv -> SimplCont -> SimplCont
Select { sc_dup :: DupFlag
sc_dup = DupFlag
NoDup, sc_bndr :: InBndr
sc_bndr = InBndr
bndr
                                 , sc_alts :: [Alt InBndr]
sc_alts = [Alt InBndr]
alts
                                 , sc_env :: SimplEnv
sc_env = SimplEnv
env, sc_cont :: SimplCont
sc_cont = SimplCont
cont })

simplExprF1 SimplEnv
env (Let (Rec [(InBndr, Expr InBndr)]
pairs) Expr InBndr
body) SimplCont
cont
  | Just [(InBndr, Expr InBndr)]
pairs' <- [(InBndr, Expr InBndr)] -> Maybe [(InBndr, Expr InBndr)]
joinPointBindings_maybe [(InBndr, Expr InBndr)]
pairs
  = {-#SCC "simplRecJoinPoin" #-} SimplEnv
-> [(InBndr, Expr InBndr)]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplRecJoinPoint SimplEnv
env [(InBndr, Expr InBndr)]
pairs' Expr InBndr
body SimplCont
cont

  | Bool
otherwise
  = {-#SCC "simplRecE" #-} SimplEnv
-> [(InBndr, Expr InBndr)]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplRecE SimplEnv
env [(InBndr, Expr InBndr)]
pairs Expr InBndr
body SimplCont
cont

simplExprF1 SimplEnv
env (Let (NonRec InBndr
bndr Expr InBndr
rhs) Expr InBndr
body) SimplCont
cont
  | Type OutType
ty <- Expr InBndr
rhs    -- First deal with type lets (let a = Type ty in e)
  = {-#SCC "simplExprF1-NonRecLet-Type" #-}
    ASSERT( isTyVar bndr )
    do { OutType
ty' <- SimplEnv -> OutType -> SimplM OutType
simplType SimplEnv
env OutType
ty
       ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF (SimplEnv -> InBndr -> OutType -> SimplEnv
extendTvSubst SimplEnv
env InBndr
bndr OutType
ty') Expr InBndr
body SimplCont
cont }

  | Just (InBndr
bndr', Expr InBndr
rhs') <- InBndr -> Expr InBndr -> Maybe (InBndr, Expr InBndr)
joinPointBinding_maybe InBndr
bndr Expr InBndr
rhs
  = {-#SCC "simplNonRecJoinPoint" #-} SimplEnv
-> InBndr
-> Expr InBndr
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplNonRecJoinPoint SimplEnv
env InBndr
bndr' Expr InBndr
rhs' Expr InBndr
body SimplCont
cont

  | Bool
otherwise
  = {-#SCC "simplNonRecE" #-} SimplEnv
-> InBndr
-> (Expr InBndr, SimplEnv)
-> ([InBndr], Expr InBndr)
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplNonRecE SimplEnv
env InBndr
bndr (Expr InBndr
rhs, SimplEnv
env) ([], Expr InBndr
body) SimplCont
cont

{- Note [Avoiding space leaks in OutType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since the simplifier is run for multiple iterations, we need to ensure
that any thunks in the output of one simplifier iteration are forced
by the evaluation of the next simplifier iteration. Otherwise we may
retain multiple copies of the Core program and leak a terrible amount
of memory (as in #13426).

The simplifier is naturally strict in the entire "Expr part" of the
input Core program, because any expression may contain binders, which
we must find in order to extend the SimplEnv accordingly. But types
do not contain binders and so it is tempting to write things like

    simplExpr env (Type ty) = return (Type (substTy env ty))   -- Bad!

This is Bad because the result includes a thunk (substTy env ty) which
retains a reference to the whole simplifier environment; and the next
simplifier iteration will not force this thunk either, because the
line above is not strict in ty.

So instead our strategy is for the simplifier to fully evaluate
OutTypes when it emits them into the output Core program, for example

    simplExpr env (Type ty) = do { ty' <- simplType env ty     -- Good
                                 ; return (Type ty') }

where the only difference from above is that simplType calls seqType
on the result of substTy.

However, SimplCont can also contain OutTypes and it's not necessarily
a good idea to force types on the way in to SimplCont, because they
may end up not being used and forcing them could be a lot of wasted
work. T5631 is a good example of this.

- For ApplyToTy's sc_arg_ty, we force the type on the way in because
  the type will almost certainly appear as a type argument in the
  output program.

- For the hole types in Stop and ApplyToTy, we force the type when we
  emit it into the output program, after obtaining it from
  contResultType. (The hole type in ApplyToTy is only directly used
  to form the result type in a new Stop continuation.)
-}

---------------------------------
-- Simplify a join point, adding the context.
-- Context goes *inside* the lambdas. IOW, if the join point has arity n, we do:
--   \x1 .. xn -> e => \x1 .. xn -> E[e]
-- Note that we need the arity of the join point, since e may be a lambda
-- (though this is unlikely). See Note [Join points and case-of-case].
simplJoinRhs :: SimplEnv -> InId -> InExpr -> SimplCont
             -> SimplM OutExpr
simplJoinRhs :: SimplEnv
-> InBndr -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplJoinRhs SimplEnv
env InBndr
bndr Expr InBndr
expr SimplCont
cont
  | Just Int
arity <- InBndr -> Maybe Int
isJoinId_maybe InBndr
bndr
  =  do { let ([InBndr]
join_bndrs, Expr InBndr
join_body) = Int -> Expr InBndr -> ([InBndr], Expr InBndr)
forall b. Int -> Expr b -> ([b], Expr b)
collectNBinders Int
arity Expr InBndr
expr
              mult :: OutType
mult = SimplCont -> OutType
contHoleScaling SimplCont
cont
        ; (SimplEnv
env', [InBndr]
join_bndrs') <- SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
simplLamBndrs SimplEnv
env ((InBndr -> InBndr) -> [InBndr] -> [InBndr]
forall a b. (a -> b) -> [a] -> [b]
map (OutType -> InBndr -> InBndr
scaleVarBy OutType
mult) [InBndr]
join_bndrs)
        ; Expr InBndr
join_body' <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
env' Expr InBndr
join_body SimplCont
cont
        ; Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Expr InBndr -> SimplM (Expr InBndr))
-> Expr InBndr -> SimplM (Expr InBndr)
forall a b. (a -> b) -> a -> b
$ [InBndr] -> Expr InBndr -> Expr InBndr
forall b. [b] -> Expr b -> Expr b
mkLams [InBndr]
join_bndrs' Expr InBndr
join_body' }

  | Bool
otherwise
  = [Char] -> SDoc -> SimplM (Expr InBndr)
forall a. HasCallStack => [Char] -> SDoc -> a
pprPanic [Char]
"simplJoinRhs" (InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
bndr)

---------------------------------
simplType :: SimplEnv -> InType -> SimplM OutType
        -- Kept monadic just so we can do the seqType
        -- See Note [Avoiding space leaks in OutType]
simplType :: SimplEnv -> OutType -> SimplM OutType
simplType SimplEnv
env OutType
ty
  = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
    OutType -> ()
seqType OutType
new_ty () -> SimplM OutType -> SimplM OutType
`seq` OutType -> SimplM OutType
forall (m :: * -> *) a. Monad m => a -> m a
return OutType
new_ty
  where
    new_ty :: OutType
new_ty = SimplEnv -> OutType -> OutType
substTy SimplEnv
env OutType
ty

---------------------------------
simplCoercionF :: SimplEnv -> InCoercion -> SimplCont
               -> SimplM (SimplFloats, OutExpr)
simplCoercionF :: SimplEnv
-> Coercion -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplCoercionF SimplEnv
env Coercion
co SimplCont
cont
  = do { Coercion
co' <- SimplEnv -> Coercion -> SimplM Coercion
simplCoercion SimplEnv
env Coercion
co
       ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (Coercion -> Expr InBndr
forall b. Coercion -> Expr b
Coercion Coercion
co') SimplCont
cont }

simplCoercion :: SimplEnv -> InCoercion -> SimplM OutCoercion
simplCoercion :: SimplEnv -> Coercion -> SimplM Coercion
simplCoercion SimplEnv
env Coercion
co
  = do { DynFlags
dflags <- SimplM DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; let opt_co :: Coercion
opt_co = DynFlags -> TCvSubst -> Coercion -> Coercion
optCoercion DynFlags
dflags (SimplEnv -> TCvSubst
getTCvSubst SimplEnv
env) Coercion
co
       ; Coercion -> ()
seqCo Coercion
opt_co () -> SimplM Coercion -> SimplM Coercion
`seq` Coercion -> SimplM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
opt_co }

-----------------------------------
-- | Push a TickIt context outwards past applications and cases, as
-- long as this is a non-scoping tick, to let case and application
-- optimisations apply.

simplTick :: SimplEnv -> Tickish Id -> InExpr -> SimplCont
          -> SimplM (SimplFloats, OutExpr)
simplTick :: SimplEnv
-> Tickish InBndr
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplTick SimplEnv
env Tickish InBndr
tickish Expr InBndr
expr SimplCont
cont
  -- A scoped tick turns into a continuation, so that we can spot
  -- (scc t (\x . e)) in simplLam and eliminate the scc.  If we didn't do
  -- it this way, then it would take two passes of the simplifier to
  -- reduce ((scc t (\x . e)) e').
  -- NB, don't do this with counting ticks, because if the expr is
  -- bottom, then rebuildCall will discard the continuation.

-- XXX: we cannot do this, because the simplifier assumes that
-- the context can be pushed into a case with a single branch. e.g.
--    scc<f>  case expensive of p -> e
-- becomes
--    case expensive of p -> scc<f> e
--
-- So I'm disabling this for now.  It just means we will do more
-- simplifier iterations that necessary in some cases.

--  | tickishScoped tickish && not (tickishCounts tickish)
--  = simplExprF env expr (TickIt tickish cont)

  -- For unscoped or soft-scoped ticks, we are allowed to float in new
  -- cost, so we simply push the continuation inside the tick.  This
  -- has the effect of moving the tick to the outside of a case or
  -- application context, allowing the normal case and application
  -- optimisations to fire.
  | Tickish InBndr
tickish Tickish InBndr -> TickishScoping -> Bool
forall id. Tickish id -> TickishScoping -> Bool
`tickishScopesLike` TickishScoping
SoftScope
  = do { (SimplFloats
floats, Expr InBndr
expr') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
expr SimplCont
cont
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, Tickish InBndr -> Expr InBndr -> Expr InBndr
mkTick Tickish InBndr
tickish Expr InBndr
expr')
       }

  -- Push tick inside if the context looks like this will allow us to
  -- do a case-of-case - see Note [case-of-scc-of-case]
  | Select {} <- SimplCont
cont, Just Expr InBndr
expr' <- Maybe (Expr InBndr)
push_tick_inside
  = SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
expr' SimplCont
cont

  -- We don't want to move the tick, but we might still want to allow
  -- floats to pass through with appropriate wrapping (or not, see
  -- wrap_floats below)
  --- | not (tickishCounts tickish) || tickishCanSplit tickish
  -- = wrap_floats

  | Bool
otherwise
  = SimplM (SimplFloats, Expr InBndr)
no_floating_past_tick

 where

  -- Try to push tick inside a case, see Note [case-of-scc-of-case].
  push_tick_inside :: Maybe (Expr InBndr)
push_tick_inside =
    case Expr InBndr
expr0 of
      Case Expr InBndr
scrut InBndr
bndr OutType
ty [Alt InBndr]
alts
             -> Expr InBndr -> Maybe (Expr InBndr)
forall a. a -> Maybe a
Just (Expr InBndr -> Maybe (Expr InBndr))
-> Expr InBndr -> Maybe (Expr InBndr)
forall a b. (a -> b) -> a -> b
$ Expr InBndr -> InBndr -> OutType -> [Alt InBndr] -> Expr InBndr
forall b. Expr b -> b -> OutType -> [Alt b] -> Expr b
Case (Expr InBndr -> Expr InBndr
tickScrut Expr InBndr
scrut) InBndr
bndr OutType
ty ((Alt InBndr -> Alt InBndr) -> [Alt InBndr] -> [Alt InBndr]
forall a b. (a -> b) -> [a] -> [b]
map Alt InBndr -> Alt InBndr
forall a b. (a, b, Expr InBndr) -> (a, b, Expr InBndr)
tickAlt [Alt InBndr]
alts)
      Expr InBndr
_other -> Maybe (Expr InBndr)
forall a. Maybe a
Nothing
   where ([Tickish InBndr]
ticks, Expr InBndr
expr0) = (Tickish InBndr -> Bool)
-> Expr InBndr -> ([Tickish InBndr], Expr InBndr)
forall b.
(Tickish InBndr -> Bool) -> Expr b -> ([Tickish InBndr], Expr b)
stripTicksTop Tickish InBndr -> Bool
forall id. Tickish id -> Bool
movable (Tickish InBndr -> Expr InBndr -> Expr InBndr
forall b. Tickish InBndr -> Expr b -> Expr b
Tick Tickish InBndr
tickish Expr InBndr
expr)
         movable :: Tickish id -> Bool
movable Tickish id
t      = Bool -> Bool
not (Tickish id -> Bool
forall id. Tickish id -> Bool
tickishCounts Tickish id
t) Bool -> Bool -> Bool
||
                          Tickish id
t Tickish id -> TickishScoping -> Bool
forall id. Tickish id -> TickishScoping -> Bool
`tickishScopesLike` TickishScoping
NoScope Bool -> Bool -> Bool
||
                          Tickish id -> Bool
forall id. Tickish id -> Bool
tickishCanSplit Tickish id
t
         tickScrut :: Expr InBndr -> Expr InBndr
tickScrut Expr InBndr
e    = (Tickish InBndr -> Expr InBndr -> Expr InBndr)
-> Expr InBndr -> [Tickish InBndr] -> Expr InBndr
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Tickish InBndr -> Expr InBndr -> Expr InBndr
mkTick Expr InBndr
e [Tickish InBndr]
ticks
         -- Alternatives get annotated with all ticks that scope in some way,
         -- but we don't want to count entries.
         tickAlt :: (a, b, Expr InBndr) -> (a, b, Expr InBndr)
tickAlt (a
c,b
bs,Expr InBndr
e) = (a
c,b
bs, (Tickish InBndr -> Expr InBndr -> Expr InBndr)
-> Expr InBndr -> [Tickish InBndr] -> Expr InBndr
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Tickish InBndr -> Expr InBndr -> Expr InBndr
mkTick Expr InBndr
e [Tickish InBndr]
ts_scope)
         ts_scope :: [Tickish InBndr]
ts_scope         = (Tickish InBndr -> Tickish InBndr)
-> [Tickish InBndr] -> [Tickish InBndr]
forall a b. (a -> b) -> [a] -> [b]
map Tickish InBndr -> Tickish InBndr
forall id. Tickish id -> Tickish id
mkNoCount ([Tickish InBndr] -> [Tickish InBndr])
-> [Tickish InBndr] -> [Tickish InBndr]
forall a b. (a -> b) -> a -> b
$
                            (Tickish InBndr -> Bool) -> [Tickish InBndr] -> [Tickish InBndr]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool)
-> (Tickish InBndr -> Bool) -> Tickish InBndr -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Tickish InBndr -> TickishScoping -> Bool
forall id. Tickish id -> TickishScoping -> Bool
`tickishScopesLike` TickishScoping
NoScope)) [Tickish InBndr]
ticks

  no_floating_past_tick :: SimplM (SimplFloats, Expr InBndr)
no_floating_past_tick =
    do { let (SimplCont
inc,SimplCont
outc) = SimplCont -> (SimplCont, SimplCont)
splitCont SimplCont
cont
       ; (SimplFloats
floats, Expr InBndr
expr1) <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
expr SimplCont
inc
       ; let expr2 :: Expr InBndr
expr2    = SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats SimplFloats
floats Expr InBndr
expr1
             tickish' :: Tickish InBndr
tickish' = SimplEnv -> Tickish InBndr -> Tickish InBndr
simplTickish SimplEnv
env Tickish InBndr
tickish
       ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (Tickish InBndr -> Expr InBndr -> Expr InBndr
mkTick Tickish InBndr
tickish' Expr InBndr
expr2) SimplCont
outc
       }

-- Alternative version that wraps outgoing floats with the tick.  This
-- results in ticks being duplicated, as we don't make any attempt to
-- eliminate the tick if we re-inline the binding (because the tick
-- semantics allows unrestricted inlining of HNFs), so I'm not doing
-- this any more.  FloatOut will catch any real opportunities for
-- floating.
--
--  wrap_floats =
--    do { let (inc,outc) = splitCont cont
--       ; (env', expr') <- simplExprF (zapFloats env) expr inc
--       ; let tickish' = simplTickish env tickish
--       ; let wrap_float (b,rhs) = (zapIdStrictness (setIdArity b 0),
--                                   mkTick (mkNoCount tickish') rhs)
--              -- when wrapping a float with mkTick, we better zap the Id's
--              -- strictness info and arity, because it might be wrong now.
--       ; let env'' = addFloats env (mapFloats env' wrap_float)
--       ; rebuild env'' expr' (TickIt tickish' outc)
--       }


  simplTickish :: SimplEnv -> Tickish InBndr -> Tickish InBndr
simplTickish SimplEnv
env Tickish InBndr
tickish
    | Breakpoint Int
n [InBndr]
ids <- Tickish InBndr
tickish
          = Int -> [InBndr] -> Tickish InBndr
forall id. Int -> [id] -> Tickish id
Breakpoint Int
n ((InBndr -> InBndr) -> [InBndr] -> [InBndr]
forall a b. (a -> b) -> [a] -> [b]
map (SimplSR -> InBndr
getDoneId (SimplSR -> InBndr) -> (InBndr -> SimplSR) -> InBndr -> InBndr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SimplEnv -> InBndr -> SimplSR
substId SimplEnv
env) [InBndr]
ids)
    | Bool
otherwise = Tickish InBndr
tickish

  -- Push type application and coercion inside a tick
  splitCont :: SimplCont -> (SimplCont, SimplCont)
  splitCont :: SimplCont -> (SimplCont, SimplCont)
splitCont cont :: SimplCont
cont@(ApplyToTy { sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
tail }) = (SimplCont
cont { sc_cont :: SimplCont
sc_cont = SimplCont
inc }, SimplCont
outc)
    where (SimplCont
inc,SimplCont
outc) = SimplCont -> (SimplCont, SimplCont)
splitCont SimplCont
tail
  splitCont (CastIt Coercion
co SimplCont
c) = (Coercion -> SimplCont -> SimplCont
CastIt Coercion
co SimplCont
inc, SimplCont
outc)
    where (SimplCont
inc,SimplCont
outc) = SimplCont -> (SimplCont, SimplCont)
splitCont SimplCont
c
  splitCont SimplCont
other = (OutType -> SimplCont
mkBoringStop (SimplCont -> OutType
contHoleType SimplCont
other), SimplCont
other)

  getDoneId :: SimplSR -> InBndr
getDoneId (DoneId InBndr
id)  = InBndr
id
  getDoneId (DoneEx Expr InBndr
e Maybe Int
_) = HasDebugCallStack => Expr InBndr -> InBndr
Expr InBndr -> InBndr
getIdFromTrivialExpr Expr InBndr
e -- Note [substTickish] in GHC.Core.Subst
  getDoneId SimplSR
other = [Char] -> SDoc -> InBndr
forall a. HasCallStack => [Char] -> SDoc -> a
pprPanic [Char]
"getDoneId" (SimplSR -> SDoc
forall a. Outputable a => a -> SDoc
ppr SimplSR
other)

-- Note [case-of-scc-of-case]
-- It's pretty important to be able to transform case-of-case when
-- there's an SCC in the way.  For example, the following comes up
-- in nofib/real/compress/Encode.hs:
--
--        case scctick<code_string.r1>
--             case $wcode_string_r13s wild_XC w1_s137 w2_s138 l_aje
--             of _ { (# ww1_s13f, ww2_s13g, ww3_s13h #) ->
--             (ww1_s13f, ww2_s13g, ww3_s13h)
--             }
--        of _ { (ww_s12Y, ww1_s12Z, ww2_s130) ->
--        tick<code_string.f1>
--        (ww_s12Y,
--         ww1_s12Z,
--         PTTrees.PT
--           @ GHC.Types.Char @ GHC.Types.Int wild2_Xj ww2_s130 r_ajf)
--        }
--
-- We really want this case-of-case to fire, because then the 3-tuple
-- will go away (indeed, the CPR optimisation is relying on this
-- happening).  But the scctick is in the way - we need to push it
-- inside to expose the case-of-case.  So we perform this
-- transformation on the inner case:
--
--   scctick c (case e of { p1 -> e1; ...; pn -> en })
--    ==>
--   case (scctick c e) of { p1 -> scc c e1; ...; pn -> scc c en }
--
-- So we've moved a constant amount of work out of the scc to expose
-- the case.  We only do this when the continuation is interesting: in
-- for now, it has to be another Case (maybe generalise this later).

{-
************************************************************************
*                                                                      *
\subsection{The main rebuilder}
*                                                                      *
************************************************************************
-}

rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplFloats, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant;
-- only the in-scope set matters
rebuild :: SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env Expr InBndr
expr SimplCont
cont
  = case SimplCont
cont of
      Stop {}          -> (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, Expr InBndr
expr)
      TickIt Tickish InBndr
t SimplCont
cont    -> SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (Tickish InBndr -> Expr InBndr -> Expr InBndr
mkTick Tickish InBndr
t Expr InBndr
expr) SimplCont
cont
      CastIt Coercion
co SimplCont
cont   -> SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (Expr InBndr -> Coercion -> Expr InBndr
mkCast Expr InBndr
expr Coercion
co) SimplCont
cont
                       -- NB: mkCast implements the (Coercion co |> g) optimisation

      Select { sc_bndr :: SimplCont -> InBndr
sc_bndr = InBndr
bndr, sc_alts :: SimplCont -> [Alt InBndr]
sc_alts = [Alt InBndr]
alts, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
se, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont }
        -> SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
rebuildCase (SimplEnv
se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env) Expr InBndr
expr InBndr
bndr [Alt InBndr]
alts SimplCont
cont

      StrictArg { sc_fun :: SimplCont -> ArgInfo
sc_fun = ArgInfo
fun, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont, sc_fun_ty :: SimplCont -> OutType
sc_fun_ty = OutType
fun_ty }
        -> SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env (ArgInfo -> Expr InBndr -> OutType -> ArgInfo
addValArgTo ArgInfo
fun Expr InBndr
expr OutType
fun_ty ) SimplCont
cont
      StrictBind { sc_bndr :: SimplCont -> InBndr
sc_bndr = InBndr
b, sc_bndrs :: SimplCont -> [InBndr]
sc_bndrs = [InBndr]
bs, sc_body :: SimplCont -> Expr InBndr
sc_body = Expr InBndr
body
                 , sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
se, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont }
        -> do { (SimplFloats
floats1, SimplEnv
env') <- SimplEnv -> InBndr -> Expr InBndr -> SimplM (SimplFloats, SimplEnv)
simplNonRecX (SimplEnv
se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env) InBndr
b Expr InBndr
expr
                                  -- expr satisfies let/app since it started life
                                  -- in a call to simplNonRecE
              ; (SimplFloats
floats2, Expr InBndr
expr') <- SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
env' [InBndr]
bs Expr InBndr
body SimplCont
cont
              ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
expr') }

      ApplyToTy  { sc_arg_ty :: SimplCont -> OutType
sc_arg_ty = OutType
ty, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont}
        -> SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (Expr InBndr -> Expr InBndr -> Expr InBndr
forall b. Expr b -> Expr b -> Expr b
App Expr InBndr
expr (OutType -> Expr InBndr
forall b. OutType -> Expr b
Type OutType
ty)) SimplCont
cont

      ApplyToVal { sc_arg :: SimplCont -> Expr InBndr
sc_arg = Expr InBndr
arg, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
se, sc_dup :: SimplCont -> DupFlag
sc_dup = DupFlag
dup_flag, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont}
        -- See Note [Avoid redundant simplification]
        -> do { (DupFlag
_, SimplEnv
_, Expr InBndr
arg') <- SimplEnv
-> DupFlag
-> SimplEnv
-> Expr InBndr
-> SimplM (DupFlag, SimplEnv, Expr InBndr)
simplArg SimplEnv
env DupFlag
dup_flag SimplEnv
se Expr InBndr
arg
              ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (Expr InBndr -> Expr InBndr -> Expr InBndr
forall b. Expr b -> Expr b -> Expr b
App Expr InBndr
expr Expr InBndr
arg') SimplCont
cont }

{-
************************************************************************
*                                                                      *
\subsection{Lambdas}
*                                                                      *
************************************************************************
-}

{- Note [Optimising reflexivity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important (for compiler performance) to get rid of reflexivity as soon
as it appears.  See #11735, #14737, and #15019.

In particular, we want to behave well on

 *  e |> co1 |> co2
    where the two happen to cancel out entirely. That is quite common;
    e.g. a newtype wrapping and unwrapping cancel.


 * (f |> co) @t1 @t2 ... @tn x1 .. xm
   Here we will use pushCoTyArg and pushCoValArg successively, which
   build up NthCo stacks.  Silly to do that if co is reflexive.

However, we don't want to call isReflexiveCo too much, because it uses
type equality which is expensive on big types (#14737 comment:7).

A good compromise (determined experimentally) seems to be to call
isReflexiveCo
 * when composing casts, and
 * at the end

In investigating this I saw missed opportunities for on-the-fly
coercion shrinkage. See #15090.
-}


simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
          -> SimplM (SimplFloats, OutExpr)
simplCast :: SimplEnv
-> Expr InBndr
-> Coercion
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplCast SimplEnv
env Expr InBndr
body Coercion
co0 SimplCont
cont0
  = do  { Coercion
co1   <- {-#SCC "simplCast-simplCoercion" #-} SimplEnv -> Coercion -> SimplM Coercion
simplCoercion SimplEnv
env Coercion
co0
        ; SimplCont
cont1 <- {-#SCC "simplCast-addCoerce" #-}
                   if Coercion -> Bool
isReflCo Coercion
co1
                   then SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return SimplCont
cont0  -- See Note [Optimising reflexivity]
                   else Coercion -> SimplCont -> SimplM SimplCont
addCoerce Coercion
co1 SimplCont
cont0
        ; {-#SCC "simplCast-simplExprF" #-} SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
body SimplCont
cont1 }
  where
        -- If the first parameter is MRefl, then simplifying revealed a
        -- reflexive coercion. Omit.
        addCoerceM :: MOutCoercion -> SimplCont -> SimplM SimplCont
        addCoerceM :: MOutCoercion -> SimplCont -> SimplM SimplCont
addCoerceM MOutCoercion
MRefl   SimplCont
cont = SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return SimplCont
cont
        addCoerceM (MCo Coercion
co) SimplCont
cont = Coercion -> SimplCont -> SimplM SimplCont
addCoerce Coercion
co SimplCont
cont

        addCoerce :: OutCoercion -> SimplCont -> SimplM SimplCont
        addCoerce :: Coercion -> SimplCont -> SimplM SimplCont
addCoerce Coercion
co1 (CastIt Coercion
co2 SimplCont
cont)  -- See Note [Optimising reflexivity]
          | Coercion -> Bool
isReflexiveCo Coercion
co' = SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return SimplCont
cont
          | Bool
otherwise         = Coercion -> SimplCont -> SimplM SimplCont
addCoerce Coercion
co' SimplCont
cont
          where
            co' :: Coercion
co' = Coercion -> Coercion -> Coercion
mkTransCo Coercion
co1 Coercion
co2

        addCoerce Coercion
co (ApplyToTy { sc_arg_ty :: SimplCont -> OutType
sc_arg_ty = OutType
arg_ty, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
tail })
          | Just (OutType
arg_ty', MOutCoercion
m_co') <- Coercion -> OutType -> Maybe (OutType, MOutCoercion)
pushCoTyArg Coercion
co OutType
arg_ty
          = {-#SCC "addCoerce-pushCoTyArg" #-}
            do { SimplCont
tail' <- MOutCoercion -> SimplCont -> SimplM SimplCont
addCoerceM MOutCoercion
m_co' SimplCont
tail
               ; SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return (ApplyToTy :: OutType -> OutType -> SimplCont -> SimplCont
ApplyToTy { sc_arg_ty :: OutType
sc_arg_ty  = OutType
arg_ty'
                                   , sc_cont :: SimplCont
sc_cont    = SimplCont
tail'
                                   , sc_hole_ty :: OutType
sc_hole_ty = Coercion -> OutType
coercionLKind Coercion
co }) }
                                        -- NB!  As the cast goes past, the
                                        -- type of the hole changes (#16312)

        -- (f |> co) e   ===>   (f (e |> co1)) |> co2
        -- where   co :: (s1->s2) ~ (t1~t2)
        --         co1 :: t1 ~ s1
        --         co2 :: s2 ~ t2
        addCoerce Coercion
co cont :: SimplCont
cont@(ApplyToVal { sc_arg :: SimplCont -> Expr InBndr
sc_arg = Expr InBndr
arg, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
arg_se
                                      , sc_dup :: SimplCont -> DupFlag
sc_dup = DupFlag
dup, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
tail })
          | Just (Coercion
co1, MOutCoercion
m_co2) <- Coercion -> Maybe (Coercion, MOutCoercion)
pushCoValArg Coercion
co
          , let new_ty :: OutType
new_ty = Coercion -> OutType
coercionRKind Coercion
co1
          , Bool -> Bool
not (OutType -> Bool
isTypeLevPoly OutType
new_ty)  -- Without this check, we get a lev-poly arg
                                        -- See Note [Levity polymorphism invariants] in GHC.Core
                                        -- test: typecheck/should_run/EtaExpandLevPoly
          = {-#SCC "addCoerce-pushCoValArg" #-}
            do { SimplCont
tail' <- MOutCoercion -> SimplCont -> SimplM SimplCont
addCoerceM MOutCoercion
m_co2 SimplCont
tail
               ; if Coercion -> Bool
isReflCo Coercion
co1
                 then SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplCont
cont { sc_cont :: SimplCont
sc_cont = SimplCont
tail'
                                   , sc_hole_ty :: OutType
sc_hole_ty = Coercion -> OutType
coercionLKind Coercion
co })
                      -- Avoid simplifying if possible;
                      -- See Note [Avoiding exponential behaviour]
                 else do
               { (DupFlag
dup', SimplEnv
arg_se', Expr InBndr
arg') <- SimplEnv
-> DupFlag
-> SimplEnv
-> Expr InBndr
-> SimplM (DupFlag, SimplEnv, Expr InBndr)
simplArg SimplEnv
env DupFlag
dup SimplEnv
arg_se Expr InBndr
arg
                    -- When we build the ApplyTo we can't mix the OutCoercion
                    -- 'co' with the InExpr 'arg', so we simplify
                    -- to make it all consistent.  It's a bit messy.
                    -- But it isn't a common case.
                    -- Example of use: #995
               ; SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return (ApplyToVal :: DupFlag
-> OutType -> Expr InBndr -> SimplEnv -> SimplCont -> SimplCont
ApplyToVal { sc_arg :: Expr InBndr
sc_arg  = Expr InBndr -> Coercion -> Expr InBndr
mkCast Expr InBndr
arg' Coercion
co1
                                    , sc_env :: SimplEnv
sc_env  = SimplEnv
arg_se'
                                    , sc_dup :: DupFlag
sc_dup  = DupFlag
dup'
                                    , sc_cont :: SimplCont
sc_cont = SimplCont
tail'
                                    , sc_hole_ty :: OutType
sc_hole_ty = Coercion -> OutType
coercionLKind Coercion
co }) } }

        addCoerce Coercion
co SimplCont
cont
          | Coercion -> Bool
isReflexiveCo Coercion
co = SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return SimplCont
cont  -- Having this at the end makes a huge
                                            -- difference in T12227, for some reason
                                            -- See Note [Optimising reflexivity]
          | Bool
otherwise        = SimplCont -> SimplM SimplCont
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> SimplCont -> SimplCont
CastIt Coercion
co SimplCont
cont)

simplArg :: SimplEnv -> DupFlag -> StaticEnv -> CoreExpr
         -> SimplM (DupFlag, StaticEnv, OutExpr)
simplArg :: SimplEnv
-> DupFlag
-> SimplEnv
-> Expr InBndr
-> SimplM (DupFlag, SimplEnv, Expr InBndr)
simplArg SimplEnv
env DupFlag
dup_flag SimplEnv
arg_env Expr InBndr
arg
  | DupFlag -> Bool
isSimplified DupFlag
dup_flag
  = (DupFlag, SimplEnv, Expr InBndr)
-> SimplM (DupFlag, SimplEnv, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (DupFlag
dup_flag, SimplEnv
arg_env, Expr InBndr
arg)
  | Bool
otherwise
  = do { Expr InBndr
arg' <- SimplEnv -> Expr InBndr -> SimplM (Expr InBndr)
simplExpr (SimplEnv
arg_env SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env) Expr InBndr
arg
       ; (DupFlag, SimplEnv, Expr InBndr)
-> SimplM (DupFlag, SimplEnv, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (DupFlag
Simplified, SimplEnv -> SimplEnv
zapSubstEnv SimplEnv
arg_env, Expr InBndr
arg') }

{-
************************************************************************
*                                                                      *
\subsection{Lambdas}
*                                                                      *
************************************************************************
-}

simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont
         -> SimplM (SimplFloats, OutExpr)

simplLam :: SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
env [] Expr InBndr
body SimplCont
cont
  = SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
body SimplCont
cont

simplLam SimplEnv
env (InBndr
bndr:[InBndr]
bndrs) Expr InBndr
body (ApplyToTy { sc_arg_ty :: SimplCont -> OutType
sc_arg_ty = OutType
arg_ty, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont })
  = do { Tick -> SimplM ()
tick (InBndr -> Tick
BetaReduction InBndr
bndr)
       ; SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam (SimplEnv -> InBndr -> OutType -> SimplEnv
extendTvSubst SimplEnv
env InBndr
bndr OutType
arg_ty) [InBndr]
bndrs Expr InBndr
body SimplCont
cont }

simplLam SimplEnv
env (InBndr
bndr:[InBndr]
bndrs) Expr InBndr
body (ApplyToVal { sc_arg :: SimplCont -> Expr InBndr
sc_arg = Expr InBndr
arg, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
arg_se
                                           , sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont, sc_dup :: SimplCont -> DupFlag
sc_dup = DupFlag
dup })
  | DupFlag -> Bool
isSimplified DupFlag
dup  -- Don't re-simplify if we've simplified it once
                      -- See Note [Avoiding exponential behaviour]
  = do  { Tick -> SimplM ()
tick (InBndr -> Tick
BetaReduction InBndr
bndr)
        ; (SimplFloats
floats1, SimplEnv
env') <- SimplEnv -> InBndr -> Expr InBndr -> SimplM (SimplFloats, SimplEnv)
simplNonRecX SimplEnv
env InBndr
zapped_bndr Expr InBndr
arg
        ; (SimplFloats
floats2, Expr InBndr
expr') <- SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
env' [InBndr]
bndrs Expr InBndr
body SimplCont
cont
        ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
expr') }

  | Bool
otherwise
  = do  { Tick -> SimplM ()
tick (InBndr -> Tick
BetaReduction InBndr
bndr)
        ; SimplEnv
-> InBndr
-> (Expr InBndr, SimplEnv)
-> ([InBndr], Expr InBndr)
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplNonRecE SimplEnv
env InBndr
zapped_bndr (Expr InBndr
arg, SimplEnv
arg_se) ([InBndr]
bndrs, Expr InBndr
body) SimplCont
cont }
  where
    zapped_bndr :: InBndr
zapped_bndr  -- See Note [Zap unfolding when beta-reducing]
      | InBndr -> Bool
isId InBndr
bndr = InBndr -> InBndr
zapStableUnfolding InBndr
bndr
      | Bool
otherwise = InBndr
bndr

      -- Discard a non-counting tick on a lambda.  This may change the
      -- cost attribution slightly (moving the allocation of the
      -- lambda elsewhere), but we don't care: optimisation changes
      -- cost attribution all the time.
simplLam SimplEnv
env [InBndr]
bndrs Expr InBndr
body (TickIt Tickish InBndr
tickish SimplCont
cont)
  | Bool -> Bool
not (Tickish InBndr -> Bool
forall id. Tickish id -> Bool
tickishCounts Tickish InBndr
tickish)
  = SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
env [InBndr]
bndrs Expr InBndr
body SimplCont
cont

        -- Not enough args, so there are real lambdas left to put in the result
simplLam SimplEnv
env [InBndr]
bndrs Expr InBndr
body SimplCont
cont
  = do  { (SimplEnv
env', [InBndr]
bndrs') <- SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
simplLamBndrs SimplEnv
env [InBndr]
bndrs
        ; Expr InBndr
body' <- SimplEnv -> Expr InBndr -> SimplM (Expr InBndr)
simplExpr SimplEnv
env' Expr InBndr
body
        ; Expr InBndr
new_lam <- SimplEnv
-> [InBndr] -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
mkLam SimplEnv
env [InBndr]
bndrs' Expr InBndr
body' SimplCont
cont
        ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env' Expr InBndr
new_lam SimplCont
cont }

-------------
simplLamBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
-- Used for lambda binders.  These sometimes have unfoldings added by
-- the worker/wrapper pass that must be preserved, because they can't
-- be reconstructed from context.  For example:
--      f x = case x of (a,b) -> fw a b x
--      fw a b x{=(a,b)} = ...
-- The "{=(a,b)}" is an unfolding we can't reconstruct otherwise.
simplLamBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplLamBndr SimplEnv
env InBndr
bndr
  | InBndr -> Bool
isId InBndr
bndr Bool -> Bool -> Bool
&& Unfolding -> Bool
hasCoreUnfolding Unfolding
old_unf   -- Special case
  = do { (SimplEnv
env1, InBndr
bndr1) <- SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplBinder SimplEnv
env InBndr
bndr
       ; Unfolding
unf'          <- SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> OutType
-> ArityType
-> Unfolding
-> SimplM Unfolding
simplStableUnfolding SimplEnv
env1 TopLevelFlag
NotTopLevel MaybeJoinCont
forall a. Maybe a
Nothing InBndr
bndr
                                      (InBndr -> OutType
idType InBndr
bndr1) (InBndr -> ArityType
idArityType InBndr
bndr1) Unfolding
old_unf
       ; let bndr2 :: InBndr
bndr2 = InBndr
bndr1 InBndr -> Unfolding -> InBndr
`setIdUnfolding` Unfolding
unf'
       ; (SimplEnv, InBndr) -> SimplM (SimplEnv, InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> InBndr -> SimplEnv
modifyInScope SimplEnv
env1 InBndr
bndr2, InBndr
bndr2) }

  | Bool
otherwise
  = SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplBinder SimplEnv
env InBndr
bndr                -- Normal case
  where
    old_unf :: Unfolding
old_unf = InBndr -> Unfolding
idUnfolding InBndr
bndr

simplLamBndrs :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr])
simplLamBndrs :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
simplLamBndrs SimplEnv
env [InBndr]
bndrs = (SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr))
-> SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
forall (m :: * -> *) acc x y.
Monad m =>
(acc -> x -> m (acc, y)) -> acc -> [x] -> m (acc, [y])
mapAccumLM SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplLamBndr SimplEnv
env [InBndr]
bndrs

------------------
simplNonRecE :: SimplEnv
             -> InId                    -- The binder, always an Id
                                        -- Never a join point
             -> (InExpr, SimplEnv)      -- Rhs of binding (or arg of lambda)
             -> ([InBndr], InExpr)      -- Body of the let/lambda
                                        --      \xs.e
             -> SimplCont
             -> SimplM (SimplFloats, OutExpr)

-- simplNonRecE is used for
--  * non-top-level non-recursive non-join-point lets in expressions
--  * beta reduction
--
-- simplNonRec env b (rhs, rhs_se) (bs, body) k
--   = let env in
--     cont< let b = rhs_se(rhs) in \bs.body >
--
-- It deals with strict bindings, via the StrictBind continuation,
-- which may abort the whole process
--
-- Precondition: rhs satisfies the let/app invariant
--               Note [Core let/app invariant] in GHC.Core
--
-- The "body" of the binding comes as a pair of ([InId],InExpr)
-- representing a lambda; so we recurse back to simplLam
-- Why?  Because of the binder-occ-info-zapping done before
--       the call to simplLam in simplExprF (Lam ...)

simplNonRecE :: SimplEnv
-> InBndr
-> (Expr InBndr, SimplEnv)
-> ([InBndr], Expr InBndr)
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplNonRecE SimplEnv
env InBndr
bndr (Expr InBndr
rhs, SimplEnv
rhs_se) ([InBndr]
bndrs, Expr InBndr
body) SimplCont
cont
  | ASSERT( isId bndr && not (isJoinId bndr) ) True
  , Just SimplEnv
env' <- SimplEnv
-> TopLevelFlag
-> InBndr
-> Expr InBndr
-> SimplEnv
-> Maybe SimplEnv
preInlineUnconditionally SimplEnv
env TopLevelFlag
NotTopLevel InBndr
bndr Expr InBndr
rhs SimplEnv
rhs_se
  = do { Tick -> SimplM ()
tick (InBndr -> Tick
PreInlineUnconditionally InBndr
bndr)
       ; -- pprTrace "preInlineUncond" (ppr bndr <+> ppr rhs) $
         SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
env' [InBndr]
bndrs Expr InBndr
body SimplCont
cont }

  -- Deal with strict bindings
  | InBndr -> Bool
isStrictId InBndr
bndr          -- Includes coercions, and unlifted types
  , SimplMode -> Bool
sm_case_case (SimplEnv -> SimplMode
getMode SimplEnv
env)
  = SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF (SimplEnv
rhs_se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env) Expr InBndr
rhs
               (StrictBind :: DupFlag
-> InBndr
-> [InBndr]
-> Expr InBndr
-> SimplEnv
-> SimplCont
-> SimplCont
StrictBind { sc_bndr :: InBndr
sc_bndr = InBndr
bndr, sc_bndrs :: [InBndr]
sc_bndrs = [InBndr]
bndrs, sc_body :: Expr InBndr
sc_body = Expr InBndr
body
                           , sc_env :: SimplEnv
sc_env = SimplEnv
env, sc_cont :: SimplCont
sc_cont = SimplCont
cont, sc_dup :: DupFlag
sc_dup = DupFlag
NoDup })

  -- Deal with lazy bindings
  | Bool
otherwise
  = ASSERT( not (isTyVar bndr) )
    do { (SimplEnv
env1, InBndr
bndr1) <- SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplNonRecBndr SimplEnv
env InBndr
bndr
       ; (SimplEnv
env2, InBndr
bndr2) <- SimplEnv
-> InBndr -> InBndr -> MaybeJoinCont -> SimplM (SimplEnv, InBndr)
addBndrRules SimplEnv
env1 InBndr
bndr InBndr
bndr1 MaybeJoinCont
forall a. Maybe a
Nothing
       ; (SimplFloats
floats1, SimplEnv
env3) <- SimplEnv
-> TopLevelFlag
-> RecFlag
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplEnv
-> SimplM (SimplFloats, SimplEnv)
simplLazyBind SimplEnv
env2 TopLevelFlag
NotTopLevel RecFlag
NonRecursive InBndr
bndr InBndr
bndr2 Expr InBndr
rhs SimplEnv
rhs_se
       ; (SimplFloats
floats2, Expr InBndr
expr') <- SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
env3 [InBndr]
bndrs Expr InBndr
body SimplCont
cont
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
expr') }

------------------
simplRecE :: SimplEnv
          -> [(InId, InExpr)]
          -> InExpr
          -> SimplCont
          -> SimplM (SimplFloats, OutExpr)

-- simplRecE is used for
--  * non-top-level recursive lets in expressions
simplRecE :: SimplEnv
-> [(InBndr, Expr InBndr)]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplRecE SimplEnv
env [(InBndr, Expr InBndr)]
pairs Expr InBndr
body SimplCont
cont
  = do  { let bndrs :: [InBndr]
bndrs = ((InBndr, Expr InBndr) -> InBndr)
-> [(InBndr, Expr InBndr)] -> [InBndr]
forall a b. (a -> b) -> [a] -> [b]
map (InBndr, Expr InBndr) -> InBndr
forall a b. (a, b) -> a
fst [(InBndr, Expr InBndr)]
pairs
        ; MASSERT(all (not . isJoinId) bndrs)
        ; SimplEnv
env1 <- SimplEnv -> [InBndr] -> SimplM SimplEnv
simplRecBndrs SimplEnv
env [InBndr]
bndrs
                -- NB: bndrs' don't have unfoldings or rules
                -- We add them as we go down
        ; (SimplFloats
floats1, SimplEnv
env2) <- SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> [(InBndr, Expr InBndr)]
-> SimplM (SimplFloats, SimplEnv)
simplRecBind SimplEnv
env1 TopLevelFlag
NotTopLevel MaybeJoinCont
forall a. Maybe a
Nothing [(InBndr, Expr InBndr)]
pairs
        ; (SimplFloats
floats2, Expr InBndr
expr') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env2 Expr InBndr
body SimplCont
cont
        ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
expr') }

{- Note [Avoiding exponential behaviour]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One way in which we can get exponential behaviour is if we simplify a
big expression, and the re-simplify it -- and then this happens in a
deeply-nested way.  So we must be jolly careful about re-simplifying
an expression.  That is why completeNonRecX does not try
preInlineUnconditionally.

Example:
  f BIG, where f has a RULE
Then
 * We simplify BIG before trying the rule; but the rule does not fire
 * We inline f = \x. x True
 * So if we did preInlineUnconditionally we'd re-simplify (BIG True)

However, if BIG has /not/ already been simplified, we'd /like/ to
simplify BIG True; maybe good things happen.  That is why

* simplLam has
    - a case for (isSimplified dup), which goes via simplNonRecX, and
    - a case for the un-simplified case, which goes via simplNonRecE

* We go to some efforts to avoid unnecessarily simplifying ApplyToVal,
  in at least two places
    - In simplCast/addCoerce, where we check for isReflCo
    - In rebuildCall we avoid simplifying arguments before we have to
      (see Note [Trying rewrite rules])


Note [Zap unfolding when beta-reducing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lambda-bound variables can have stable unfoldings, such as
   $j = \x. \b{Unf=Just x}. e
See Note [Case binders and join points] below; the unfolding for lets
us optimise e better.  However when we beta-reduce it we want to
revert to using the actual value, otherwise we can end up in the
stupid situation of
          let x = blah in
          let b{Unf=Just x} = y
          in ...b...
Here it'd be far better to drop the unfolding and use the actual RHS.

************************************************************************
*                                                                      *
                     Join points
*                                                                      *
********************************************************************* -}

{- Note [Rules and unfolding for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

   simplExpr (join j x = rhs                         ) cont
             (      {- RULE j (p:ps) = blah -}       )
             (      {- StableUnfolding j = blah -}   )
             (in blah                                )

Then we will push 'cont' into the rhs of 'j'.  But we should *also* push
'cont' into the RHS of
  * Any RULEs for j, e.g. generated by SpecConstr
  * Any stable unfolding for j, e.g. the result of an INLINE pragma

Simplifying rules and stable-unfoldings happens a bit after
simplifying the right-hand side, so we remember whether or not it
is a join point, and what 'cont' is, in a value of type MaybeJoinCont

#13900 was caused by forgetting to push 'cont' into the RHS
of a SpecConstr-generated RULE for a join point.
-}

type MaybeJoinCont = Maybe SimplCont
  -- Nothing => Not a join point
  -- Just k  => This is a join binding with continuation k
  -- See Note [Rules and unfolding for join points]

simplNonRecJoinPoint :: SimplEnv -> InId -> InExpr
                     -> InExpr -> SimplCont
                     -> SimplM (SimplFloats, OutExpr)
simplNonRecJoinPoint :: SimplEnv
-> InBndr
-> Expr InBndr
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplNonRecJoinPoint SimplEnv
env InBndr
bndr Expr InBndr
rhs Expr InBndr
body SimplCont
cont
  | ASSERT( isJoinId bndr ) True
  , Just SimplEnv
env' <- SimplEnv
-> TopLevelFlag
-> InBndr
-> Expr InBndr
-> SimplEnv
-> Maybe SimplEnv
preInlineUnconditionally SimplEnv
env TopLevelFlag
NotTopLevel InBndr
bndr Expr InBndr
rhs SimplEnv
env
  = do { Tick -> SimplM ()
tick (InBndr -> Tick
PreInlineUnconditionally InBndr
bndr)
       ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env' Expr InBndr
body SimplCont
cont }

   | Bool
otherwise
   = SimplEnv
-> SimplCont
-> (SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr))
-> SimplM (SimplFloats, Expr InBndr)
wrapJoinCont SimplEnv
env SimplCont
cont ((SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr))
 -> SimplM (SimplFloats, Expr InBndr))
-> (SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr))
-> SimplM (SimplFloats, Expr InBndr)
forall a b. (a -> b) -> a -> b
$ \ SimplEnv
env SimplCont
cont ->
     do { -- We push join_cont into the join RHS and the body;
          -- and wrap wrap_cont around the whole thing
        ; let mult :: OutType
mult   = SimplCont -> OutType
contHoleScaling SimplCont
cont
              res_ty :: OutType
res_ty = SimplCont -> OutType
contResultType SimplCont
cont
        ; (SimplEnv
env1, InBndr
bndr1)    <- SimplEnv
-> InBndr -> OutType -> OutType -> SimplM (SimplEnv, InBndr)
simplNonRecJoinBndr SimplEnv
env InBndr
bndr OutType
mult OutType
res_ty
        ; (SimplEnv
env2, InBndr
bndr2)    <- SimplEnv
-> InBndr -> InBndr -> MaybeJoinCont -> SimplM (SimplEnv, InBndr)
addBndrRules SimplEnv
env1 InBndr
bndr InBndr
bndr1 (SimplCont -> MaybeJoinCont
forall a. a -> Maybe a
Just SimplCont
cont)
        ; (SimplFloats
floats1, SimplEnv
env3)  <- SimplEnv
-> SimplCont
-> InBndr
-> InBndr
-> Expr InBndr
-> SimplEnv
-> SimplM (SimplFloats, SimplEnv)
simplJoinBind SimplEnv
env2 SimplCont
cont InBndr
bndr InBndr
bndr2 Expr InBndr
rhs SimplEnv
env
        ; (SimplFloats
floats2, Expr InBndr
body') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env3 Expr InBndr
body SimplCont
cont
        ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
body') }


------------------
simplRecJoinPoint :: SimplEnv -> [(InId, InExpr)]
                  -> InExpr -> SimplCont
                  -> SimplM (SimplFloats, OutExpr)
simplRecJoinPoint :: SimplEnv
-> [(InBndr, Expr InBndr)]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplRecJoinPoint SimplEnv
env [(InBndr, Expr InBndr)]
pairs Expr InBndr
body SimplCont
cont
  = SimplEnv
-> SimplCont
-> (SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr))
-> SimplM (SimplFloats, Expr InBndr)
wrapJoinCont SimplEnv
env SimplCont
cont ((SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr))
 -> SimplM (SimplFloats, Expr InBndr))
-> (SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr))
-> SimplM (SimplFloats, Expr InBndr)
forall a b. (a -> b) -> a -> b
$ \ SimplEnv
env SimplCont
cont ->
    do { let bndrs :: [InBndr]
bndrs  = ((InBndr, Expr InBndr) -> InBndr)
-> [(InBndr, Expr InBndr)] -> [InBndr]
forall a b. (a -> b) -> [a] -> [b]
map (InBndr, Expr InBndr) -> InBndr
forall a b. (a, b) -> a
fst [(InBndr, Expr InBndr)]
pairs
             mult :: OutType
mult   = SimplCont -> OutType
contHoleScaling SimplCont
cont
             res_ty :: OutType
res_ty = SimplCont -> OutType
contResultType SimplCont
cont
       ; SimplEnv
env1 <- SimplEnv -> [InBndr] -> OutType -> OutType -> SimplM SimplEnv
simplRecJoinBndrs SimplEnv
env [InBndr]
bndrs OutType
mult OutType
res_ty
               -- NB: bndrs' don't have unfoldings or rules
               -- We add them as we go down
       ; (SimplFloats
floats1, SimplEnv
env2)  <- SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> [(InBndr, Expr InBndr)]
-> SimplM (SimplFloats, SimplEnv)
simplRecBind SimplEnv
env1 TopLevelFlag
NotTopLevel (SimplCont -> MaybeJoinCont
forall a. a -> Maybe a
Just SimplCont
cont) [(InBndr, Expr InBndr)]
pairs
       ; (SimplFloats
floats2, Expr InBndr
body') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env2 Expr InBndr
body SimplCont
cont
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
body') }

--------------------
wrapJoinCont :: SimplEnv -> SimplCont
             -> (SimplEnv -> SimplCont -> SimplM (SimplFloats, OutExpr))
             -> SimplM (SimplFloats, OutExpr)
-- Deal with making the continuation duplicable if necessary,
-- and with the no-case-of-case situation.
wrapJoinCont :: SimplEnv
-> SimplCont
-> (SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr))
-> SimplM (SimplFloats, Expr InBndr)
wrapJoinCont SimplEnv
env SimplCont
cont SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
thing_inside
  | SimplCont -> Bool
contIsStop SimplCont
cont        -- Common case; no need for fancy footwork
  = SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
thing_inside SimplEnv
env SimplCont
cont

  | Bool -> Bool
not (SimplMode -> Bool
sm_case_case (SimplEnv -> SimplMode
getMode SimplEnv
env))
    -- See Note [Join points with -fno-case-of-case]
  = do { (SimplFloats
floats1, Expr InBndr
expr1) <- SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
thing_inside SimplEnv
env (OutType -> SimplCont
mkBoringStop (SimplCont -> OutType
contHoleType SimplCont
cont))
       ; let (SimplFloats
floats2, Expr InBndr
expr2) = SimplFloats -> Expr InBndr -> (SimplFloats, Expr InBndr)
wrapJoinFloatsX SimplFloats
floats1 Expr InBndr
expr1
       ; (SimplFloats
floats3, Expr InBndr
expr3) <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild (SimplEnv
env SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
floats2) Expr InBndr
expr2 SimplCont
cont
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats2 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats3, Expr InBndr
expr3) }

  | Bool
otherwise
    -- Normal case; see Note [Join points and case-of-case]
  = do { (SimplFloats
floats1, SimplCont
cont')  <- SimplEnv -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableCont SimplEnv
env SimplCont
cont
       ; (SimplFloats
floats2, Expr InBndr
result) <- SimplEnv -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
thing_inside (SimplEnv
env SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
floats1) SimplCont
cont'
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
result) }


--------------------
trimJoinCont :: Id -> Maybe JoinArity -> SimplCont -> SimplCont
-- Drop outer context from join point invocation (jump)
-- See Note [Join points and case-of-case]

trimJoinCont :: InBndr -> Maybe Int -> SimplCont -> SimplCont
trimJoinCont InBndr
_ Maybe Int
Nothing SimplCont
cont
  = SimplCont
cont -- Not a jump
trimJoinCont InBndr
var (Just Int
arity) SimplCont
cont
  = Int -> SimplCont -> SimplCont
forall a. (Eq a, Num a) => a -> SimplCont -> SimplCont
trim Int
arity SimplCont
cont
  where
    trim :: a -> SimplCont -> SimplCont
trim a
0 cont :: SimplCont
cont@(Stop {})
      = SimplCont
cont
    trim a
0 SimplCont
cont
      = OutType -> SimplCont
mkBoringStop (SimplCont -> OutType
contResultType SimplCont
cont)
    trim a
n cont :: SimplCont
cont@(ApplyToVal { sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
k })
      = SimplCont
cont { sc_cont :: SimplCont
sc_cont = a -> SimplCont -> SimplCont
trim (a
na -> a -> a
forall a. Num a => a -> a -> a
-a
1) SimplCont
k }
    trim a
n cont :: SimplCont
cont@(ApplyToTy { sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
k })
      = SimplCont
cont { sc_cont :: SimplCont
sc_cont = a -> SimplCont -> SimplCont
trim (a
na -> a -> a
forall a. Num a => a -> a -> a
-a
1) SimplCont
k } -- join arity counts types!
    trim a
_ SimplCont
cont
      = [Char] -> SDoc -> SimplCont
forall a. HasCallStack => [Char] -> SDoc -> a
pprPanic [Char]
"completeCall" (SDoc -> SimplCont) -> SDoc -> SimplCont
forall a b. (a -> b) -> a -> b
$ InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
var SDoc -> SDoc -> SDoc
$$ SimplCont -> SDoc
forall a. Outputable a => a -> SDoc
ppr SimplCont
cont


{- Note [Join points and case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we perform the case-of-case transform (or otherwise push continuations
inward), we want to treat join points specially. Since they're always
tail-called and we want to maintain this invariant, we can do this (for any
evaluation context E):

  E[join j = e
    in case ... of
         A -> jump j 1
         B -> jump j 2
         C -> f 3]

    -->

  join j = E[e]
  in case ... of
       A -> jump j 1
       B -> jump j 2
       C -> E[f 3]

As is evident from the example, there are two components to this behavior:

  1. When entering the RHS of a join point, copy the context inside.
  2. When a join point is invoked, discard the outer context.

We need to be very careful here to remain consistent---neither part is
optional!

We need do make the continuation E duplicable (since we are duplicating it)
with mkDupableCont.


Note [Join points with -fno-case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Supose case-of-case is switched off, and we are simplifying

    case (join j x = <j-rhs> in
          case y of
             A -> j 1
             B -> j 2
             C -> e) of <outer-alts>

Usually, we'd push the outer continuation (case . of <outer-alts>) into
both the RHS and the body of the join point j.  But since we aren't doing
case-of-case we may then end up with this totally bogus result

    join x = case <j-rhs> of <outer-alts> in
    case (case y of
             A -> j 1
             B -> j 2
             C -> e) of <outer-alts>

This would be OK in the language of the paper, but not in GHC: j is no longer
a join point.  We can only do the "push continuation into the RHS of the
join point j" if we also push the continuation right down to the /jumps/ to
j, so that it can evaporate there.  If we are doing case-of-case, we'll get to

    join x = case <j-rhs> of <outer-alts> in
    case y of
      A -> j 1
      B -> j 2
      C -> case e of <outer-alts>

which is great.

Bottom line: if case-of-case is off, we must stop pushing the continuation
inwards altogether at any join point.  Instead simplify the (join ... in ...)
with a Stop continuation, and wrap the original continuation around the
outside.  Surprisingly tricky!


************************************************************************
*                                                                      *
                     Variables
*                                                                      *
************************************************************************
-}

simplVar :: SimplEnv -> InVar -> SimplM OutExpr
-- Look up an InVar in the environment
simplVar :: SimplEnv -> InBndr -> SimplM (Expr InBndr)
simplVar SimplEnv
env InBndr
var
  | InBndr -> Bool
isTyVar InBndr
var = Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (OutType -> Expr InBndr
forall b. OutType -> Expr b
Type (SimplEnv -> InBndr -> OutType
substTyVar SimplEnv
env InBndr
var))
  | InBndr -> Bool
isCoVar InBndr
var = Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> Expr InBndr
forall b. Coercion -> Expr b
Coercion (SimplEnv -> InBndr -> Coercion
substCoVar SimplEnv
env InBndr
var))
  | Bool
otherwise
  = case SimplEnv -> InBndr -> SimplSR
substId SimplEnv
env InBndr
var of
        ContEx TvSubstEnv
tvs CvSubstEnv
cvs SimplIdSubst
ids Expr InBndr
e -> SimplEnv -> Expr InBndr -> SimplM (Expr InBndr)
simplExpr (SimplEnv -> TvSubstEnv -> CvSubstEnv -> SimplIdSubst -> SimplEnv
setSubstEnv SimplEnv
env TvSubstEnv
tvs CvSubstEnv
cvs SimplIdSubst
ids) Expr InBndr
e
        DoneId InBndr
var1          -> Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
var1)
        DoneEx Expr InBndr
e Maybe Int
_           -> Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return Expr InBndr
e

simplIdF :: SimplEnv -> InId -> SimplCont -> SimplM (SimplFloats, OutExpr)
simplIdF :: SimplEnv
-> InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplIdF SimplEnv
env InBndr
var SimplCont
cont
  = case SimplEnv -> InBndr -> SimplSR
substId SimplEnv
env InBndr
var of
      ContEx TvSubstEnv
tvs CvSubstEnv
cvs SimplIdSubst
ids Expr InBndr
e -> SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF (SimplEnv -> TvSubstEnv -> CvSubstEnv -> SimplIdSubst -> SimplEnv
setSubstEnv SimplEnv
env TvSubstEnv
tvs CvSubstEnv
cvs SimplIdSubst
ids) Expr InBndr
e SimplCont
cont
                                -- Don't trim; haven't already simplified e,
                                -- so the cont is not embodied in e

      DoneId InBndr
var1 -> SimplEnv
-> InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
completeCall SimplEnv
env InBndr
var1 (InBndr -> Maybe Int -> SimplCont -> SimplCont
trimJoinCont InBndr
var (InBndr -> Maybe Int
isJoinId_maybe InBndr
var1) SimplCont
cont)

      DoneEx Expr InBndr
e Maybe Int
mb_join -> SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF (SimplEnv -> SimplEnv
zapSubstEnv SimplEnv
env) Expr InBndr
e (InBndr -> Maybe Int -> SimplCont -> SimplCont
trimJoinCont InBndr
var Maybe Int
mb_join SimplCont
cont)
              -- Note [zapSubstEnv]
              -- The template is already simplified, so don't re-substitute.
              -- This is VITAL.  Consider
              --      let x = e in
              --      let y = \z -> ...x... in
              --      \ x -> ...y...
              -- We'll clone the inner \x, adding x->x' in the id_subst
              -- Then when we inline y, we must *not* replace x by x' in
              -- the inlined copy!!

---------------------------------------------------------
--      Dealing with a call site

completeCall :: SimplEnv -> OutId -> SimplCont -> SimplM (SimplFloats, OutExpr)
completeCall :: SimplEnv
-> InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
completeCall SimplEnv
env InBndr
var SimplCont
cont
  | Just Expr InBndr
expr <- DynFlags
-> InBndr
-> Bool
-> Bool
-> [ArgSummary]
-> CallCtxt
-> Maybe (Expr InBndr)
callSiteInline DynFlags
dflags InBndr
var Bool
active_unf
                                Bool
lone_variable [ArgSummary]
arg_infos CallCtxt
interesting_cont
  -- Inline the variable's RHS
  = do { Tick -> SimplM ()
checkedTick (InBndr -> Tick
UnfoldingDone InBndr
var)
       ; Expr InBndr -> SimplCont -> SimplM ()
forall (m :: * -> *) a a.
(MonadIO m, Outputable a, Outputable a) =>
a -> a -> m ()
dump_inline Expr InBndr
expr SimplCont
cont
       ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF (SimplEnv -> SimplEnv
zapSubstEnv SimplEnv
env) Expr InBndr
expr SimplCont
cont }

  | Bool
otherwise
  -- Don't inline; instead rebuild the call
  = do { RuleEnv
rule_base <- SimplM RuleEnv
getSimplRules
       ; let info :: ArgInfo
info = SimplEnv -> InBndr -> [CoreRule] -> Int -> SimplCont -> ArgInfo
mkArgInfo SimplEnv
env InBndr
var (RuleEnv -> InBndr -> [CoreRule]
getRules RuleEnv
rule_base InBndr
var)
                              Int
n_val_args SimplCont
call_cont
       ; SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env ArgInfo
info SimplCont
cont }

  where
    dflags :: DynFlags
dflags = SimplEnv -> DynFlags
seDynFlags SimplEnv
env
    (Bool
lone_variable, [ArgSummary]
arg_infos, SimplCont
call_cont) = SimplCont -> (Bool, [ArgSummary], SimplCont)
contArgs SimplCont
cont
    n_val_args :: Int
n_val_args       = [ArgSummary] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [ArgSummary]
arg_infos
    interesting_cont :: CallCtxt
interesting_cont = SimplEnv -> SimplCont -> CallCtxt
interestingCallContext SimplEnv
env SimplCont
call_cont
    active_unf :: Bool
active_unf       = SimplMode -> InBndr -> Bool
activeUnfolding (SimplEnv -> SimplMode
getMode SimplEnv
env) InBndr
var

    log_inlining :: SDoc -> m ()
log_inlining SDoc
doc
      = IO () -> m ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> m ()) -> IO () -> m ()
forall a b. (a -> b) -> a -> b
$ DumpAction
dumpAction DynFlags
dflags
           (PrintUnqualified -> PprStyle
mkDumpStyle PrintUnqualified
alwaysQualify)
           (DumpFlag -> DumpOptions
dumpOptionsFromFlag DumpFlag
Opt_D_dump_inlinings)
           [Char]
"" DumpFormat
FormatText SDoc
doc

    dump_inline :: a -> a -> m ()
dump_inline a
unfolding a
cont
      | Bool -> Bool
not (DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_inlinings DynFlags
dflags) = () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
      | Bool -> Bool
not (DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_verbose_core2core DynFlags
dflags)
      = Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Name -> Bool
isExternalName (InBndr -> Name
idName InBndr
var)) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
            SDoc -> m ()
forall (m :: * -> *). MonadIO m => SDoc -> m ()
log_inlining (SDoc -> m ()) -> SDoc -> m ()
forall a b. (a -> b) -> a -> b
$
                [SDoc] -> SDoc
sep [[Char] -> SDoc
text [Char]
"Inlining done:", Int -> SDoc -> SDoc
nest Int
4 (InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
var)]
      | Bool
otherwise
      = IO () -> m ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> m ()) -> IO () -> m ()
forall a b. (a -> b) -> a -> b
$ SDoc -> IO ()
forall (m :: * -> *). MonadIO m => SDoc -> m ()
log_inlining (SDoc -> IO ()) -> SDoc -> IO ()
forall a b. (a -> b) -> a -> b
$
           [SDoc] -> SDoc
sep [[Char] -> SDoc
text [Char]
"Inlining done: " SDoc -> SDoc -> SDoc
<> InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
var,
                Int -> SDoc -> SDoc
nest Int
4 ([SDoc] -> SDoc
vcat [[Char] -> SDoc
text [Char]
"Inlined fn: " SDoc -> SDoc -> SDoc
<+> Int -> SDoc -> SDoc
nest Int
2 (a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
unfolding),
                              [Char] -> SDoc
text [Char]
"Cont:  " SDoc -> SDoc -> SDoc
<+> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
cont])]

rebuildCall :: SimplEnv
            -> ArgInfo
            -> SimplCont
            -> SimplM (SimplFloats, OutExpr)
-- We decided not to inline, so
--    - simplify the arguments
--    - try rewrite rules
--    - and rebuild

---------- Bottoming applications --------------
rebuildCall :: SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env (ArgInfo { ai_fun :: ArgInfo -> InBndr
ai_fun = InBndr
fun, ai_args :: ArgInfo -> [ArgSpec]
ai_args = [ArgSpec]
rev_args, ai_dmds :: ArgInfo -> [Demand]
ai_dmds = [] }) SimplCont
cont
  -- When we run out of strictness args, it means
  -- that the call is definitely bottom; see GHC.Core.Opt.Simplify.Utils.mkArgInfo
  -- Then we want to discard the entire strict continuation.  E.g.
  --    * case (error "hello") of { ... }
  --    * (error "Hello") arg
  --    * f (error "Hello") where f is strict
  --    etc
  -- Then, especially in the first of these cases, we'd like to discard
  -- the continuation, leaving just the bottoming expression.  But the
  -- type might not be right, so we may have to add a coerce.
  | Bool -> Bool
not (SimplCont -> Bool
contIsTrivial SimplCont
cont)     -- Only do this if there is a non-trivial
                                 -- continuation to discard, else we do it
                                 -- again and again!
  = OutType -> ()
seqType OutType
cont_ty ()
-> SimplM (SimplFloats, Expr InBndr)
-> SimplM (SimplFloats, Expr InBndr)
`seq`        -- See Note [Avoiding space leaks in OutType]
    (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, Expr InBndr -> OutType -> Expr InBndr
castBottomExpr Expr InBndr
res OutType
cont_ty)
  where
    res :: Expr InBndr
res     = InBndr -> [ArgSpec] -> Expr InBndr
argInfoExpr InBndr
fun [ArgSpec]
rev_args
    cont_ty :: OutType
cont_ty = SimplCont -> OutType
contResultType SimplCont
cont

---------- Try rewrite RULES --------------
-- See Note [Trying rewrite rules]
rebuildCall SimplEnv
env info :: ArgInfo
info@(ArgInfo { ai_fun :: ArgInfo -> InBndr
ai_fun = InBndr
fun, ai_args :: ArgInfo -> [ArgSpec]
ai_args = [ArgSpec]
rev_args
                              , ai_rules :: ArgInfo -> FunRules
ai_rules = Just (Int
nr_wanted, [CoreRule]
rules) }) SimplCont
cont
  | Int
nr_wanted Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
|| Bool
no_more_args
  , let info' :: ArgInfo
info' = ArgInfo
info { ai_rules :: FunRules
ai_rules = FunRules
forall a. Maybe a
Nothing }
  = -- We've accumulated a simplified call in <fun,rev_args>
    -- so try rewrite rules; see Note [RULEs apply to simplified arguments]
    -- See also Note [Rules for recursive functions]
    do { Maybe (SimplEnv, Expr InBndr, SimplCont)
mb_match <- SimplEnv
-> [CoreRule]
-> InBndr
-> [ArgSpec]
-> SimplCont
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
tryRules SimplEnv
env [CoreRule]
rules InBndr
fun ([ArgSpec] -> [ArgSpec]
forall a. [a] -> [a]
reverse [ArgSpec]
rev_args) SimplCont
cont
       ; case Maybe (SimplEnv, Expr InBndr, SimplCont)
mb_match of
             Just (SimplEnv
env', Expr InBndr
rhs, SimplCont
cont') -> SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env' Expr InBndr
rhs SimplCont
cont'
             Maybe (SimplEnv, Expr InBndr, SimplCont)
Nothing                 -> SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env ArgInfo
info' SimplCont
cont }
  where
    no_more_args :: Bool
no_more_args = case SimplCont
cont of
                      ApplyToTy  {} -> Bool
False
                      ApplyToVal {} -> Bool
False
                      SimplCont
_             -> Bool
True


---------- Simplify applications and casts --------------
rebuildCall SimplEnv
env ArgInfo
info (CastIt Coercion
co SimplCont
cont)
  = SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env (ArgInfo -> Coercion -> ArgInfo
addCastTo ArgInfo
info Coercion
co) SimplCont
cont

rebuildCall SimplEnv
env ArgInfo
info (ApplyToTy { sc_arg_ty :: SimplCont -> OutType
sc_arg_ty = OutType
arg_ty, sc_hole_ty :: SimplCont -> OutType
sc_hole_ty = OutType
hole_ty, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont })
  = SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env (ArgInfo -> OutType -> OutType -> ArgInfo
addTyArgTo ArgInfo
info OutType
arg_ty OutType
hole_ty) SimplCont
cont

---------- The runRW# rule. Do this after absorbing all arguments ------
-- See Note [Simplification of runRW#] in GHC.CoreToSTG.Prep.
--
-- runRW# :: forall (r :: RuntimeRep) (o :: TYPE r). (State# RealWorld -> o) -> o
-- K[ runRW# rr ty body ]   -->   runRW rr' ty' (\s. K[ body s ])
rebuildCall SimplEnv
env (ArgInfo { ai_fun :: ArgInfo -> InBndr
ai_fun = InBndr
fun_id, ai_args :: ArgInfo -> [ArgSpec]
ai_args = [ArgSpec]
rev_args })
            (ApplyToVal { sc_arg :: SimplCont -> Expr InBndr
sc_arg = Expr InBndr
arg, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
arg_se
                        , sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont, sc_hole_ty :: SimplCont -> OutType
sc_hole_ty = OutType
fun_ty })
  | InBndr
fun_id InBndr -> Unique -> Bool
forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
runRWKey
  , Bool -> Bool
not (SimplCont -> Bool
contIsStop SimplCont
cont)  -- Don't fiddle around if the continuation is boring
  , [ TyArg {}, TyArg {} ] <- [ArgSpec]
rev_args
  = do { InBndr
s <- FastString -> OutType -> OutType -> SimplM InBndr
newId ([Char] -> FastString
fsLit [Char]
"s") OutType
Many OutType
realWorldStatePrimTy
       ; let (OutType
m,OutType
_,OutType
_) = OutType -> (OutType, OutType, OutType)
splitFunTy OutType
fun_ty
             env' :: SimplEnv
env'  = (SimplEnv
arg_se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env) SimplEnv -> [InBndr] -> SimplEnv
`addNewInScopeIds` [InBndr
s]
             ty' :: OutType
ty'   = SimplCont -> OutType
contResultType SimplCont
cont
             cont' :: SimplCont
cont' = ApplyToVal :: DupFlag
-> OutType -> Expr InBndr -> SimplEnv -> SimplCont -> SimplCont
ApplyToVal { sc_dup :: DupFlag
sc_dup = DupFlag
Simplified, sc_arg :: Expr InBndr
sc_arg = InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
s
                                , sc_env :: SimplEnv
sc_env = SimplEnv
env', sc_cont :: SimplCont
sc_cont = SimplCont
cont
                                , sc_hole_ty :: OutType
sc_hole_ty = OutType -> OutType -> OutType -> OutType
mkVisFunTy OutType
m OutType
realWorldStatePrimTy OutType
ty' }
                     -- cont' applies to s, then K
       ; Expr InBndr
body' <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
env' Expr InBndr
arg SimplCont
cont'
       ; let arg' :: Expr InBndr
arg'  = InBndr -> Expr InBndr -> Expr InBndr
forall b. b -> Expr b -> Expr b
Lam InBndr
s Expr InBndr
body'
             rr' :: OutType
rr'   = HasDebugCallStack => OutType -> OutType
OutType -> OutType
getRuntimeRep OutType
ty'
             call' :: Expr InBndr
call' = Expr InBndr -> [Expr InBndr] -> Expr InBndr
forall b. Expr b -> [Expr b] -> Expr b
mkApps (InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
fun_id) [OutType -> Expr InBndr
forall b. OutType -> Expr b
mkTyArg OutType
rr', OutType -> Expr InBndr
forall b. OutType -> Expr b
mkTyArg OutType
ty', Expr InBndr
arg']
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, Expr InBndr
call') }

rebuildCall SimplEnv
env ArgInfo
fun_info
            (ApplyToVal { sc_arg :: SimplCont -> Expr InBndr
sc_arg = Expr InBndr
arg, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
arg_se
                        , sc_dup :: SimplCont -> DupFlag
sc_dup = DupFlag
dup_flag, sc_hole_ty :: SimplCont -> OutType
sc_hole_ty = OutType
fun_ty
                        , sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont })
  -- Argument is already simplified
  | DupFlag -> Bool
isSimplified DupFlag
dup_flag     -- See Note [Avoid redundant simplification]
  = SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env (ArgInfo -> Expr InBndr -> OutType -> ArgInfo
addValArgTo ArgInfo
fun_info Expr InBndr
arg OutType
fun_ty) SimplCont
cont

  -- Strict arguments
  | ArgInfo -> Bool
isStrictArgInfo ArgInfo
fun_info
  , SimplMode -> Bool
sm_case_case (SimplEnv -> SimplMode
getMode SimplEnv
env)
  = -- pprTrace "Strict Arg" (ppr arg $$ ppr (seIdSubst env) $$ ppr (seInScope env)) $
    SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF (SimplEnv
arg_se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env) Expr InBndr
arg
               (StrictArg :: DupFlag -> ArgInfo -> OutType -> SimplCont -> SimplCont
StrictArg { sc_fun :: ArgInfo
sc_fun = ArgInfo
fun_info, sc_fun_ty :: OutType
sc_fun_ty = OutType
fun_ty
                          , sc_dup :: DupFlag
sc_dup = DupFlag
Simplified
                          , sc_cont :: SimplCont
sc_cont = SimplCont
cont })
                -- Note [Shadowing]

  -- Lazy arguments
  | Bool
otherwise
        -- DO NOT float anything outside, hence simplExprC
        -- There is no benefit (unlike in a let-binding), and we'd
        -- have to be very careful about bogus strictness through
        -- floating a demanded let.
  = do  { Expr InBndr
arg' <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC (SimplEnv
arg_se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env) Expr InBndr
arg
                             (OutType -> CallCtxt -> SimplCont
mkLazyArgStop OutType
arg_ty (ArgInfo -> CallCtxt
lazyArgContext ArgInfo
fun_info))
        ; SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env (ArgInfo -> Expr InBndr -> OutType -> ArgInfo
addValArgTo ArgInfo
fun_info  Expr InBndr
arg' OutType
fun_ty) SimplCont
cont }
  where
    arg_ty :: OutType
arg_ty = OutType -> OutType
funArgTy OutType
fun_ty


---------- No further useful info, revert to generic rebuild ------------
rebuildCall SimplEnv
env (ArgInfo { ai_fun :: ArgInfo -> InBndr
ai_fun = InBndr
fun, ai_args :: ArgInfo -> [ArgSpec]
ai_args = [ArgSpec]
rev_args }) SimplCont
cont
  = SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env (InBndr -> [ArgSpec] -> Expr InBndr
argInfoExpr InBndr
fun [ArgSpec]
rev_args) SimplCont
cont

{- Note [Trying rewrite rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider an application (f e1 e2 e3) where the e1,e2,e3 are not yet
simplified.  We want to simplify enough arguments to allow the rules
to apply, but it's more efficient to avoid simplifying e2,e3 if e1 alone
is sufficient.  Example: class ops
   (+) dNumInt e2 e3
If we rewrite ((+) dNumInt) to plusInt, we can take advantage of the
latter's strictness when simplifying e2, e3.  Moreover, suppose we have
  RULE  f Int = \x. x True

Then given (f Int e1) we rewrite to
   (\x. x True) e1
without simplifying e1.  Now we can inline x into its unique call site,
and absorb the True into it all in the same pass.  If we simplified
e1 first, we couldn't do that; see Note [Avoiding exponential behaviour].

So we try to apply rules if either
  (a) no_more_args: we've run out of argument that the rules can "see"
  (b) nr_wanted: none of the rules wants any more arguments


Note [RULES apply to simplified arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very desirable to try RULES once the arguments have been simplified, because
doing so ensures that rule cascades work in one pass.  Consider
   {-# RULES g (h x) = k x
             f (k x) = x #-}
   ...f (g (h x))...
Then we want to rewrite (g (h x)) to (k x) and only then try f's rules. If
we match f's rules against the un-simplified RHS, it won't match.  This
makes a particularly big difference when superclass selectors are involved:
        op ($p1 ($p2 (df d)))
We want all this to unravel in one sweep.

Note [Avoid redundant simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because RULES apply to simplified arguments, there's a danger of repeatedly
simplifying already-simplified arguments.  An important example is that of
        (>>=) d e1 e2
Here e1, e2 are simplified before the rule is applied, but don't really
participate in the rule firing. So we mark them as Simplified to avoid
re-simplifying them.

Note [Shadowing]
~~~~~~~~~~~~~~~~
This part of the simplifier may break the no-shadowing invariant
Consider
        f (...(\a -> e)...) (case y of (a,b) -> e')
where f is strict in its second arg
If we simplify the innermost one first we get (...(\a -> e)...)
Simplifying the second arg makes us float the case out, so we end up with
        case y of (a,b) -> f (...(\a -> e)...) e'
So the output does not have the no-shadowing invariant.  However, there is
no danger of getting name-capture, because when the first arg was simplified
we used an in-scope set that at least mentioned all the variables free in its
static environment, and that is enough.

We can't just do innermost first, or we'd end up with a dual problem:
        case x of (a,b) -> f e (...(\a -> e')...)

I spent hours trying to recover the no-shadowing invariant, but I just could
not think of an elegant way to do it.  The simplifier is already knee-deep in
continuations.  We have to keep the right in-scope set around; AND we have
to get the effect that finding (error "foo") in a strict arg position will
discard the entire application and replace it with (error "foo").  Getting
all this at once is TOO HARD!


************************************************************************
*                                                                      *
                Rewrite rules
*                                                                      *
************************************************************************
-}

tryRules :: SimplEnv -> [CoreRule]
         -> Id -> [ArgSpec]
         -> SimplCont
         -> SimplM (Maybe (SimplEnv, CoreExpr, SimplCont))

tryRules :: SimplEnv
-> [CoreRule]
-> InBndr
-> [ArgSpec]
-> SimplCont
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
tryRules SimplEnv
env [CoreRule]
rules InBndr
fn [ArgSpec]
args SimplCont
call_cont
  | [CoreRule] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [CoreRule]
rules
  = Maybe (SimplEnv, Expr InBndr, SimplCont)
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (SimplEnv, Expr InBndr, SimplCont)
forall a. Maybe a
Nothing

{- Disabled until we fix #8326
  | fn `hasKey` tagToEnumKey   -- See Note [Optimising tagToEnum#]
  , [_type_arg, val_arg] <- args
  , Select dup bndr ((_,[],rhs1) : rest_alts) se cont <- call_cont
  , isDeadBinder bndr
  = do { let enum_to_tag :: CoreAlt -> CoreAlt
                -- Takes   K -> e  into   tagK# -> e
                -- where tagK# is the tag of constructor K
             enum_to_tag (DataAlt con, [], rhs)
               = ASSERT( isEnumerationTyCon (dataConTyCon con) )
                (LitAlt tag, [], rhs)
              where
                tag = mkLitInt dflags (toInteger (dataConTag con - fIRST_TAG))
             enum_to_tag alt = pprPanic "tryRules: tagToEnum" (ppr alt)

             new_alts = (DEFAULT, [], rhs1) : map enum_to_tag rest_alts
             new_bndr = setIdType bndr intPrimTy
                 -- The binder is dead, but should have the right type
      ; return (Just (val_arg, Select dup new_bndr new_alts se cont)) }
-}

  | Just (CoreRule
rule, Expr InBndr
rule_rhs) <- RuleOpts
-> InScopeEnv
-> (Activation -> Bool)
-> InBndr
-> [Expr InBndr]
-> [CoreRule]
-> Maybe (CoreRule, Expr InBndr)
lookupRule RuleOpts
ropts (SimplEnv -> InScopeEnv
getUnfoldingInRuleMatch SimplEnv
env)
                                        (SimplMode -> Activation -> Bool
activeRule (SimplEnv -> SimplMode
getMode SimplEnv
env)) InBndr
fn
                                        ([ArgSpec] -> [Expr InBndr]
argInfoAppArgs [ArgSpec]
args) [CoreRule]
rules
  -- Fire a rule for the function
  = do { Tick -> SimplM ()
checkedTick (FastString -> Tick
RuleFired (CoreRule -> FastString
ruleName CoreRule
rule))
       ; let cont' :: SimplCont
cont' = SimplEnv -> [ArgSpec] -> SimplCont -> SimplCont
pushSimplifiedArgs SimplEnv
zapped_env
                                        (Int -> [ArgSpec] -> [ArgSpec]
forall a. Int -> [a] -> [a]
drop (CoreRule -> Int
ruleArity CoreRule
rule) [ArgSpec]
args)
                                        SimplCont
call_cont
                     -- (ruleArity rule) says how
                     -- many args the rule consumed

             occ_anald_rhs :: Expr InBndr
occ_anald_rhs = Expr InBndr -> Expr InBndr
occurAnalyseExpr Expr InBndr
rule_rhs
                 -- See Note [Occurrence-analyse after rule firing]
       ; CoreRule -> Expr InBndr -> SimplM ()
forall (m :: * -> *) b.
(MonadIO m, OutputableBndr b) =>
CoreRule -> Expr b -> m ()
dump CoreRule
rule Expr InBndr
rule_rhs
       ; Maybe (SimplEnv, Expr InBndr, SimplCont)
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
forall (m :: * -> *) a. Monad m => a -> m a
return ((SimplEnv, Expr InBndr, SimplCont)
-> Maybe (SimplEnv, Expr InBndr, SimplCont)
forall a. a -> Maybe a
Just (SimplEnv
zapped_env, Expr InBndr
occ_anald_rhs, SimplCont
cont')) }
            -- The occ_anald_rhs and cont' are all Out things
            -- hence zapping the environment

  | Bool
otherwise  -- No rule fires
  = do { SimplM ()
nodump  -- This ensures that an empty file is written
       ; Maybe (SimplEnv, Expr InBndr, SimplCont)
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (SimplEnv, Expr InBndr, SimplCont)
forall a. Maybe a
Nothing }

  where
    ropts :: RuleOpts
ropts      = DynFlags -> RuleOpts
initRuleOpts DynFlags
dflags
    dflags :: DynFlags
dflags     = SimplEnv -> DynFlags
seDynFlags SimplEnv
env
    zapped_env :: SimplEnv
zapped_env = SimplEnv -> SimplEnv
zapSubstEnv SimplEnv
env  -- See Note [zapSubstEnv]

    printRuleModule :: CoreRule -> SDoc
printRuleModule CoreRule
rule
      = SDoc -> SDoc
parens (SDoc -> (GenModule Unit -> SDoc) -> Maybe (GenModule Unit) -> SDoc
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> SDoc
text [Char]
"BUILTIN")
                      (ModuleName -> SDoc
pprModuleName (ModuleName -> SDoc)
-> (GenModule Unit -> ModuleName) -> GenModule Unit -> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenModule Unit -> ModuleName
forall unit. GenModule unit -> ModuleName
moduleName)
                      (CoreRule -> Maybe (GenModule Unit)
ruleModule CoreRule
rule))

    dump :: CoreRule -> Expr b -> m ()
dump CoreRule
rule Expr b
rule_rhs
      | DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_rule_rewrites DynFlags
dflags
      = DynFlags -> DumpFlag -> [Char] -> SDoc -> m ()
forall (m :: * -> *).
MonadIO m =>
DynFlags -> DumpFlag -> [Char] -> SDoc -> m ()
log_rule DynFlags
dflags DumpFlag
Opt_D_dump_rule_rewrites [Char]
"Rule fired" (SDoc -> m ()) -> SDoc -> m ()
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
          [ [Char] -> SDoc
text [Char]
"Rule:" SDoc -> SDoc -> SDoc
<+> FastString -> SDoc
ftext (CoreRule -> FastString
ruleName CoreRule
rule)
          , [Char] -> SDoc
text [Char]
"Module:" SDoc -> SDoc -> SDoc
<+>  CoreRule -> SDoc
printRuleModule CoreRule
rule
          , [Char] -> SDoc
text [Char]
"Before:" SDoc -> SDoc -> SDoc
<+> SDoc -> Int -> SDoc -> SDoc
hang (InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
fn) Int
2 ([SDoc] -> SDoc
sep ((ArgSpec -> SDoc) -> [ArgSpec] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map ArgSpec -> SDoc
forall a. Outputable a => a -> SDoc
ppr [ArgSpec]
args))
          , [Char] -> SDoc
text [Char]
"After: " SDoc -> SDoc -> SDoc
<+> SDoc -> Int -> SDoc -> SDoc
hang (Expr b -> SDoc
forall b. OutputableBndr b => Expr b -> SDoc
pprCoreExpr Expr b
rule_rhs) Int
2
                               ([SDoc] -> SDoc
sep ([SDoc] -> SDoc) -> [SDoc] -> SDoc
forall a b. (a -> b) -> a -> b
$ (ArgSpec -> SDoc) -> [ArgSpec] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map ArgSpec -> SDoc
forall a. Outputable a => a -> SDoc
ppr ([ArgSpec] -> [SDoc]) -> [ArgSpec] -> [SDoc]
forall a b. (a -> b) -> a -> b
$ Int -> [ArgSpec] -> [ArgSpec]
forall a. Int -> [a] -> [a]
drop (CoreRule -> Int
ruleArity CoreRule
rule) [ArgSpec]
args)
          , [Char] -> SDoc
text [Char]
"Cont:  " SDoc -> SDoc -> SDoc
<+> SimplCont -> SDoc
forall a. Outputable a => a -> SDoc
ppr SimplCont
call_cont ]

      | DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_rule_firings DynFlags
dflags
      = DynFlags -> DumpFlag -> [Char] -> SDoc -> m ()
forall (m :: * -> *).
MonadIO m =>
DynFlags -> DumpFlag -> [Char] -> SDoc -> m ()
log_rule DynFlags
dflags DumpFlag
Opt_D_dump_rule_firings [Char]
"Rule fired:" (SDoc -> m ()) -> SDoc -> m ()
forall a b. (a -> b) -> a -> b
$
          FastString -> SDoc
ftext (CoreRule -> FastString
ruleName CoreRule
rule)
            SDoc -> SDoc -> SDoc
<+> CoreRule -> SDoc
printRuleModule CoreRule
rule

      | Bool
otherwise
      = () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

    nodump :: SimplM ()
nodump
      | DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_rule_rewrites DynFlags
dflags
      = IO () -> SimplM ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> SimplM ()) -> IO () -> SimplM ()
forall a b. (a -> b) -> a -> b
$ do
         DynFlags -> DumpOptions -> IO ()
touchDumpFile DynFlags
dflags (DumpFlag -> DumpOptions
dumpOptionsFromFlag DumpFlag
Opt_D_dump_rule_rewrites)

      | DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_rule_firings DynFlags
dflags
      = IO () -> SimplM ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> SimplM ()) -> IO () -> SimplM ()
forall a b. (a -> b) -> a -> b
$ do
         DynFlags -> DumpOptions -> IO ()
touchDumpFile DynFlags
dflags (DumpFlag -> DumpOptions
dumpOptionsFromFlag DumpFlag
Opt_D_dump_rule_firings)

      | Bool
otherwise
      = () -> SimplM ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

    log_rule :: DynFlags -> DumpFlag -> [Char] -> SDoc -> m ()
log_rule DynFlags
dflags DumpFlag
flag [Char]
hdr SDoc
details
      = IO () -> m ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> m ()) -> IO () -> m ()
forall a b. (a -> b) -> a -> b
$ do
         let sty :: PprStyle
sty = PrintUnqualified -> PprStyle
mkDumpStyle PrintUnqualified
alwaysQualify
         DumpAction
dumpAction DynFlags
dflags PprStyle
sty (DumpFlag -> DumpOptions
dumpOptionsFromFlag DumpFlag
flag) [Char]
"" DumpFormat
FormatText (SDoc -> IO ()) -> SDoc -> IO ()
forall a b. (a -> b) -> a -> b
$
           [SDoc] -> SDoc
sep [[Char] -> SDoc
text [Char]
hdr, Int -> SDoc -> SDoc
nest Int
4 SDoc
details]

trySeqRules :: SimplEnv
            -> OutExpr -> InExpr   -- Scrutinee and RHS
            -> SimplCont
            -> SimplM (Maybe (SimplEnv, CoreExpr, SimplCont))
-- See Note [User-defined RULES for seq]
trySeqRules :: SimplEnv
-> Expr InBndr
-> Expr InBndr
-> SimplCont
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
trySeqRules SimplEnv
in_env Expr InBndr
scrut Expr InBndr
rhs SimplCont
cont
  = do { RuleEnv
rule_base <- SimplM RuleEnv
getSimplRules
       ; SimplEnv
-> [CoreRule]
-> InBndr
-> [ArgSpec]
-> SimplCont
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
tryRules SimplEnv
in_env (RuleEnv -> InBndr -> [CoreRule]
getRules RuleEnv
rule_base InBndr
seqId) InBndr
seqId [ArgSpec]
out_args SimplCont
rule_cont }
  where
    no_cast_scrut :: Expr InBndr
no_cast_scrut = Expr InBndr -> Expr InBndr
forall b. Expr b -> Expr b
drop_casts Expr InBndr
scrut
    scrut_ty :: OutType
scrut_ty  = Expr InBndr -> OutType
exprType Expr InBndr
no_cast_scrut
    seq_id_ty :: OutType
seq_id_ty = InBndr -> OutType
idType InBndr
seqId                    -- forall r a (b::TYPE r). a -> b -> b
    res1_ty :: OutType
res1_ty   = HasDebugCallStack => OutType -> OutType -> OutType
OutType -> OutType -> OutType
piResultTy OutType
seq_id_ty OutType
rhs_rep    -- forall a (b::TYPE rhs_rep). a -> b -> b
    res2_ty :: OutType
res2_ty   = HasDebugCallStack => OutType -> OutType -> OutType
OutType -> OutType -> OutType
piResultTy OutType
res1_ty   OutType
scrut_ty   -- forall (b::TYPE rhs_rep). scrut_ty -> b -> b
    res3_ty :: OutType
res3_ty   = HasDebugCallStack => OutType -> OutType -> OutType
OutType -> OutType -> OutType
piResultTy OutType
res2_ty   OutType
rhs_ty     -- scrut_ty -> rhs_ty -> rhs_ty
    res4_ty :: OutType
res4_ty   = OutType -> OutType
funResultTy OutType
res3_ty             -- rhs_ty -> rhs_ty
    rhs_ty :: OutType
rhs_ty    = SimplEnv -> OutType -> OutType
substTy SimplEnv
in_env (Expr InBndr -> OutType
exprType Expr InBndr
rhs)
    rhs_rep :: OutType
rhs_rep   = HasDebugCallStack => OutType -> OutType
OutType -> OutType
getRuntimeRep OutType
rhs_ty
    out_args :: [ArgSpec]
out_args  = [ TyArg :: OutType -> OutType -> ArgSpec
TyArg { as_arg_ty :: OutType
as_arg_ty  = OutType
rhs_rep
                        , as_hole_ty :: OutType
as_hole_ty = OutType
seq_id_ty }
                , TyArg :: OutType -> OutType -> ArgSpec
TyArg { as_arg_ty :: OutType
as_arg_ty  = OutType
scrut_ty
                        , as_hole_ty :: OutType
as_hole_ty = OutType
res1_ty }
                , TyArg :: OutType -> OutType -> ArgSpec
TyArg { as_arg_ty :: OutType
as_arg_ty  = OutType
rhs_ty
                        , as_hole_ty :: OutType
as_hole_ty = OutType
res2_ty }
                , ValArg :: Demand -> Expr InBndr -> OutType -> ArgSpec
ValArg { as_arg :: Expr InBndr
as_arg = Expr InBndr
no_cast_scrut
                         , as_dmd :: Demand
as_dmd = Demand
seqDmd
                         , as_hole_ty :: OutType
as_hole_ty = OutType
res3_ty } ]
    rule_cont :: SimplCont
rule_cont = ApplyToVal :: DupFlag
-> OutType -> Expr InBndr -> SimplEnv -> SimplCont -> SimplCont
ApplyToVal { sc_dup :: DupFlag
sc_dup = DupFlag
NoDup, sc_arg :: Expr InBndr
sc_arg = Expr InBndr
rhs
                           , sc_env :: SimplEnv
sc_env = SimplEnv
in_env, sc_cont :: SimplCont
sc_cont = SimplCont
cont
                           , sc_hole_ty :: OutType
sc_hole_ty = OutType
res4_ty }

    -- Lazily evaluated, so we don't do most of this

    drop_casts :: Expr b -> Expr b
drop_casts (Cast Expr b
e Coercion
_) = Expr b -> Expr b
drop_casts Expr b
e
    drop_casts Expr b
e          = Expr b
e

{- Note [User-defined RULES for seq]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given
   case (scrut |> co) of _ -> rhs
look for rules that match the expression
   seq @t1 @t2 scrut
where scrut :: t1
      rhs   :: t2

If you find a match, rewrite it, and apply to 'rhs'.

Notice that we can simply drop casts on the fly here, which
makes it more likely that a rule will match.

See Note [User-defined RULES for seq] in GHC.Types.Id.Make.

Note [Occurrence-analyse after rule firing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After firing a rule, we occurrence-analyse the instantiated RHS before
simplifying it.  Usually this doesn't make much difference, but it can
be huge.  Here's an example (simplCore/should_compile/T7785)

  map f (map f (map f xs)

= -- Use build/fold form of map, twice
  map f (build (\cn. foldr (mapFB c f) n
                           (build (\cn. foldr (mapFB c f) n xs))))

= -- Apply fold/build rule
  map f (build (\cn. (\cn. foldr (mapFB c f) n xs) (mapFB c f) n))

= -- Beta-reduce
  -- Alas we have no occurrence-analysed, so we don't know
  -- that c is used exactly once
  map f (build (\cn. let c1 = mapFB c f in
                     foldr (mapFB c1 f) n xs))

= -- Use mapFB rule:   mapFB (mapFB c f) g = mapFB c (f.g)
  -- We can do this because (mapFB c n) is a PAP and hence expandable
  map f (build (\cn. let c1 = mapFB c n in
                     foldr (mapFB c (f.f)) n x))

This is not too bad.  But now do the same with the outer map, and
we get another use of mapFB, and t can interact with /both/ remaining
mapFB calls in the above expression.  This is stupid because actually
that 'c1' binding is dead.  The outer map introduces another c2. If
there is a deep stack of maps we get lots of dead bindings, and lots
of redundant work as we repeatedly simplify the result of firing rules.

The easy thing to do is simply to occurrence analyse the result of
the rule firing.  Note that this occ-anals not only the RHS of the
rule, but also the function arguments, which by now are OutExprs.
E.g.
      RULE f (g x) = x+1

Call   f (g BIG)  -->   (\x. x+1) BIG

The rule binders are lambda-bound and applied to the OutExpr arguments
(here BIG) which lack all internal occurrence info.

Is this inefficient?  Not really: we are about to walk over the result
of the rule firing to simplify it, so occurrence analysis is at most
a constant factor.

Possible improvement: occ-anal the rules when putting them in the
database; and in the simplifier just occ-anal the OutExpr arguments.
But that's more complicated and the rule RHS is usually tiny; so I'm
just doing the simple thing.

Historical note: previously we did occ-anal the rules in Rule.hs,
but failed to occ-anal the OutExpr arguments, which led to the
nasty performance problem described above.


Note [Optimising tagToEnum#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an enumeration data type:

  data Foo = A | B | C

Then we want to transform

   case tagToEnum# x of   ==>    case x of
     A -> e1                       DEFAULT -> e1
     B -> e2                       1#      -> e2
     C -> e3                       2#      -> e3

thereby getting rid of the tagToEnum# altogether.  If there was a DEFAULT
alternative we retain it (remember it comes first).  If not the case must
be exhaustive, and we reflect that in the transformed version by adding
a DEFAULT.  Otherwise Lint complains that the new case is not exhaustive.
See #8317.

Note [Rules for recursive functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might think that we shouldn't apply rules for a loop breaker:
doing so might give rise to an infinite loop, because a RULE is
rather like an extra equation for the function:
     RULE:           f (g x) y = x+y
     Eqn:            f a     y = a-y

But it's too drastic to disable rules for loop breakers.
Even the foldr/build rule would be disabled, because foldr
is recursive, and hence a loop breaker:
     foldr k z (build g) = g k z
So it's up to the programmer: rules can cause divergence


************************************************************************
*                                                                      *
                Rebuilding a case expression
*                                                                      *
************************************************************************

Note [Case elimination]
~~~~~~~~~~~~~~~~~~~~~~~
The case-elimination transformation discards redundant case expressions.
Start with a simple situation:

        case x# of      ===>   let y# = x# in e
          y# -> e

(when x#, y# are of primitive type, of course).  We can't (in general)
do this for algebraic cases, because we might turn bottom into
non-bottom!

The code in GHC.Core.Opt.Simplify.Utils.prepareAlts has the effect of generalise
this idea to look for a case where we're scrutinising a variable, and we know
that only the default case can match.  For example:

        case x of
          0#      -> ...
          DEFAULT -> ...(case x of
                         0#      -> ...
                         DEFAULT -> ...) ...

Here the inner case is first trimmed to have only one alternative, the
DEFAULT, after which it's an instance of the previous case.  This
really only shows up in eliminating error-checking code.

Note that GHC.Core.Opt.Simplify.Utils.mkCase combines identical RHSs.  So

        case e of       ===> case e of DEFAULT -> r
           True  -> r
           False -> r

Now again the case may be eliminated by the CaseElim transformation.
This includes things like (==# a# b#)::Bool so that we simplify
      case ==# a# b# of { True -> x; False -> x }
to just
      x
This particular example shows up in default methods for
comparison operations (e.g. in (>=) for Int.Int32)

Note [Case to let transformation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a case over a lifted type has a single alternative, and is being
used as a strict 'let' (all isDeadBinder bndrs), we may want to do
this transformation:

    case e of r       ===>   let r = e in ...r...
      _ -> ...r...

We treat the unlifted and lifted cases separately:

* Unlifted case: 'e' satisfies exprOkForSpeculation
  (ok-for-spec is needed to satisfy the let/app invariant).
  This turns     case a +# b of r -> ...r...
  into           let r = a +# b in ...r...
  and thence     .....(a +# b)....

  However, if we have
      case indexArray# a i of r -> ...r...
  we might like to do the same, and inline the (indexArray# a i).
  But indexArray# is not okForSpeculation, so we don't build a let
  in rebuildCase (lest it get floated *out*), so the inlining doesn't
  happen either.  Annoying.

* Lifted case: we need to be sure that the expression is already
  evaluated (exprIsHNF).  If it's not already evaluated
      - we risk losing exceptions, divergence or
        user-specified thunk-forcing
      - even if 'e' is guaranteed to converge, we don't want to
        create a thunk (call by need) instead of evaluating it
        right away (call by value)

  However, we can turn the case into a /strict/ let if the 'r' is
  used strictly in the body.  Then we won't lose divergence; and
  we won't build a thunk because the let is strict.
  See also Note [Case-to-let for strictly-used binders]

  NB: absentError satisfies exprIsHNF: see Note [aBSENT_ERROR_ID] in GHC.Core.Make.
  We want to turn
     case (absentError "foo") of r -> ...MkT r...
  into
     let r = absentError "foo" in ...MkT r...


Note [Case-to-let for strictly-used binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have this:
   case <scrut> of r { _ -> ..r.. }

where 'r' is used strictly in (..r..), we can safely transform to
   let r = <scrut> in ...r...

This is a Good Thing, because 'r' might be dead (if the body just
calls error), or might be used just once (in which case it can be
inlined); or we might be able to float the let-binding up or down.
E.g. #15631 has an example.

Note that this can change the error behaviour.  For example, we might
transform
    case x of { _ -> error "bad" }
    --> error "bad"
which is might be puzzling if 'x' currently lambda-bound, but later gets
let-bound to (error "good").

Nevertheless, the paper "A semantics for imprecise exceptions" allows
this transformation. If you want to fix the evaluation order, use
'pseq'.  See #8900 for an example where the loss of this
transformation bit us in practice.

See also Note [Empty case alternatives] in GHC.Core.

Historical notes

There have been various earlier versions of this patch:

* By Sept 18 the code looked like this:
     || scrut_is_demanded_var scrut

    scrut_is_demanded_var :: CoreExpr -> Bool
    scrut_is_demanded_var (Cast s _) = scrut_is_demanded_var s
    scrut_is_demanded_var (Var _)    = isStrictDmd (idDemandInfo case_bndr)
    scrut_is_demanded_var _          = False

  This only fired if the scrutinee was a /variable/, which seems
  an unnecessary restriction. So in #15631 I relaxed it to allow
  arbitrary scrutinees.  Less code, less to explain -- but the change
  had 0.00% effect on nofib.

* Previously, in Jan 13 the code looked like this:
     || case_bndr_evald_next rhs

    case_bndr_evald_next :: CoreExpr -> Bool
      -- See Note [Case binder next]
    case_bndr_evald_next (Var v)         = v == case_bndr
    case_bndr_evald_next (Cast e _)      = case_bndr_evald_next e
    case_bndr_evald_next (App e _)       = case_bndr_evald_next e
    case_bndr_evald_next (Case e _ _ _)  = case_bndr_evald_next e
    case_bndr_evald_next _               = False

  This patch was part of fixing #7542. See also
  Note [Eta reduction of an eval'd function] in GHC.Core.Utils.)


Further notes about case elimination
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:       test :: Integer -> IO ()
                test = print

Turns out that this compiles to:
    Print.test
      = \ eta :: Integer
          eta1 :: Void# ->
          case PrelNum.< eta PrelNum.zeroInteger of wild { __DEFAULT ->
          case hPutStr stdout
                 (PrelNum.jtos eta ($w[] @ Char))
                 eta1
          of wild1 { (# new_s, a4 #) -> PrelIO.lvl23 new_s  }}

Notice the strange '<' which has no effect at all. This is a funny one.
It started like this:

f x y = if x < 0 then jtos x
          else if y==0 then "" else jtos x

At a particular call site we have (f v 1).  So we inline to get

        if v < 0 then jtos x
        else if 1==0 then "" else jtos x

Now simplify the 1==0 conditional:

        if v<0 then jtos v else jtos v

Now common-up the two branches of the case:

        case (v<0) of DEFAULT -> jtos v

Why don't we drop the case?  Because it's strict in v.  It's technically
wrong to drop even unnecessary evaluations, and in practice they
may be a result of 'seq' so we *definitely* don't want to drop those.
I don't really know how to improve this situation.


Note [FloatBinds from constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have FloatBinds coming from the constructor wrapper
(as in Note [exprIsConApp_maybe on data constructors with wrappers]),
we cannot float past them. We'd need to float the FloatBind
together with the simplify floats, unfortunately the
simplifier doesn't have case-floats. The simplest thing we can
do is to wrap all the floats here. The next iteration of the
simplifier will take care of all these cases and lets.

Given data T = MkT !Bool, this allows us to simplify
case $WMkT b of { MkT x -> f x }
to
case b of { b' -> f b' }.

We could try and be more clever (like maybe wfloats only contain
let binders, so we could float them). But the need for the
extra complication is not clear.
-}

---------------------------------------------------------
--      Eliminate the case if possible

rebuildCase, reallyRebuildCase
   :: SimplEnv
   -> OutExpr          -- Scrutinee
   -> InId             -- Case binder
   -> [InAlt]          -- Alternatives (increasing order)
   -> SimplCont
   -> SimplM (SimplFloats, OutExpr)

--------------------------------------------------
--      1. Eliminate the case if there's a known constructor
--------------------------------------------------

rebuildCase :: SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
rebuildCase SimplEnv
env Expr InBndr
scrut InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont
  | Lit Literal
lit <- Expr InBndr
scrut    -- No need for same treatment as constructors
                        -- because literals are inlined more vigorously
  , Bool -> Bool
not (Literal -> Bool
litIsLifted Literal
lit)
  = do  { Tick -> SimplM ()
tick (InBndr -> Tick
KnownBranch InBndr
case_bndr)
        ; case AltCon -> [Alt InBndr] -> Maybe (Alt InBndr)
forall a b. AltCon -> [(AltCon, a, b)] -> Maybe (AltCon, a, b)
findAlt (Literal -> AltCon
LitAlt Literal
lit) [Alt InBndr]
alts of
            Maybe (Alt InBndr)
Nothing           -> SimplEnv
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
missingAlt SimplEnv
env InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont
            Just (AltCon
_, [InBndr]
bs, Expr InBndr
rhs) -> SimplEnv
-> [FloatBind]
-> Expr InBndr
-> [InBndr]
-> Expr InBndr
-> SimplM (SimplFloats, Expr InBndr)
forall (t :: * -> *) a.
Foldable t =>
SimplEnv
-> [FloatBind]
-> Expr InBndr
-> t a
-> Expr InBndr
-> SimplM (SimplFloats, Expr InBndr)
simple_rhs SimplEnv
env [] Expr InBndr
scrut [InBndr]
bs Expr InBndr
rhs }

  | Just (InScopeSet
in_scope', [FloatBind]
wfloats, DataCon
con, [OutType]
ty_args, [Expr InBndr]
other_args)
      <- InScopeEnv
-> Expr InBndr
-> Maybe
     (InScopeSet, [FloatBind], DataCon, [OutType], [Expr InBndr])
HasDebugCallStack =>
InScopeEnv
-> Expr InBndr
-> Maybe
     (InScopeSet, [FloatBind], DataCon, [OutType], [Expr InBndr])
exprIsConApp_maybe (SimplEnv -> InScopeEnv
getUnfoldingInRuleMatch SimplEnv
env) Expr InBndr
scrut
        -- Works when the scrutinee is a variable with a known unfolding
        -- as well as when it's an explicit constructor application
  , let env0 :: SimplEnv
env0 = SimplEnv -> InScopeSet -> SimplEnv
setInScopeSet SimplEnv
env InScopeSet
in_scope'
  = do  { Tick -> SimplM ()
tick (InBndr -> Tick
KnownBranch InBndr
case_bndr)
        ; let scaled_wfloats :: [FloatBind]
scaled_wfloats = (FloatBind -> FloatBind) -> [FloatBind] -> [FloatBind]
forall a b. (a -> b) -> [a] -> [b]
map FloatBind -> FloatBind
scale_float [FloatBind]
wfloats
        ; case AltCon -> [Alt InBndr] -> Maybe (Alt InBndr)
forall a b. AltCon -> [(AltCon, a, b)] -> Maybe (AltCon, a, b)
findAlt (DataCon -> AltCon
DataAlt DataCon
con) [Alt InBndr]
alts of
            Maybe (Alt InBndr)
Nothing  -> SimplEnv
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
missingAlt SimplEnv
env0 InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont
            Just (AltCon
DEFAULT, [InBndr]
bs, Expr InBndr
rhs) -> let con_app :: Expr InBndr
con_app = InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var (DataCon -> InBndr
dataConWorkId DataCon
con)
                                                 Expr InBndr -> [OutType] -> Expr InBndr
forall b. Expr b -> [OutType] -> Expr b
`mkTyApps` [OutType]
ty_args
                                                 Expr InBndr -> [Expr InBndr] -> Expr InBndr
forall b. Expr b -> [Expr b] -> Expr b
`mkApps`   [Expr InBndr]
other_args
                                       in SimplEnv
-> [FloatBind]
-> Expr InBndr
-> [InBndr]
-> Expr InBndr
-> SimplM (SimplFloats, Expr InBndr)
forall (t :: * -> *) a.
Foldable t =>
SimplEnv
-> [FloatBind]
-> Expr InBndr
-> t a
-> Expr InBndr
-> SimplM (SimplFloats, Expr InBndr)
simple_rhs SimplEnv
env0 [FloatBind]
scaled_wfloats Expr InBndr
con_app [InBndr]
bs Expr InBndr
rhs
            Just (AltCon
_, [InBndr]
bs, Expr InBndr
rhs)       -> SimplEnv
-> Expr InBndr
-> [FloatBind]
-> DataCon
-> [OutType]
-> [Expr InBndr]
-> InBndr
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
knownCon SimplEnv
env0 Expr InBndr
scrut [FloatBind]
scaled_wfloats DataCon
con [OutType]
ty_args [Expr InBndr]
other_args
                                                InBndr
case_bndr [InBndr]
bs Expr InBndr
rhs SimplCont
cont
        }
  where
    simple_rhs :: SimplEnv
-> [FloatBind]
-> Expr InBndr
-> t a
-> Expr InBndr
-> SimplM (SimplFloats, Expr InBndr)
simple_rhs SimplEnv
env [FloatBind]
wfloats Expr InBndr
scrut' t a
bs Expr InBndr
rhs =
      ASSERT( null bs )
      do { (SimplFloats
floats1, SimplEnv
env') <- SimplEnv -> InBndr -> Expr InBndr -> SimplM (SimplFloats, SimplEnv)
simplNonRecX SimplEnv
env InBndr
case_bndr Expr InBndr
scrut'
             -- scrut is a constructor application,
             -- hence satisfies let/app invariant
         ; (SimplFloats
floats2, Expr InBndr
expr') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env' Expr InBndr
rhs SimplCont
cont
         ; case [FloatBind]
wfloats of
             [] -> (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
expr')
             [FloatBind]
_ -> (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return
               -- See Note [FloatBinds from constructor wrappers]
                   ( SimplEnv -> SimplFloats
emptyFloats SimplEnv
env,
                     [FloatBind] -> Expr InBndr -> Expr InBndr
GHC.Core.Make.wrapFloats [FloatBind]
wfloats (Expr InBndr -> Expr InBndr) -> Expr InBndr -> Expr InBndr
forall a b. (a -> b) -> a -> b
$
                     SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2) Expr InBndr
expr' )}

    -- This scales case floats by the multiplicity of the continuation hole (see
    -- Note [Scaling in case-of-case]).  Let floats are _not_ scaled, because
    -- they are aliases anyway.
    scale_float :: FloatBind -> FloatBind
scale_float (GHC.Core.Make.FloatCase Expr InBndr
scrut InBndr
case_bndr AltCon
con [InBndr]
vars) =
      let
        scale_id :: InBndr -> InBndr
scale_id InBndr
id = OutType -> InBndr -> InBndr
scaleVarBy OutType
holeScaling InBndr
id
      in
      Expr InBndr -> InBndr -> AltCon -> [InBndr] -> FloatBind
GHC.Core.Make.FloatCase Expr InBndr
scrut (InBndr -> InBndr
scale_id InBndr
case_bndr) AltCon
con ((InBndr -> InBndr) -> [InBndr] -> [InBndr]
forall a b. (a -> b) -> [a] -> [b]
map InBndr -> InBndr
scale_id [InBndr]
vars)
    scale_float FloatBind
f = FloatBind
f

    holeScaling :: OutType
holeScaling = SimplCont -> OutType
contHoleScaling SimplCont
cont OutType -> OutType -> OutType
`mkMultMul` InBndr -> OutType
idMult InBndr
case_bndr
     -- We are in the following situation
     --   case[p] case[q] u of { D x -> C v } of { C x -> w }
     -- And we are producing case[??] u of { D x -> w[x\v]}
     --
     -- What should the multiplicity `??` be? In order to preserve the usage of
     -- variables in `u`, it needs to be `pq`.
     --
     -- As an illustration, consider the following
     --   case[Many] case[1] of { C x -> C x } of { C x -> (x, x) }
     -- Where C :: A %1 -> T is linear
     -- If we were to produce a case[1], like the inner case, we would get
     --   case[1] of { C x -> (x, x) }
     -- Which is ill-typed with respect to linearity. So it needs to be a
     -- case[Many].

--------------------------------------------------
--      2. Eliminate the case if scrutinee is evaluated
--------------------------------------------------

rebuildCase SimplEnv
env Expr InBndr
scrut InBndr
case_bndr alts :: [Alt InBndr]
alts@[(AltCon
_, [InBndr]
bndrs, Expr InBndr
rhs)] SimplCont
cont
  -- See if we can get rid of the case altogether
  -- See Note [Case elimination]
  -- mkCase made sure that if all the alternatives are equal,
  -- then there is now only one (DEFAULT) rhs

  -- 2a.  Dropping the case altogether, if
  --      a) it binds nothing (so it's really just a 'seq')
  --      b) evaluating the scrutinee has no side effects
  | Bool
is_plain_seq
  , Expr InBndr -> Bool
exprOkForSideEffects Expr InBndr
scrut
          -- The entire case is dead, so we can drop it
          -- if the scrutinee converges without having imperative
          -- side effects or raising a Haskell exception
          -- See Note [PrimOp can_fail and has_side_effects] in GHC.Builtin.PrimOps
   = SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env Expr InBndr
rhs SimplCont
cont

  -- 2b.  Turn the case into a let, if
  --      a) it binds only the case-binder
  --      b) unlifted case: the scrutinee is ok-for-speculation
  --           lifted case: the scrutinee is in HNF (or will later be demanded)
  -- See Note [Case to let transformation]
  | Bool
all_dead_bndrs
  , Expr InBndr -> InBndr -> Bool
doCaseToLet Expr InBndr
scrut InBndr
case_bndr
  = do { Tick -> SimplM ()
tick (InBndr -> Tick
CaseElim InBndr
case_bndr)
       ; (SimplFloats
floats1, SimplEnv
env') <- SimplEnv -> InBndr -> Expr InBndr -> SimplM (SimplFloats, SimplEnv)
simplNonRecX SimplEnv
env InBndr
case_bndr Expr InBndr
scrut
       ; (SimplFloats
floats2, Expr InBndr
expr') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env' Expr InBndr
rhs SimplCont
cont
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, Expr InBndr
expr') }

  -- 2c. Try the seq rules if
  --     a) it binds only the case binder
  --     b) a rule for seq applies
  -- See Note [User-defined RULES for seq] in GHC.Types.Id.Make
  | Bool
is_plain_seq
  = do { Maybe (SimplEnv, Expr InBndr, SimplCont)
mb_rule <- SimplEnv
-> Expr InBndr
-> Expr InBndr
-> SimplCont
-> SimplM (Maybe (SimplEnv, Expr InBndr, SimplCont))
trySeqRules SimplEnv
env Expr InBndr
scrut Expr InBndr
rhs SimplCont
cont
       ; case Maybe (SimplEnv, Expr InBndr, SimplCont)
mb_rule of
           Just (SimplEnv
env', Expr InBndr
rule_rhs, SimplCont
cont') -> SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env' Expr InBndr
rule_rhs SimplCont
cont'
           Maybe (SimplEnv, Expr InBndr, SimplCont)
Nothing                      -> SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
reallyRebuildCase SimplEnv
env Expr InBndr
scrut InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont }
  where
    all_dead_bndrs :: Bool
all_dead_bndrs = (InBndr -> Bool) -> [InBndr] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all InBndr -> Bool
isDeadBinder [InBndr]
bndrs       -- bndrs are [InId]
    is_plain_seq :: Bool
is_plain_seq   = Bool
all_dead_bndrs Bool -> Bool -> Bool
&& InBndr -> Bool
isDeadBinder InBndr
case_bndr -- Evaluation *only* for effect

rebuildCase SimplEnv
env Expr InBndr
scrut InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont
  = SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
reallyRebuildCase SimplEnv
env Expr InBndr
scrut InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont


doCaseToLet :: OutExpr          -- Scrutinee
            -> InId             -- Case binder
            -> Bool
-- The situation is         case scrut of b { DEFAULT -> body }
-- Can we transform thus?   let { b = scrut } in body
doCaseToLet :: Expr InBndr -> InBndr -> Bool
doCaseToLet Expr InBndr
scrut InBndr
case_bndr
  | InBndr -> Bool
isTyCoVar InBndr
case_bndr    -- Respect GHC.Core
  = Expr InBndr -> Bool
forall b. Expr b -> Bool
isTyCoArg Expr InBndr
scrut        -- Note [Core type and coercion invariant]

  | HasDebugCallStack => OutType -> Bool
OutType -> Bool
isUnliftedType (InBndr -> OutType
idType InBndr
case_bndr)
  = Expr InBndr -> Bool
exprOkForSpeculation Expr InBndr
scrut

  | Bool
otherwise  -- Scrut has a lifted type
  = Expr InBndr -> Bool
exprIsHNF Expr InBndr
scrut
    Bool -> Bool -> Bool
|| Demand -> Bool
forall s u. JointDmd (Str s) (Use u) -> Bool
isStrictDmd (InBndr -> Demand
idDemandInfo InBndr
case_bndr)
    -- See Note [Case-to-let for strictly-used binders]

--------------------------------------------------
--      3. Catch-all case
--------------------------------------------------

reallyRebuildCase :: SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
reallyRebuildCase SimplEnv
env Expr InBndr
scrut InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont
  | Bool -> Bool
not (SimplMode -> Bool
sm_case_case (SimplEnv -> SimplMode
getMode SimplEnv
env))
  = do { Expr InBndr
case_expr <- SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (Expr InBndr)
simplAlts SimplEnv
env Expr InBndr
scrut InBndr
case_bndr [Alt InBndr]
alts
                                (OutType -> SimplCont
mkBoringStop (SimplCont -> OutType
contHoleType SimplCont
cont))
       ; SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuild SimplEnv
env Expr InBndr
case_expr SimplCont
cont }

  | Bool
otherwise
  = do { (SimplFloats
floats, SimplCont
cont') <- SimplEnv
-> [Alt InBndr] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableCaseCont SimplEnv
env [Alt InBndr]
alts SimplCont
cont
       ; Expr InBndr
case_expr <- SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (Expr InBndr)
simplAlts (SimplEnv
env SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
floats)
                                Expr InBndr
scrut (OutType -> InBndr -> InBndr
scaleIdBy OutType
holeScaling InBndr
case_bndr) (OutType -> [Alt InBndr] -> [Alt InBndr]
scaleAltsBy OutType
holeScaling [Alt InBndr]
alts) SimplCont
cont'
       ; (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, Expr InBndr
case_expr) }
  where
    holeScaling :: OutType
holeScaling = SimplCont -> OutType
contHoleScaling SimplCont
cont
    -- Note [Scaling in case-of-case]

{-
simplCaseBinder checks whether the scrutinee is a variable, v.  If so,
try to eliminate uses of v in the RHSs in favour of case_bndr; that
way, there's a chance that v will now only be used once, and hence
inlined.

Historical note: we use to do the "case binder swap" in the Simplifier
so there were additional complications if the scrutinee was a variable.
Now the binder-swap stuff is done in the occurrence analyser; see
"GHC.Core.Opt.OccurAnal" Note [Binder swap].

Note [knownCon occ info]
~~~~~~~~~~~~~~~~~~~~~~~~
If the case binder is not dead, then neither are the pattern bound
variables:
        case <any> of x { (a,b) ->
        case x of { (p,q) -> p } }
Here (a,b) both look dead, but come alive after the inner case is eliminated.
The point is that we bring into the envt a binding
        let x = (a,b)
after the outer case, and that makes (a,b) alive.  At least we do unless
the case binder is guaranteed dead.

Note [Case alternative occ info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we are simply reconstructing a case (the common case), we always
zap the occurrence info on the binders in the alternatives.  Even
if the case binder is dead, the scrutinee is usually a variable, and *that*
can bring the case-alternative binders back to life.
See Note [Add unfolding for scrutinee]

Note [Improving seq]
~~~~~~~~~~~~~~~~~~~
Consider
        type family F :: * -> *
        type instance F Int = Int

We'd like to transform
        case e of (x :: F Int) { DEFAULT -> rhs }
===>
        case e `cast` co of (x'::Int)
           I# x# -> let x = x' `cast` sym co
                    in rhs

so that 'rhs' can take advantage of the form of x'.  Notice that Note
[Case of cast] (in OccurAnal) may then apply to the result.

We'd also like to eliminate empty types (#13468). So if

    data Void
    type instance F Bool = Void

then we'd like to transform
        case (x :: F Bool) of { _ -> error "urk" }
===>
        case (x |> co) of (x' :: Void) of {}

Nota Bene: we used to have a built-in rule for 'seq' that dropped
casts, so that
    case (x |> co) of { _ -> blah }
dropped the cast; in order to improve the chances of trySeqRules
firing.  But that works in the /opposite/ direction to Note [Improving
seq] so there's a danger of flip/flopping.  Better to make trySeqRules
insensitive to the cast, which is now is.

The need for [Improving seq] showed up in Roman's experiments.  Example:
  foo :: F Int -> Int -> Int
  foo t n = t `seq` bar n
     where
       bar 0 = 0
       bar n = bar (n - case t of TI i -> i)
Here we'd like to avoid repeated evaluating t inside the loop, by
taking advantage of the `seq`.

At one point I did transformation in LiberateCase, but it's more
robust here.  (Otherwise, there's a danger that we'll simply drop the
'seq' altogether, before LiberateCase gets to see it.)

Note [Scaling in case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When two cases commute, if done naively, the multiplicities will be wrong:

  case (case u of w[1] { (x[1], y[1]) } -> f x y) of w'[Many]
  { (z[Many], t[Many]) -> z
  }

The multiplicities here, are correct, but if I perform a case of case:

  case u of w[1]
  { (x[1], y[1]) -> case f x y of w'[Many] of { (z[Many], t[Many]) -> z }
  }

This is wrong! Using `f x y` inside a `case … of w'[Many]` means that `x` and
`y` must have multiplicities `Many` not `1`! The correct solution is to make
all the `1`-s be `Many`-s instead:

  case u of w[Many]
  { (x[Many], y[Many]) -> case f x y of w'[Many] of { (z[Many], t[Many]) -> z }
  }

In general, when commuting two cases, the rule has to be:

  case (case … of x[p] {…}) of y[q] { … }
  ===> case … of x[p*q] { … case … of y[q] { … } }

This is materialised, in the simplifier, by the fact that every time we simplify
case alternatives with a continuation (the surrounded case (or more!)), we must
scale the entire case we are simplifying, by a scaling factor which can be
computed in the continuation (with function `contHoleScaling`).
-}

simplAlts :: SimplEnv
          -> OutExpr         -- Scrutinee
          -> InId            -- Case binder
          -> [InAlt]         -- Non-empty
          -> SimplCont
          -> SimplM OutExpr  -- Returns the complete simplified case expression

simplAlts :: SimplEnv
-> Expr InBndr
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (Expr InBndr)
simplAlts SimplEnv
env0 Expr InBndr
scrut InBndr
case_bndr [Alt InBndr]
alts SimplCont
cont'
  = do  { [Char] -> SDoc -> SimplM ()
traceSmpl [Char]
"simplAlts" ([SDoc] -> SDoc
vcat [ InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
case_bndr
                                      , [Char] -> SDoc
text [Char]
"cont':" SDoc -> SDoc -> SDoc
<+> SimplCont -> SDoc
forall a. Outputable a => a -> SDoc
ppr SimplCont
cont'
                                      , [Char] -> SDoc
text [Char]
"in_scope" SDoc -> SDoc -> SDoc
<+> InScopeSet -> SDoc
forall a. Outputable a => a -> SDoc
ppr (SimplEnv -> InScopeSet
seInScope SimplEnv
env0) ])
        ; (SimplEnv
env1, InBndr
case_bndr1) <- SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplBinder SimplEnv
env0 InBndr
case_bndr
        ; let case_bndr2 :: InBndr
case_bndr2 = InBndr
case_bndr1 InBndr -> Unfolding -> InBndr
`setIdUnfolding` Unfolding
evaldUnfolding
              env2 :: SimplEnv
env2       = SimplEnv -> InBndr -> SimplEnv
modifyInScope SimplEnv
env1 InBndr
case_bndr2
              -- See Note [Case binder evaluated-ness]

        ; (FamInstEnv, FamInstEnv)
fam_envs <- SimplM (FamInstEnv, FamInstEnv)
getFamEnvs
        ; (SimplEnv
alt_env', Expr InBndr
scrut', InBndr
case_bndr') <- (FamInstEnv, FamInstEnv)
-> SimplEnv
-> Expr InBndr
-> InBndr
-> InBndr
-> [Alt InBndr]
-> SimplM (SimplEnv, Expr InBndr, InBndr)
improveSeq (FamInstEnv, FamInstEnv)
fam_envs SimplEnv
env2 Expr InBndr
scrut
                                                       InBndr
case_bndr InBndr
case_bndr2 [Alt InBndr]
alts

        ; ([AltCon]
imposs_deflt_cons, [Alt InBndr]
in_alts) <- Expr InBndr
-> InBndr -> [Alt InBndr] -> SimplM ([AltCon], [Alt InBndr])
prepareAlts Expr InBndr
scrut' InBndr
case_bndr' [Alt InBndr]
alts
          -- NB: it's possible that the returned in_alts is empty: this is handled
          -- by the caller (rebuildCase) in the missingAlt function

        ; [Alt InBndr]
alts' <- (Alt InBndr -> SimplM (Alt InBndr))
-> [Alt InBndr] -> SimplM [Alt InBndr]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (SimplEnv
-> Maybe (Expr InBndr)
-> [AltCon]
-> InBndr
-> SimplCont
-> Alt InBndr
-> SimplM (Alt InBndr)
simplAlt SimplEnv
alt_env' (Expr InBndr -> Maybe (Expr InBndr)
forall a. a -> Maybe a
Just Expr InBndr
scrut') [AltCon]
imposs_deflt_cons InBndr
case_bndr' SimplCont
cont') [Alt InBndr]
in_alts
        ; -- pprTrace "simplAlts" (ppr case_bndr $$ ppr alts_ty $$ ppr alts_ty' $$ ppr alts $$ ppr cont') $

        ; let alts_ty' :: OutType
alts_ty' = SimplCont -> OutType
contResultType SimplCont
cont'
        -- See Note [Avoiding space leaks in OutType]
        ; OutType -> ()
seqType OutType
alts_ty' () -> SimplM (Expr InBndr) -> SimplM (Expr InBndr)
`seq`
          DynFlags
-> Expr InBndr
-> InBndr
-> OutType
-> [Alt InBndr]
-> SimplM (Expr InBndr)
mkCase (SimplEnv -> DynFlags
seDynFlags SimplEnv
env0) Expr InBndr
scrut' InBndr
case_bndr' OutType
alts_ty' [Alt InBndr]
alts' }


------------------------------------
improveSeq :: (FamInstEnv, FamInstEnv) -> SimplEnv
           -> OutExpr -> InId -> OutId -> [InAlt]
           -> SimplM (SimplEnv, OutExpr, OutId)
-- Note [Improving seq]
improveSeq :: (FamInstEnv, FamInstEnv)
-> SimplEnv
-> Expr InBndr
-> InBndr
-> InBndr
-> [Alt InBndr]
-> SimplM (SimplEnv, Expr InBndr, InBndr)
improveSeq (FamInstEnv, FamInstEnv)
fam_envs SimplEnv
env Expr InBndr
scrut InBndr
case_bndr InBndr
case_bndr1 [(AltCon
DEFAULT,[InBndr]
_,Expr InBndr
_)]
  | Just (Coercion
co, OutType
ty2) <- (FamInstEnv, FamInstEnv) -> OutType -> Maybe (Coercion, OutType)
topNormaliseType_maybe (FamInstEnv, FamInstEnv)
fam_envs (InBndr -> OutType
idType InBndr
case_bndr1)
  = do { InBndr
case_bndr2 <- FastString -> OutType -> OutType -> SimplM InBndr
newId ([Char] -> FastString
fsLit [Char]
"nt") OutType
Many OutType
ty2
        ; let rhs :: SimplSR
rhs  = Expr InBndr -> Maybe Int -> SimplSR
DoneEx (InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
case_bndr2 Expr InBndr -> Coercion -> Expr InBndr
forall b. Expr b -> Coercion -> Expr b
`Cast` Coercion -> Coercion
mkSymCo Coercion
co) Maybe Int
forall a. Maybe a
Nothing
              env2 :: SimplEnv
env2 = SimplEnv -> InBndr -> SimplSR -> SimplEnv
extendIdSubst SimplEnv
env InBndr
case_bndr SimplSR
rhs
        ; (SimplEnv, Expr InBndr, InBndr)
-> SimplM (SimplEnv, Expr InBndr, InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv
env2, Expr InBndr
scrut Expr InBndr -> Coercion -> Expr InBndr
forall b. Expr b -> Coercion -> Expr b
`Cast` Coercion
co, InBndr
case_bndr2) }

improveSeq (FamInstEnv, FamInstEnv)
_ SimplEnv
env Expr InBndr
scrut InBndr
_ InBndr
case_bndr1 [Alt InBndr]
_
  = (SimplEnv, Expr InBndr, InBndr)
-> SimplM (SimplEnv, Expr InBndr, InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv
env, Expr InBndr
scrut, InBndr
case_bndr1)


------------------------------------
simplAlt :: SimplEnv
         -> Maybe OutExpr  -- The scrutinee
         -> [AltCon]       -- These constructors can't be present when
                           -- matching the DEFAULT alternative
         -> OutId          -- The case binder
         -> SimplCont
         -> InAlt
         -> SimplM OutAlt

simplAlt :: SimplEnv
-> Maybe (Expr InBndr)
-> [AltCon]
-> InBndr
-> SimplCont
-> Alt InBndr
-> SimplM (Alt InBndr)
simplAlt SimplEnv
env Maybe (Expr InBndr)
_ [AltCon]
imposs_deflt_cons InBndr
case_bndr' SimplCont
cont' (AltCon
DEFAULT, [InBndr]
bndrs, Expr InBndr
rhs)
  = ASSERT( null bndrs )
    do  { let env' :: SimplEnv
env' = SimplEnv -> InBndr -> Unfolding -> SimplEnv
addBinderUnfolding SimplEnv
env InBndr
case_bndr'
                                        ([AltCon] -> Unfolding
mkOtherCon [AltCon]
imposs_deflt_cons)
                -- Record the constructors that the case-binder *can't* be.
        ; Expr InBndr
rhs' <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
env' Expr InBndr
rhs SimplCont
cont'
        ; Alt InBndr -> SimplM (Alt InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (AltCon
DEFAULT, [], Expr InBndr
rhs') }

simplAlt SimplEnv
env Maybe (Expr InBndr)
scrut' [AltCon]
_ InBndr
case_bndr' SimplCont
cont' (LitAlt Literal
lit, [InBndr]
bndrs, Expr InBndr
rhs)
  = ASSERT( null bndrs )
    do  { SimplEnv
env' <- SimplEnv
-> Maybe (Expr InBndr) -> InBndr -> Expr InBndr -> SimplM SimplEnv
addAltUnfoldings SimplEnv
env Maybe (Expr InBndr)
scrut' InBndr
case_bndr' (Literal -> Expr InBndr
forall b. Literal -> Expr b
Lit Literal
lit)
        ; Expr InBndr
rhs' <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
env' Expr InBndr
rhs SimplCont
cont'
        ; Alt InBndr -> SimplM (Alt InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Literal -> AltCon
LitAlt Literal
lit, [], Expr InBndr
rhs') }

simplAlt SimplEnv
env Maybe (Expr InBndr)
scrut' [AltCon]
_ InBndr
case_bndr' SimplCont
cont' (DataAlt DataCon
con, [InBndr]
vs, Expr InBndr
rhs)
  = do  { -- See Note [Adding evaluatedness info to pattern-bound variables]
          let vs_with_evals :: [InBndr]
vs_with_evals = Maybe (Expr InBndr) -> DataCon -> [InBndr] -> [InBndr]
addEvals Maybe (Expr InBndr)
scrut' DataCon
con [InBndr]
vs
        ; (SimplEnv
env', [InBndr]
vs') <- SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
simplLamBndrs SimplEnv
env [InBndr]
vs_with_evals

                -- Bind the case-binder to (con args)
        ; let inst_tys' :: [OutType]
inst_tys' = OutType -> [OutType]
tyConAppArgs (InBndr -> OutType
idType InBndr
case_bndr')
              con_app :: OutExpr
              con_app :: Expr InBndr
con_app   = DataCon -> [OutType] -> [InBndr] -> Expr InBndr
forall b. DataCon -> [OutType] -> [InBndr] -> Expr b
mkConApp2 DataCon
con [OutType]
inst_tys' [InBndr]
vs'

        ; SimplEnv
env'' <- SimplEnv
-> Maybe (Expr InBndr) -> InBndr -> Expr InBndr -> SimplM SimplEnv
addAltUnfoldings SimplEnv
env' Maybe (Expr InBndr)
scrut' InBndr
case_bndr' Expr InBndr
con_app
        ; Expr InBndr
rhs' <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
env'' Expr InBndr
rhs SimplCont
cont'
        ; Alt InBndr -> SimplM (Alt InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (DataCon -> AltCon
DataAlt DataCon
con, [InBndr]
vs', Expr InBndr
rhs') }

{- Note [Adding evaluatedness info to pattern-bound variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
addEvals records the evaluated-ness of the bound variables of
a case pattern.  This is *important*.  Consider

     data T = T !Int !Int

     case x of { T a b -> T (a+1) b }

We really must record that b is already evaluated so that we don't
go and re-evaluate it when constructing the result.
See Note [Data-con worker strictness] in GHC.Core.DataCon

NB: simplLamBndrs preserves this eval info

In addition to handling data constructor fields with !s, addEvals
also records the fact that the result of seq# is always in WHNF.
See Note [seq# magic] in GHC.Core.Opt.ConstantFold.  Example (#15226):

  case seq# v s of
    (# s', v' #) -> E

we want the compiler to be aware that v' is in WHNF in E.

Open problem: we don't record that v itself is in WHNF (and we can't
do it here).  The right thing is to do some kind of binder-swap;
see #15226 for discussion.
-}

addEvals :: Maybe OutExpr -> DataCon -> [Id] -> [Id]
-- See Note [Adding evaluatedness info to pattern-bound variables]
addEvals :: Maybe (Expr InBndr) -> DataCon -> [InBndr] -> [InBndr]
addEvals Maybe (Expr InBndr)
scrut DataCon
con [InBndr]
vs
  -- Deal with seq# applications
  | Just Expr InBndr
scr <- Maybe (Expr InBndr)
scrut
  , DataCon -> Bool
isUnboxedTupleCon DataCon
con
  , [InBndr
s,InBndr
x] <- [InBndr]
vs
    -- Use stripNArgs rather than collectArgsTicks to avoid building
    -- a list of arguments only to throw it away immediately.
  , Just (Var InBndr
f) <- Word -> Expr InBndr -> Maybe (Expr InBndr)
forall a. Word -> Expr a -> Maybe (Expr a)
stripNArgs Word
4 Expr InBndr
scr
  , Just PrimOp
SeqOp <- InBndr -> Maybe PrimOp
isPrimOpId_maybe InBndr
f
  , let x' :: InBndr
x' = StrictnessMark -> InBndr -> InBndr
zapIdOccInfoAndSetEvald StrictnessMark
MarkedStrict InBndr
x
  = [InBndr
s, InBndr
x']

  -- Deal with banged datacon fields
addEvals Maybe (Expr InBndr)
_scrut DataCon
con [InBndr]
vs = [InBndr] -> [StrictnessMark] -> [InBndr]
go [InBndr]
vs [StrictnessMark]
the_strs
    where
      the_strs :: [StrictnessMark]
the_strs = DataCon -> [StrictnessMark]
dataConRepStrictness DataCon
con

      go :: [InBndr] -> [StrictnessMark] -> [InBndr]
go [] [] = []
      go (InBndr
v:[InBndr]
vs') [StrictnessMark]
strs | InBndr -> Bool
isTyVar InBndr
v = InBndr
v InBndr -> [InBndr] -> [InBndr]
forall a. a -> [a] -> [a]
: [InBndr] -> [StrictnessMark] -> [InBndr]
go [InBndr]
vs' [StrictnessMark]
strs
      go (InBndr
v:[InBndr]
vs') (StrictnessMark
str:[StrictnessMark]
strs) = StrictnessMark -> InBndr -> InBndr
zapIdOccInfoAndSetEvald StrictnessMark
str InBndr
v InBndr -> [InBndr] -> [InBndr]
forall a. a -> [a] -> [a]
: [InBndr] -> [StrictnessMark] -> [InBndr]
go [InBndr]
vs' [StrictnessMark]
strs
      go [InBndr]
_ [StrictnessMark]
_ = [Char] -> SDoc -> [InBndr]
forall a. HasCallStack => [Char] -> SDoc -> a
pprPanic [Char]
"Simplify.addEvals"
                (DataCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr DataCon
con SDoc -> SDoc -> SDoc
$$
                 [InBndr] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [InBndr]
vs  SDoc -> SDoc -> SDoc
$$
                 [SDoc] -> SDoc
forall (t :: * -> *) a.
(Outputable (t a), Foldable t) =>
t a -> SDoc
ppr_with_length ((StrictnessMark -> SDoc) -> [StrictnessMark] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map StrictnessMark -> SDoc
strdisp [StrictnessMark]
the_strs) SDoc -> SDoc -> SDoc
$$
                 [Scaled OutType] -> SDoc
forall (t :: * -> *) a.
(Outputable (t a), Foldable t) =>
t a -> SDoc
ppr_with_length (DataCon -> [Scaled OutType]
dataConRepArgTys DataCon
con) SDoc -> SDoc -> SDoc
$$
                 [StrictnessMark] -> SDoc
forall (t :: * -> *) a.
(Outputable (t a), Foldable t) =>
t a -> SDoc
ppr_with_length (DataCon -> [StrictnessMark]
dataConRepStrictness DataCon
con))
        where
          ppr_with_length :: t a -> SDoc
ppr_with_length t a
list
            = t a -> SDoc
forall a. Outputable a => a -> SDoc
ppr t a
list SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
parens ([Char] -> SDoc
text [Char]
"length =" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr (t a -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length t a
list))
          strdisp :: StrictnessMark -> SDoc
strdisp StrictnessMark
MarkedStrict = [Char] -> SDoc
text [Char]
"MarkedStrict"
          strdisp StrictnessMark
NotMarkedStrict = [Char] -> SDoc
text [Char]
"NotMarkedStrict"

zapIdOccInfoAndSetEvald :: StrictnessMark -> Id -> Id
zapIdOccInfoAndSetEvald :: StrictnessMark -> InBndr -> InBndr
zapIdOccInfoAndSetEvald StrictnessMark
str InBndr
v =
  StrictnessMark -> InBndr -> InBndr
setCaseBndrEvald StrictnessMark
str (InBndr -> InBndr) -> InBndr -> InBndr
forall a b. (a -> b) -> a -> b
$ -- Add eval'dness info
  InBndr -> InBndr
zapIdOccInfo InBndr
v         -- And kill occ info;
                         -- see Note [Case alternative occ info]

addAltUnfoldings :: SimplEnv -> Maybe OutExpr -> OutId -> OutExpr -> SimplM SimplEnv
addAltUnfoldings :: SimplEnv
-> Maybe (Expr InBndr) -> InBndr -> Expr InBndr -> SimplM SimplEnv
addAltUnfoldings SimplEnv
env Maybe (Expr InBndr)
scrut InBndr
case_bndr Expr InBndr
con_app
  = do { let con_app_unf :: Unfolding
con_app_unf = Expr InBndr -> Unfolding
mk_simple_unf Expr InBndr
con_app
             env1 :: SimplEnv
env1 = SimplEnv -> InBndr -> Unfolding -> SimplEnv
addBinderUnfolding SimplEnv
env InBndr
case_bndr Unfolding
con_app_unf

             -- See Note [Add unfolding for scrutinee]
             env2 :: SimplEnv
env2 | OutType
Many <- InBndr -> OutType
idMult InBndr
case_bndr = case Maybe (Expr InBndr)
scrut of
                      Just (Var InBndr
v)           -> SimplEnv -> InBndr -> Unfolding -> SimplEnv
addBinderUnfolding SimplEnv
env1 InBndr
v Unfolding
con_app_unf
                      Just (Cast (Var InBndr
v) Coercion
co) -> SimplEnv -> InBndr -> Unfolding -> SimplEnv
addBinderUnfolding SimplEnv
env1 InBndr
v (Unfolding -> SimplEnv) -> Unfolding -> SimplEnv
forall a b. (a -> b) -> a -> b
$
                                                Expr InBndr -> Unfolding
mk_simple_unf (Expr InBndr -> Coercion -> Expr InBndr
forall b. Expr b -> Coercion -> Expr b
Cast Expr InBndr
con_app (Coercion -> Coercion
mkSymCo Coercion
co))
                      Maybe (Expr InBndr)
_                      -> SimplEnv
env1
                  | Bool
otherwise = SimplEnv
env1

       ; [Char] -> SDoc -> SimplM ()
traceSmpl [Char]
"addAltUnf" ([SDoc] -> SDoc
vcat [InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr InBndr
case_bndr SDoc -> SDoc -> SDoc
<+> Maybe (Expr InBndr) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Maybe (Expr InBndr)
scrut, Expr InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr Expr InBndr
con_app])
       ; SimplEnv -> SimplM SimplEnv
forall (m :: * -> *) a. Monad m => a -> m a
return SimplEnv
env2 }
  where
    mk_simple_unf :: Expr InBndr -> Unfolding
mk_simple_unf = DynFlags -> Expr InBndr -> Unfolding
mkSimpleUnfolding (SimplEnv -> DynFlags
seDynFlags SimplEnv
env)

addBinderUnfolding :: SimplEnv -> Id -> Unfolding -> SimplEnv
addBinderUnfolding :: SimplEnv -> InBndr -> Unfolding -> SimplEnv
addBinderUnfolding SimplEnv
env InBndr
bndr Unfolding
unf
  | Bool
debugIsOn, Just Expr InBndr
tmpl <- Unfolding -> Maybe (Expr InBndr)
maybeUnfoldingTemplate Unfolding
unf
  = WARN( not (eqType (idType bndr) (exprType tmpl)),
          ppr bndr $$ ppr (idType bndr) $$ ppr tmpl $$ ppr (exprType tmpl) )
    SimplEnv -> InBndr -> SimplEnv
modifyInScope SimplEnv
env (InBndr
bndr InBndr -> Unfolding -> InBndr
`setIdUnfolding` Unfolding
unf)

  | Bool
otherwise
  = SimplEnv -> InBndr -> SimplEnv
modifyInScope SimplEnv
env (InBndr
bndr InBndr -> Unfolding -> InBndr
`setIdUnfolding` Unfolding
unf)

zapBndrOccInfo :: Bool -> Id -> Id
-- Consider  case e of b { (a,b) -> ... }
-- Then if we bind b to (a,b) in "...", and b is not dead,
-- then we must zap the deadness info on a,b
zapBndrOccInfo :: Bool -> InBndr -> InBndr
zapBndrOccInfo Bool
keep_occ_info InBndr
pat_id
  | Bool
keep_occ_info = InBndr
pat_id
  | Bool
otherwise     = InBndr -> InBndr
zapIdOccInfo InBndr
pat_id

{- Note [Case binder evaluated-ness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We pin on a (OtherCon []) unfolding to the case-binder of a Case,
even though it'll be over-ridden in every case alternative with a more
informative unfolding.  Why?  Because suppose a later, less clever, pass
simply replaces all occurrences of the case binder with the binder itself;
then Lint may complain about the let/app invariant.  Example
    case e of b { DEFAULT -> let v = reallyUnsafePtrEq# b y in ....
                ; K       -> blah }

The let/app invariant requires that y is evaluated in the call to
reallyUnsafePtrEq#, which it is.  But we still want that to be true if we
propagate binders to occurrences.

This showed up in #13027.

Note [Add unfolding for scrutinee]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general it's unlikely that a variable scrutinee will appear
in the case alternatives   case x of { ...x unlikely to appear... }
because the binder-swap in OccurAnal has got rid of all such occurrences
See Note [Binder swap] in "GHC.Core.Opt.OccurAnal".

BUT it is still VERY IMPORTANT to add a suitable unfolding for a
variable scrutinee, in simplAlt.  Here's why
   case x of y
     (a,b) -> case b of c
                I# v -> ...(f y)...
There is no occurrence of 'b' in the (...(f y)...).  But y gets
the unfolding (a,b), and *that* mentions b.  If f has a RULE
    RULE f (p, I# q) = ...
we want that rule to match, so we must extend the in-scope env with a
suitable unfolding for 'y'.  It's *essential* for rule matching; but
it's also good for case-elimination -- suppose that 'f' was inlined
and did multi-level case analysis, then we'd solve it in one
simplifier sweep instead of two.

Exactly the same issue arises in GHC.Core.Opt.SpecConstr;
see Note [Add scrutinee to ValueEnv too] in GHC.Core.Opt.SpecConstr

HOWEVER, given
  case x of y { Just a -> r1; Nothing -> r2 }
we do not want to add the unfolding x -> y to 'x', which might seem cool,
since 'y' itself has different unfoldings in r1 and r2.  Reason: if we
did that, we'd have to zap y's deadness info and that is a very useful
piece of information.

So instead we add the unfolding x -> Just a, and x -> Nothing in the
respective RHSs.

Since this transformation is tantamount to a binder swap, the same caveat as in
Note [Suppressing binder-swaps on linear case] in OccurAnal apply.


************************************************************************
*                                                                      *
\subsection{Known constructor}
*                                                                      *
************************************************************************

We are a bit careful with occurrence info.  Here's an example

        (\x* -> case x of (a*, b) -> f a) (h v, e)

where the * means "occurs once".  This effectively becomes
        case (h v, e) of (a*, b) -> f a)
and then
        let a* = h v; b = e in f a
and then
        f (h v)

All this should happen in one sweep.
-}

knownCon :: SimplEnv
         -> OutExpr                                           -- The scrutinee
         -> [FloatBind] -> DataCon -> [OutType] -> [OutExpr]  -- The scrutinee (in pieces)
         -> InId -> [InBndr] -> InExpr                        -- The alternative
         -> SimplCont
         -> SimplM (SimplFloats, OutExpr)

knownCon :: SimplEnv
-> Expr InBndr
-> [FloatBind]
-> DataCon
-> [OutType]
-> [Expr InBndr]
-> InBndr
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
knownCon SimplEnv
env Expr InBndr
scrut [FloatBind]
dc_floats DataCon
dc [OutType]
dc_ty_args [Expr InBndr]
dc_args InBndr
bndr [InBndr]
bs Expr InBndr
rhs SimplCont
cont
  = do  { (SimplFloats
floats1, SimplEnv
env1)  <- SimplEnv
-> [InBndr] -> [Expr InBndr] -> SimplM (SimplFloats, SimplEnv)
bind_args SimplEnv
env [InBndr]
bs [Expr InBndr]
dc_args
        ; (SimplFloats
floats2, SimplEnv
env2) <- SimplEnv -> SimplM (SimplFloats, SimplEnv)
bind_case_bndr SimplEnv
env1
        ; (SimplFloats
floats3, Expr InBndr
expr') <- SimplEnv
-> Expr InBndr -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
simplExprF SimplEnv
env2 Expr InBndr
rhs SimplCont
cont
        ; case [FloatBind]
dc_floats of
            [] ->
              (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats3, Expr InBndr
expr')
            [FloatBind]
_ ->
              (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return ( SimplEnv -> SimplFloats
emptyFloats SimplEnv
env
               -- See Note [FloatBinds from constructor wrappers]
                     , [FloatBind] -> Expr InBndr -> Expr InBndr
GHC.Core.Make.wrapFloats [FloatBind]
dc_floats (Expr InBndr -> Expr InBndr) -> Expr InBndr -> Expr InBndr
forall a b. (a -> b) -> a -> b
$
                       SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats3) Expr InBndr
expr') }
  where
    zap_occ :: InBndr -> InBndr
zap_occ = Bool -> InBndr -> InBndr
zapBndrOccInfo (InBndr -> Bool
isDeadBinder InBndr
bndr)    -- bndr is an InId

                  -- Ugh!
    bind_args :: SimplEnv
-> [InBndr] -> [Expr InBndr] -> SimplM (SimplFloats, SimplEnv)
bind_args SimplEnv
env' [] [Expr InBndr]
_  = (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env', SimplEnv
env')

    bind_args SimplEnv
env' (InBndr
b:[InBndr]
bs') (Type OutType
ty : [Expr InBndr]
args)
      = ASSERT( isTyVar b )
        SimplEnv
-> [InBndr] -> [Expr InBndr] -> SimplM (SimplFloats, SimplEnv)
bind_args (SimplEnv -> InBndr -> OutType -> SimplEnv
extendTvSubst SimplEnv
env' InBndr
b OutType
ty) [InBndr]
bs' [Expr InBndr]
args

    bind_args SimplEnv
env' (InBndr
b:[InBndr]
bs') (Coercion Coercion
co : [Expr InBndr]
args)
      = ASSERT( isCoVar b )
        SimplEnv
-> [InBndr] -> [Expr InBndr] -> SimplM (SimplFloats, SimplEnv)
bind_args (SimplEnv -> InBndr -> Coercion -> SimplEnv
extendCvSubst SimplEnv
env' InBndr
b Coercion
co) [InBndr]
bs' [Expr InBndr]
args

    bind_args SimplEnv
env' (InBndr
b:[InBndr]
bs') (Expr InBndr
arg : [Expr InBndr]
args)
      = ASSERT( isId b )
        do { let b' :: InBndr
b' = InBndr -> InBndr
zap_occ InBndr
b
             -- Note that the binder might be "dead", because it doesn't
             -- occur in the RHS; and simplNonRecX may therefore discard
             -- it via postInlineUnconditionally.
             -- Nevertheless we must keep it if the case-binder is alive,
             -- because it may be used in the con_app.  See Note [knownCon occ info]
           ; (SimplFloats
floats1, SimplEnv
env2) <- SimplEnv -> InBndr -> Expr InBndr -> SimplM (SimplFloats, SimplEnv)
simplNonRecX SimplEnv
env' InBndr
b' Expr InBndr
arg  -- arg satisfies let/app invariant
           ; (SimplFloats
floats2, SimplEnv
env3)  <- SimplEnv
-> [InBndr] -> [Expr InBndr] -> SimplM (SimplFloats, SimplEnv)
bind_args SimplEnv
env2 [InBndr]
bs' [Expr InBndr]
args
           ; (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats1 SimplFloats -> SimplFloats -> SimplFloats
`addFloats` SimplFloats
floats2, SimplEnv
env3) }

    bind_args SimplEnv
_ [InBndr]
_ [Expr InBndr]
_ =
      [Char] -> SDoc -> SimplM (SimplFloats, SimplEnv)
forall a. HasCallStack => [Char] -> SDoc -> a
pprPanic [Char]
"bind_args" (SDoc -> SimplM (SimplFloats, SimplEnv))
-> SDoc -> SimplM (SimplFloats, SimplEnv)
forall a b. (a -> b) -> a -> b
$ DataCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr DataCon
dc SDoc -> SDoc -> SDoc
$$ [InBndr] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [InBndr]
bs SDoc -> SDoc -> SDoc
$$ [Expr InBndr] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Expr InBndr]
dc_args SDoc -> SDoc -> SDoc
$$
                             [Char] -> SDoc
text [Char]
"scrut:" SDoc -> SDoc -> SDoc
<+> Expr InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr Expr InBndr
scrut

       -- It's useful to bind bndr to scrut, rather than to a fresh
       -- binding      x = Con arg1 .. argn
       -- because very often the scrut is a variable, so we avoid
       -- creating, and then subsequently eliminating, a let-binding
       -- BUT, if scrut is a not a variable, we must be careful
       -- about duplicating the arg redexes; in that case, make
       -- a new con-app from the args
    bind_case_bndr :: SimplEnv -> SimplM (SimplFloats, SimplEnv)
bind_case_bndr SimplEnv
env
      | InBndr -> Bool
isDeadBinder InBndr
bndr   = (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplEnv
env)
      | Expr InBndr -> Bool
exprIsTrivial Expr InBndr
scrut = (SimplFloats, SimplEnv) -> SimplM (SimplFloats, SimplEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env
                                     , SimplEnv -> InBndr -> SimplSR -> SimplEnv
extendIdSubst SimplEnv
env InBndr
bndr (Expr InBndr -> Maybe Int -> SimplSR
DoneEx Expr InBndr
scrut Maybe Int
forall a. Maybe a
Nothing))
      | Bool
otherwise           = do { [Expr InBndr]
dc_args <- (InBndr -> SimplM (Expr InBndr))
-> [InBndr] -> SimplM [Expr InBndr]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (SimplEnv -> InBndr -> SimplM (Expr InBndr)
simplVar SimplEnv
env) [InBndr]
bs
                                         -- dc_ty_args are already OutTypes,
                                         -- but bs are InBndrs
                                 ; let con_app :: Expr InBndr
con_app = InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var (DataCon -> InBndr
dataConWorkId DataCon
dc)
                                                 Expr InBndr -> [OutType] -> Expr InBndr
forall b. Expr b -> [OutType] -> Expr b
`mkTyApps` [OutType]
dc_ty_args
                                                 Expr InBndr -> [Expr InBndr] -> Expr InBndr
forall b. Expr b -> [Expr b] -> Expr b
`mkApps`   [Expr InBndr]
dc_args
                                 ; SimplEnv -> InBndr -> Expr InBndr -> SimplM (SimplFloats, SimplEnv)
simplNonRecX SimplEnv
env InBndr
bndr Expr InBndr
con_app }

-------------------
missingAlt :: SimplEnv -> Id -> [InAlt] -> SimplCont
           -> SimplM (SimplFloats, OutExpr)
                -- This isn't strictly an error, although it is unusual.
                -- It's possible that the simplifier might "see" that
                -- an inner case has no accessible alternatives before
                -- it "sees" that the entire branch of an outer case is
                -- inaccessible.  So we simply put an error case here instead.
missingAlt :: SimplEnv
-> InBndr
-> [Alt InBndr]
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
missingAlt SimplEnv
env InBndr
case_bndr [Alt InBndr]
_ SimplCont
cont
  = WARN( True, text "missingAlt" <+> ppr case_bndr )
    -- See Note [Avoiding space leaks in OutType]
    let cont_ty :: OutType
cont_ty = SimplCont -> OutType
contResultType SimplCont
cont
    in OutType -> ()
seqType OutType
cont_ty ()
-> SimplM (SimplFloats, Expr InBndr)
-> SimplM (SimplFloats, Expr InBndr)
`seq`
       (SimplFloats, Expr InBndr) -> SimplM (SimplFloats, Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, OutType -> Expr InBndr
mkImpossibleExpr OutType
cont_ty)

{-
************************************************************************
*                                                                      *
\subsection{Duplicating continuations}
*                                                                      *
************************************************************************

Consider
  let x* = case e of { True -> e1; False -> e2 }
  in b
where x* is a strict binding.  Then mkDupableCont will be given
the continuation
   case [] of { True -> e1; False -> e2 } ; let x* = [] in b ; stop
and will split it into
   dupable:      case [] of { True -> $j1; False -> $j2 } ; stop
   join floats:  $j1 = e1, $j2 = e2
   non_dupable:  let x* = [] in b; stop

Putting this back together would give
   let x* = let { $j1 = e1; $j2 = e2 } in
            case e of { True -> $j1; False -> $j2 }
   in b
(Of course we only do this if 'e' wants to duplicate that continuation.)
Note how important it is that the new join points wrap around the
inner expression, and not around the whole thing.

In contrast, any let-bindings introduced by mkDupableCont can wrap
around the entire thing.

Note [Bottom alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have
     case (case x of { A -> error .. ; B -> e; C -> error ..)
       of alts
then we can just duplicate those alts because the A and C cases
will disappear immediately.  This is more direct than creating
join points and inlining them away.  See #4930.
-}

--------------------
mkDupableCaseCont :: SimplEnv -> [InAlt] -> SimplCont
                  -> SimplM (SimplFloats, SimplCont)
mkDupableCaseCont :: SimplEnv
-> [Alt InBndr] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableCaseCont SimplEnv
env [Alt InBndr]
alts SimplCont
cont
  | [Alt InBndr] -> Bool
altsWouldDup [Alt InBndr]
alts = SimplEnv -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableCont SimplEnv
env SimplCont
cont
  | Bool
otherwise         = (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplCont
cont)

altsWouldDup :: [InAlt] -> Bool -- True iff strictly > 1 non-bottom alternative
altsWouldDup :: [Alt InBndr] -> Bool
altsWouldDup []  = Bool
False        -- See Note [Bottom alternatives]
altsWouldDup [Alt InBndr
_] = Bool
False
altsWouldDup (Alt InBndr
alt:[Alt InBndr]
alts)
  | Alt InBndr -> Bool
forall a b. (a, b, Expr InBndr) -> Bool
is_bot_alt Alt InBndr
alt = [Alt InBndr] -> Bool
altsWouldDup [Alt InBndr]
alts
  | Bool
otherwise      = Bool -> Bool
not ((Alt InBndr -> Bool) -> [Alt InBndr] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Alt InBndr -> Bool
forall a b. (a, b, Expr InBndr) -> Bool
is_bot_alt [Alt InBndr]
alts)
  where
    is_bot_alt :: (a, b, Expr InBndr) -> Bool
is_bot_alt (a
_,b
_,Expr InBndr
rhs) = Expr InBndr -> Bool
exprIsDeadEnd Expr InBndr
rhs

-------------------------
mkDupableCont :: SimplEnv
              -> SimplCont
              -> SimplM ( SimplFloats  -- Incoming SimplEnv augmented with
                                       --   extra let/join-floats and in-scope variables
                        , SimplCont)   -- dup_cont: duplicable continuation
mkDupableCont :: SimplEnv -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableCont SimplEnv
env SimplCont
cont
  = SimplEnv
-> [Demand] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableContWithDmds SimplEnv
env (Demand -> [Demand]
forall a. a -> [a]
repeat Demand
topDmd) SimplCont
cont

mkDupableContWithDmds
   :: SimplEnv  -> [Demand]  -- Demands on arguments; always infinite
   -> SimplCont -> SimplM ( SimplFloats, SimplCont)

mkDupableContWithDmds :: SimplEnv
-> [Demand] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableContWithDmds SimplEnv
env [Demand]
_ SimplCont
cont
  | SimplCont -> Bool
contIsDupable SimplCont
cont
  = (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env, SimplCont
cont)

mkDupableContWithDmds SimplEnv
_ [Demand]
_ (Stop {}) = [Char] -> SimplM (SimplFloats, SimplCont)
forall a. [Char] -> a
panic [Char]
"mkDupableCont"     -- Handled by previous eqn

mkDupableContWithDmds SimplEnv
env [Demand]
dmds (CastIt Coercion
ty SimplCont
cont)
  = do  { (SimplFloats
floats, SimplCont
cont') <- SimplEnv
-> [Demand] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableContWithDmds SimplEnv
env [Demand]
dmds SimplCont
cont
        ; (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, Coercion -> SimplCont -> SimplCont
CastIt Coercion
ty SimplCont
cont') }

-- Duplicating ticks for now, not sure if this is good or not
mkDupableContWithDmds SimplEnv
env [Demand]
dmds (TickIt Tickish InBndr
t SimplCont
cont)
  = do  { (SimplFloats
floats, SimplCont
cont') <- SimplEnv
-> [Demand] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableContWithDmds SimplEnv
env [Demand]
dmds SimplCont
cont
        ; (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, Tickish InBndr -> SimplCont -> SimplCont
TickIt Tickish InBndr
t SimplCont
cont') }

mkDupableContWithDmds SimplEnv
env [Demand]
_
     (StrictBind { sc_bndr :: SimplCont -> InBndr
sc_bndr = InBndr
bndr, sc_bndrs :: SimplCont -> [InBndr]
sc_bndrs = [InBndr]
bndrs
                 , sc_body :: SimplCont -> Expr InBndr
sc_body = Expr InBndr
body, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
se, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont})
-- See Note [Duplicating StrictBind]
-- K[ let x = <> in b ]  -->   join j x = K[ b ]
--                             j <>
  = do { let sb_env :: SimplEnv
sb_env = SimplEnv
se SimplEnv -> SimplEnv -> SimplEnv
`setInScopeFromE` SimplEnv
env
       ; (SimplEnv
sb_env1, InBndr
bndr')      <- SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplBinder SimplEnv
sb_env InBndr
bndr
       ; (SimplFloats
floats1, Expr InBndr
join_inner) <- SimplEnv
-> [InBndr]
-> Expr InBndr
-> SimplCont
-> SimplM (SimplFloats, Expr InBndr)
simplLam SimplEnv
sb_env1 [InBndr]
bndrs Expr InBndr
body SimplCont
cont
          -- No need to use mkDupableCont before simplLam; we
          -- use cont once here, and then share the result if necessary

       ; let join_body :: Expr InBndr
join_body = SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats SimplFloats
floats1 Expr InBndr
join_inner
             res_ty :: OutType
res_ty    = SimplCont -> OutType
contResultType SimplCont
cont

       ; SimplEnv
-> InBndr
-> Expr InBndr
-> OutType
-> SimplM (SimplFloats, SimplCont)
mkDupableStrictBind SimplEnv
env InBndr
bndr' Expr InBndr
join_body OutType
res_ty }

mkDupableContWithDmds SimplEnv
env [Demand]
_
    (StrictArg { sc_fun :: SimplCont -> ArgInfo
sc_fun = ArgInfo
fun, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont
               , sc_fun_ty :: SimplCont -> OutType
sc_fun_ty = OutType
fun_ty })
  -- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
  | SimplCont -> Bool
thumbsUpPlanA SimplCont
cont
  = -- Use Plan A of Note [Duplicating StrictArg]
    do { let (Demand
_ : [Demand]
dmds) = ArgInfo -> [Demand]
ai_dmds ArgInfo
fun
       ; (SimplFloats
floats1, SimplCont
cont')  <- SimplEnv
-> [Demand] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableContWithDmds SimplEnv
env [Demand]
dmds SimplCont
cont
                              -- Use the demands from the function to add the right
                              -- demand info on any bindings we make for further args
       ; ([LetFloats]
floats_s, [ArgSpec]
args') <- (ArgSpec -> SimplM (LetFloats, ArgSpec))
-> [ArgSpec] -> SimplM ([LetFloats], [ArgSpec])
forall (m :: * -> *) a b c.
Applicative m =>
(a -> m (b, c)) -> [a] -> m ([b], [c])
mapAndUnzipM (SimplMode -> ArgSpec -> SimplM (LetFloats, ArgSpec)
makeTrivialArg (SimplEnv -> SimplMode
getMode SimplEnv
env))
                                           (ArgInfo -> [ArgSpec]
ai_args ArgInfo
fun)
       ; (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return ( (SimplFloats -> LetFloats -> SimplFloats)
-> SimplFloats -> [LetFloats] -> SimplFloats
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' SimplFloats -> LetFloats -> SimplFloats
addLetFloats SimplFloats
floats1 [LetFloats]
floats_s
                , StrictArg :: DupFlag -> ArgInfo -> OutType -> SimplCont -> SimplCont
StrictArg { sc_fun :: ArgInfo
sc_fun = ArgInfo
fun { ai_args :: [ArgSpec]
ai_args = [ArgSpec]
args' }
                            , sc_cont :: SimplCont
sc_cont = SimplCont
cont'
                            , sc_fun_ty :: OutType
sc_fun_ty = OutType
fun_ty
                            , sc_dup :: DupFlag
sc_dup = DupFlag
OkToDup} ) }

  | Bool
otherwise
  = -- Use Plan B of Note [Duplicating StrictArg]
    --   K[ f a b <> ]   -->   join j x = K[ f a b x ]
    --                         j <>
    do { let rhs_ty :: OutType
rhs_ty       = SimplCont -> OutType
contResultType SimplCont
cont
             (OutType
m,OutType
arg_ty,OutType
_) = OutType -> (OutType, OutType, OutType)
splitFunTy OutType
fun_ty
       ; InBndr
arg_bndr <- FastString -> OutType -> OutType -> SimplM InBndr
newId ([Char] -> FastString
fsLit [Char]
"arg") OutType
m OutType
arg_ty
       ; let env' :: SimplEnv
env' = SimplEnv
env SimplEnv -> [InBndr] -> SimplEnv
`addNewInScopeIds` [InBndr
arg_bndr]
       ; (SimplFloats
floats, Expr InBndr
join_rhs) <- SimplEnv
-> ArgInfo -> SimplCont -> SimplM (SimplFloats, Expr InBndr)
rebuildCall SimplEnv
env' (ArgInfo -> Expr InBndr -> OutType -> ArgInfo
addValArgTo ArgInfo
fun (InBndr -> Expr InBndr
forall b. InBndr -> Expr b
Var InBndr
arg_bndr) OutType
fun_ty) SimplCont
cont
       ; SimplEnv
-> InBndr
-> Expr InBndr
-> OutType
-> SimplM (SimplFloats, SimplCont)
mkDupableStrictBind SimplEnv
env' InBndr
arg_bndr (SimplFloats -> Expr InBndr -> Expr InBndr
wrapFloats SimplFloats
floats Expr InBndr
join_rhs) OutType
rhs_ty }
  where
    thumbsUpPlanA :: SimplCont -> Bool
thumbsUpPlanA (StrictArg {})               = Bool
False
    thumbsUpPlanA (CastIt Coercion
_ SimplCont
k)                 = SimplCont -> Bool
thumbsUpPlanA SimplCont
k
    thumbsUpPlanA (TickIt Tickish InBndr
_ SimplCont
k)                 = SimplCont -> Bool
thumbsUpPlanA SimplCont
k
    thumbsUpPlanA (ApplyToVal { sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
k }) = SimplCont -> Bool
thumbsUpPlanA SimplCont
k
    thumbsUpPlanA (ApplyToTy  { sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
k }) = SimplCont -> Bool
thumbsUpPlanA SimplCont
k
    thumbsUpPlanA (Select {})                  = Bool
True
    thumbsUpPlanA (StrictBind {})              = Bool
True
    thumbsUpPlanA (Stop {})                    = Bool
True

mkDupableContWithDmds SimplEnv
env [Demand]
dmds
    (ApplyToTy { sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont, sc_arg_ty :: SimplCont -> OutType
sc_arg_ty = OutType
arg_ty, sc_hole_ty :: SimplCont -> OutType
sc_hole_ty = OutType
hole_ty })
  = do  { (SimplFloats
floats, SimplCont
cont') <- SimplEnv
-> [Demand] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableContWithDmds SimplEnv
env [Demand]
dmds SimplCont
cont
        ; (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
floats, ApplyToTy :: OutType -> OutType -> SimplCont -> SimplCont
ApplyToTy { sc_cont :: SimplCont
sc_cont = SimplCont
cont'
                                    , sc_arg_ty :: OutType
sc_arg_ty = OutType
arg_ty, sc_hole_ty :: OutType
sc_hole_ty = OutType
hole_ty }) }

mkDupableContWithDmds SimplEnv
env [Demand]
dmds
    (ApplyToVal { sc_arg :: SimplCont -> Expr InBndr
sc_arg = Expr InBndr
arg, sc_dup :: SimplCont -> DupFlag
sc_dup = DupFlag
dup, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
se
                , sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont, sc_hole_ty :: SimplCont -> OutType
sc_hole_ty = OutType
hole_ty })
  =     -- e.g.         [...hole...] (...arg...)
        --      ==>
        --              let a = ...arg...
        --              in [...hole...] a
        -- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
    do  { let (Demand
dmd:[Demand]
_) = [Demand]
dmds   -- Never fails
        ; (SimplFloats
floats1, SimplCont
cont') <- SimplEnv
-> [Demand] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableContWithDmds SimplEnv
env [Demand]
dmds SimplCont
cont
        ; let env' :: SimplEnv
env' = SimplEnv
env SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
floats1
        ; (DupFlag
_, SimplEnv
se', Expr InBndr
arg') <- SimplEnv
-> DupFlag
-> SimplEnv
-> Expr InBndr
-> SimplM (DupFlag, SimplEnv, Expr InBndr)
simplArg SimplEnv
env' DupFlag
dup SimplEnv
se Expr InBndr
arg
        ; (LetFloats
let_floats2, Expr InBndr
arg'') <- SimplMode
-> TopLevelFlag
-> Demand
-> FastString
-> Expr InBndr
-> SimplM (LetFloats, Expr InBndr)
makeTrivial (SimplEnv -> SimplMode
getMode SimplEnv
env) TopLevelFlag
NotTopLevel Demand
dmd ([Char] -> FastString
fsLit [Char]
"karg") Expr InBndr
arg'
        ; let all_floats :: SimplFloats
all_floats = SimplFloats
floats1 SimplFloats -> LetFloats -> SimplFloats
`addLetFloats` LetFloats
let_floats2
        ; (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return ( SimplFloats
all_floats
                 , ApplyToVal :: DupFlag
-> OutType -> Expr InBndr -> SimplEnv -> SimplCont -> SimplCont
ApplyToVal { sc_arg :: Expr InBndr
sc_arg = Expr InBndr
arg''
                              , sc_env :: SimplEnv
sc_env = SimplEnv
se' SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
all_floats
                                         -- Ensure that sc_env includes the free vars of
                                         -- arg'' in its in-scope set, even if makeTrivial
                                         -- has turned arg'' into a fresh variable
                                         -- See Note [StaticEnv invariant] in GHC.Core.Opt.Simplify.Utils
                              , sc_dup :: DupFlag
sc_dup = DupFlag
OkToDup, sc_cont :: SimplCont
sc_cont = SimplCont
cont'
                              , sc_hole_ty :: OutType
sc_hole_ty = OutType
hole_ty }) }

mkDupableContWithDmds SimplEnv
env [Demand]
_
    (Select { sc_bndr :: SimplCont -> InBndr
sc_bndr = InBndr
case_bndr, sc_alts :: SimplCont -> [Alt InBndr]
sc_alts = [Alt InBndr]
alts, sc_env :: SimplCont -> SimplEnv
sc_env = SimplEnv
se, sc_cont :: SimplCont -> SimplCont
sc_cont = SimplCont
cont })
  =     -- e.g.         (case [...hole...] of { pi -> ei })
        --      ===>
        --              let ji = \xij -> ei
        --              in case [...hole...] of { pi -> ji xij }
        -- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
    do  { Tick -> SimplM ()
tick (InBndr -> Tick
CaseOfCase InBndr
case_bndr)
        ; (SimplFloats
floats, SimplCont
alt_cont) <- SimplEnv
-> [Alt InBndr] -> SimplCont -> SimplM (SimplFloats, SimplCont)
mkDupableCaseCont SimplEnv
env [Alt InBndr]
alts SimplCont
cont
                -- NB: We call mkDupableCaseCont here to make cont duplicable
                --     (if necessary, depending on the number of alts)
                -- And this is important: see Note [Fusing case continuations]

        ; let alt_env :: SimplEnv
alt_env = SimplEnv
se SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
floats
        ; let cont_scaling :: OutType
cont_scaling = SimplCont -> OutType
contHoleScaling SimplCont
cont
          -- See Note [Scaling in case-of-case]
        ; (SimplEnv
alt_env', InBndr
case_bndr') <- SimplEnv -> InBndr -> SimplM (SimplEnv, InBndr)
simplBinder SimplEnv
alt_env (OutType -> InBndr -> InBndr
scaleIdBy OutType
cont_scaling InBndr
case_bndr)
        ; [Alt InBndr]
alts' <- (Alt InBndr -> SimplM (Alt InBndr))
-> [Alt InBndr] -> SimplM [Alt InBndr]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (SimplEnv
-> Maybe (Expr InBndr)
-> [AltCon]
-> InBndr
-> SimplCont
-> Alt InBndr
-> SimplM (Alt InBndr)
simplAlt SimplEnv
alt_env' Maybe (Expr InBndr)
forall a. Maybe a
Nothing [] InBndr
case_bndr' SimplCont
alt_cont) (OutType -> [Alt InBndr] -> [Alt InBndr]
scaleAltsBy OutType
cont_scaling [Alt InBndr]
alts)
        -- Safe to say that there are no handled-cons for the DEFAULT case
                -- NB: simplBinder does not zap deadness occ-info, so
                -- a dead case_bndr' will still advertise its deadness
                -- This is really important because in
                --      case e of b { (# p,q #) -> ... }
                -- b is always dead, and indeed we are not allowed to bind b to (# p,q #),
                -- which might happen if e was an explicit unboxed pair and b wasn't marked dead.
                -- In the new alts we build, we have the new case binder, so it must retain
                -- its deadness.
        -- NB: we don't use alt_env further; it has the substEnv for
        --     the alternatives, and we don't want that

        ; (JoinFloats
join_floats, [Alt InBndr]
alts'') <- (JoinFloats -> Alt InBndr -> SimplM (JoinFloats, Alt InBndr))
-> JoinFloats -> [Alt InBndr] -> SimplM (JoinFloats, [Alt InBndr])
forall (m :: * -> *) acc x y.
Monad m =>
(acc -> x -> m (acc, y)) -> acc -> [x] -> m (acc, [y])
mapAccumLM (Platform
-> InBndr
-> JoinFloats
-> Alt InBndr
-> SimplM (JoinFloats, Alt InBndr)
mkDupableAlt (DynFlags -> Platform
targetPlatform (SimplEnv -> DynFlags
seDynFlags SimplEnv
env)) InBndr
case_bndr')
                                              JoinFloats
emptyJoinFloats [Alt InBndr]
alts'

        ; let all_floats :: SimplFloats
all_floats = SimplFloats
floats SimplFloats -> JoinFloats -> SimplFloats
`addJoinFloats` JoinFloats
join_floats
                           -- Note [Duplicated env]
        ; (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplFloats
all_floats
                 , Select :: DupFlag
-> InBndr -> [Alt InBndr] -> SimplEnv -> SimplCont -> SimplCont
Select { sc_dup :: DupFlag
sc_dup  = DupFlag
OkToDup
                          , sc_bndr :: InBndr
sc_bndr = InBndr
case_bndr'
                          , sc_alts :: [Alt InBndr]
sc_alts = [Alt InBndr]
alts''
                          , sc_env :: SimplEnv
sc_env  = SimplEnv -> SimplEnv
zapSubstEnv SimplEnv
se SimplEnv -> SimplFloats -> SimplEnv
`setInScopeFromF` SimplFloats
all_floats
                                      -- See Note [StaticEnv invariant] in GHC.Core.Opt.Simplify.Utils
                          , sc_cont :: SimplCont
sc_cont = OutType -> SimplCont
mkBoringStop (SimplCont -> OutType
contResultType SimplCont
cont) } ) }

mkDupableStrictBind :: SimplEnv -> OutId -> OutExpr -> OutType
                    -> SimplM (SimplFloats, SimplCont)
mkDupableStrictBind :: SimplEnv
-> InBndr
-> Expr InBndr
-> OutType
-> SimplM (SimplFloats, SimplCont)
mkDupableStrictBind SimplEnv
env InBndr
arg_bndr Expr InBndr
join_rhs OutType
res_ty
  | Platform -> Expr InBndr -> Bool
exprIsDupable (DynFlags -> Platform
targetPlatform (SimplEnv -> DynFlags
seDynFlags SimplEnv
env)) Expr InBndr
join_rhs
  = (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env
           , StrictBind :: DupFlag
-> InBndr
-> [InBndr]
-> Expr InBndr
-> SimplEnv
-> SimplCont
-> SimplCont
StrictBind { sc_bndr :: InBndr
sc_bndr = InBndr
arg_bndr, sc_bndrs :: [InBndr]
sc_bndrs = []
                        , sc_body :: Expr InBndr
sc_body = Expr InBndr
join_rhs
                        , sc_env :: SimplEnv
sc_env  = SimplEnv -> SimplEnv
zapSubstEnv SimplEnv
env
                          -- See Note [StaticEnv invariant] in GHC.Core.Opt.Simplify.Utils
                        , sc_dup :: DupFlag
sc_dup  = DupFlag
OkToDup
                        , sc_cont :: SimplCont
sc_cont = OutType -> SimplCont
mkBoringStop OutType
res_ty } )
  | Bool
otherwise
  = do { InBndr
join_bndr <- [InBndr] -> OutType -> SimplM InBndr
newJoinId [InBndr
arg_bndr] OutType
res_ty
       ; let arg_info :: ArgInfo
arg_info = ArgInfo :: InBndr
-> [ArgSpec] -> FunRules -> Bool -> [Demand] -> [Int] -> ArgInfo
ArgInfo { ai_fun :: InBndr
ai_fun   = InBndr
join_bndr
                                , ai_rules :: FunRules
ai_rules = FunRules
forall a. Maybe a
Nothing, ai_args :: [ArgSpec]
ai_args  = []
                                , ai_encl :: Bool
ai_encl  = Bool
False, ai_dmds :: [Demand]
ai_dmds  = Demand -> [Demand]
forall a. a -> [a]
repeat Demand
topDmd
                                , ai_discs :: [Int]
ai_discs = Int -> [Int]
forall a. a -> [a]
repeat Int
0 }
       ; (SimplFloats, SimplCont) -> SimplM (SimplFloats, SimplCont)
forall (m :: * -> *) a. Monad m => a -> m a
return ( SimplFloats -> JoinFloats -> SimplFloats
addJoinFloats (SimplEnv -> SimplFloats
emptyFloats SimplEnv
env) (JoinFloats -> SimplFloats) -> JoinFloats -> SimplFloats
forall a b. (a -> b) -> a -> b
$
                  InBind -> JoinFloats
unitJoinFloat                   (InBind -> JoinFloats) -> InBind -> JoinFloats
forall a b. (a -> b) -> a -> b
$
                  InBndr -> Expr InBndr -> InBind
forall b. b -> Expr b -> Bind b
NonRec InBndr
join_bndr                (Expr InBndr -> InBind) -> Expr InBndr -> InBind
forall a b. (a -> b) -> a -> b
$
                  InBndr -> Expr InBndr -> Expr InBndr
forall b. b -> Expr b -> Expr b
Lam (InBndr -> InBndr
setOneShotLambda InBndr
arg_bndr) Expr InBndr
join_rhs
                , StrictArg :: DupFlag -> ArgInfo -> OutType -> SimplCont -> SimplCont
StrictArg { sc_dup :: DupFlag
sc_dup    = DupFlag
OkToDup
                            , sc_fun :: ArgInfo
sc_fun    = ArgInfo
arg_info
                            , sc_fun_ty :: OutType
sc_fun_ty = InBndr -> OutType
idType InBndr
join_bndr
                            , sc_cont :: SimplCont
sc_cont   = OutType -> SimplCont
mkBoringStop OutType
res_ty
                            } ) }

mkDupableAlt :: Platform -> OutId
             -> JoinFloats -> OutAlt
             -> SimplM (JoinFloats, OutAlt)
mkDupableAlt :: Platform
-> InBndr
-> JoinFloats
-> Alt InBndr
-> SimplM (JoinFloats, Alt InBndr)
mkDupableAlt Platform
platform InBndr
case_bndr JoinFloats
jfloats (AltCon
con, [InBndr]
bndrs', Expr InBndr
rhs')
  | Platform -> Expr InBndr -> Bool
exprIsDupable Platform
platform Expr InBndr
rhs'  -- Note [Small alternative rhs]
  = (JoinFloats, Alt InBndr) -> SimplM (JoinFloats, Alt InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (JoinFloats
jfloats, (AltCon
con, [InBndr]
bndrs', Expr InBndr
rhs'))

  | Bool
otherwise
  = do  { let rhs_ty' :: OutType
rhs_ty'  = Expr InBndr -> OutType
exprType Expr InBndr
rhs'
              scrut_ty :: OutType
scrut_ty = InBndr -> OutType
idType InBndr
case_bndr
              case_bndr_w_unf :: InBndr
case_bndr_w_unf
                = case AltCon
con of
                      AltCon
DEFAULT    -> InBndr
case_bndr
                      DataAlt DataCon
dc -> InBndr -> Unfolding -> InBndr
setIdUnfolding InBndr
case_bndr Unfolding
unf
                          where
                                 -- See Note [Case binders and join points]
                             unf :: Unfolding
unf = Expr InBndr -> Unfolding
mkInlineUnfolding Expr InBndr
forall b. Expr b
rhs
                             rhs :: Expr b
rhs = DataCon -> [OutType] -> [InBndr] -> Expr b
forall b. DataCon -> [OutType] -> [InBndr] -> Expr b
mkConApp2 DataCon
dc (OutType -> [OutType]
tyConAppArgs OutType
scrut_ty) [InBndr]
bndrs'

                      LitAlt {} -> WARN( True, text "mkDupableAlt"
                                                <+> ppr case_bndr <+> ppr con )
                                   InBndr
case_bndr
                           -- The case binder is alive but trivial, so why has
                           -- it not been substituted away?

              final_bndrs' :: [InBndr]
final_bndrs'
                | InBndr -> Bool
isDeadBinder InBndr
case_bndr = (InBndr -> Bool) -> [InBndr] -> [InBndr]
forall a. (a -> Bool) -> [a] -> [a]
filter InBndr -> Bool
abstract_over [InBndr]
bndrs'
                | Bool
otherwise              = [InBndr]
bndrs' [InBndr] -> [InBndr] -> [InBndr]
forall a. [a] -> [a] -> [a]
++ [InBndr
case_bndr_w_unf]

              abstract_over :: InBndr -> Bool
abstract_over InBndr
bndr
                  | InBndr -> Bool
isTyVar InBndr
bndr = Bool
True -- Abstract over all type variables just in case
                  | Bool
otherwise    = Bool -> Bool
not (InBndr -> Bool
isDeadBinder InBndr
bndr)
                        -- The deadness info on the new Ids is preserved by simplBinders
              final_args :: [Expr b]
final_args = [InBndr] -> [Expr b]
forall b. [InBndr] -> [Expr b]
varsToCoreExprs [InBndr]
final_bndrs'
                           -- Note [Join point abstraction]

                -- We make the lambdas into one-shot-lambdas.  The
                -- join point is sure to be applied at most once, and doing so
                -- prevents the body of the join point being floated out by
                -- the full laziness pass
              really_final_bndrs :: [InBndr]
really_final_bndrs     = (InBndr -> InBndr) -> [InBndr] -> [InBndr]
forall a b. (a -> b) -> [a] -> [b]
map InBndr -> InBndr
one_shot [InBndr]
final_bndrs'
              one_shot :: InBndr -> InBndr
one_shot InBndr
v | InBndr -> Bool
isId InBndr
v    = InBndr -> InBndr
setOneShotLambda InBndr
v
                         | Bool
otherwise = InBndr
v
              join_rhs :: Expr InBndr
join_rhs   = [InBndr] -> Expr InBndr -> Expr InBndr
forall b. [b] -> Expr b -> Expr b
mkLams [InBndr]
really_final_bndrs Expr InBndr
rhs'

        ; InBndr
join_bndr <- [InBndr] -> OutType -> SimplM InBndr
newJoinId [InBndr]
final_bndrs' OutType
rhs_ty'

        ; let join_call :: Expr b
join_call = Expr b -> [Expr b] -> Expr b
forall b. Expr b -> [Expr b] -> Expr b
mkApps (InBndr -> Expr b
forall b. InBndr -> Expr b
Var InBndr
join_bndr) [Expr b]
forall b. [Expr b]
final_args
              alt' :: (AltCon, [InBndr], Expr b)
alt'      = (AltCon
con, [InBndr]
bndrs', Expr b
forall b. Expr b
join_call)

        ; (JoinFloats, Alt InBndr) -> SimplM (JoinFloats, Alt InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return ( JoinFloats
jfloats JoinFloats -> JoinFloats -> JoinFloats
`addJoinFlts` InBind -> JoinFloats
unitJoinFloat (InBndr -> Expr InBndr -> InBind
forall b. b -> Expr b -> Bind b
NonRec InBndr
join_bndr Expr InBndr
join_rhs)
                 , Alt InBndr
forall b. (AltCon, [InBndr], Expr b)
alt') }
                -- See Note [Duplicated env]

{-
Note [Fusing case continuations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important to fuse two successive case continuations when the
first has one alternative.  That's why we call prepareCaseCont here.
Consider this, which arises from thunk splitting (see Note [Thunk
splitting] in GHC.Core.Opt.WorkWrap):

      let
        x* = case (case v of {pn -> rn}) of
               I# a -> I# a
      in body

The simplifier will find
    (Var v) with continuation
            Select (pn -> rn) (
            Select [I# a -> I# a] (
            StrictBind body Stop

So we'll call mkDupableCont on
   Select [I# a -> I# a] (StrictBind body Stop)
There is just one alternative in the first Select, so we want to
simplify the rhs (I# a) with continuation (StrictBind body Stop)
Supposing that body is big, we end up with
          let $j a = <let x = I# a in body>
          in case v of { pn -> case rn of
                                 I# a -> $j a }
This is just what we want because the rn produces a box that
the case rn cancels with.

See #4957 a fuller example.

Note [Case binders and join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
   case (case .. ) of c {
     I# c# -> ....c....

If we make a join point with c but not c# we get
  $j = \c -> ....c....

But if later inlining scrutinises the c, thus

  $j = \c -> ... case c of { I# y -> ... } ...

we won't see that 'c' has already been scrutinised.  This actually
happens in the 'tabulate' function in wave4main, and makes a significant
difference to allocation.

An alternative plan is this:

   $j = \c# -> let c = I# c# in ...c....

but that is bad if 'c' is *not* later scrutinised.

So instead we do both: we pass 'c' and 'c#' , and record in c's inlining
(a stable unfolding) that it's really I# c#, thus

   $j = \c# -> \c[=I# c#] -> ...c....

Absence analysis may later discard 'c'.

NB: take great care when doing strictness analysis;
    see Note [Lambda-bound unfoldings] in GHC.Core.Opt.DmdAnal.

Also note that we can still end up passing stuff that isn't used.  Before
strictness analysis we have
   let $j x y c{=(x,y)} = (h c, ...)
   in ...
After strictness analysis we see that h is strict, we end up with
   let $j x y c{=(x,y)} = ($wh x y, ...)
and c is unused.

Note [Duplicated env]
~~~~~~~~~~~~~~~~~~~~~
Some of the alternatives are simplified, but have not been turned into a join point
So they *must* have a zapped subst-env.  So we can't use completeNonRecX to
bind the join point, because it might to do PostInlineUnconditionally, and
we'd lose that when zapping the subst-env.  We could have a per-alt subst-env,
but zapping it (as we do in mkDupableCont, the Select case) is safe, and
at worst delays the join-point inlining.

Note [Small alternative rhs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is worth checking for a small RHS because otherwise we
get extra let bindings that may cause an extra iteration of the simplifier to
inline back in place.  Quite often the rhs is just a variable or constructor.
The Ord instance of Maybe in PrelMaybe.hs, for example, took several extra
iterations because the version with the let bindings looked big, and so wasn't
inlined, but after the join points had been inlined it looked smaller, and so
was inlined.

NB: we have to check the size of rhs', not rhs.
Duplicating a small InAlt might invalidate occurrence information
However, if it *is* dupable, we return the *un* simplified alternative,
because otherwise we'd need to pair it up with an empty subst-env....
but we only have one env shared between all the alts.
(Remember we must zap the subst-env before re-simplifying something).
Rather than do this we simply agree to re-simplify the original (small) thing later.

Note [Funky mkLamTypes]
~~~~~~~~~~~~~~~~~~~~~~
Notice the funky mkLamTypes.  If the constructor has existentials
it's possible that the join point will be abstracted over
type variables as well as term variables.
 Example:  Suppose we have
        data T = forall t.  C [t]
 Then faced with
        case (case e of ...) of
            C t xs::[t] -> rhs
 We get the join point
        let j :: forall t. [t] -> ...
            j = /\t \xs::[t] -> rhs
        in
        case (case e of ...) of
            C t xs::[t] -> j t xs

Note [Duplicating StrictArg]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dealing with making a StrictArg continuation duplicable has turned out
to be one of the trickiest corners of the simplifier, giving rise
to several cases in which the simplier expanded the program's size
*exponentially*.  They include
  #13253 exponential inlining
  #10421 ditto
  #18140 strict constructors
  #18282 another nested-function call case

Suppose we have a call
  f e1 (case x of { True -> r1; False -> r2 }) e3
and f is strict in its second argument.  Then we end up in
mkDupableCont with a StrictArg continuation for (f e1 <> e3).
There are two ways to make it duplicable.

* Plan A: move the entire call inwards, being careful not
  to duplicate e1 or e3, thus:
     let a1 = e1
         a3 = e3
     in case x of { True  -> f a1 r1 a3
                  ; False -> f a1 r2 a3 }

* Plan B: make a join point:
     join $j x = f e1 x e3
     in case x of { True  -> jump $j r1
                  ; False -> jump $j r2 }
  Notice that Plan B is very like the way we handle strict
  bindings; see Note [Duplicating StrictBind].

Plan A is good. Here's an example from #3116
     go (n+1) (case l of
                 1  -> bs'
                 _  -> Chunk p fpc (o+1) (l-1) bs')

If we pushed the entire call for 'go' inside the case, we get
call-pattern specialisation for 'go', which is *crucial* for
this particular program.

Here is another example.
        && E (case x of { T -> F; F -> T })

Pushing the call inward (being careful not to duplicate E)
        let a = E
        in case x of { T -> && a F; F -> && a T }

and now the (&& a F) etc can optimise.  Moreover there might
be a RULE for the function that can fire when it "sees" the
particular case alterantive.

But Plan A can have terrible, terrible behaviour. Here is a classic
case:
  f (f (f (f (f True))))

Suppose f is strict, and has a body that is small enough to inline.
The innermost call inlines (seeing the True) to give
  f (f (f (f (case v of { True -> e1; False -> e2 }))))

Now, suppose we naively push the entire continuation into both
case branches (it doesn't look large, just f.f.f.f). We get
  case v of
    True  -> f (f (f (f e1)))
    False -> f (f (f (f e2)))

And now the process repeats, so we end up with an exponentially large
number of copies of f. No good!

CONCLUSION: we want Plan A in general, but do Plan B is there a
danger of this nested call behaviour. The function that decides
this is called thumbsUpPlanA.

Note [Keeping demand info in StrictArg Plan A]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Following on from Note [Duplicating StrictArg], another common code
pattern that can go bad is this:
   f (case x1 of { T -> F; F -> T })
     (case x2 of { T -> F; F -> T })
     ...etc...
when f is strict in all its arguments.  (It might, for example, be a
strict data constructor whose wrapper has not yet been inlined.)

We use Plan A (because there is no nesting) giving
  let a2 = case x2 of ...
      a3 = case x3 of ...
  in case x1 of { T -> f F a2 a3 ... ; F -> f T a2 a3 ... }

Now we must be careful!  a2 and a3 are small, and the OneOcc code in
postInlineUnconditionally may inline them both at both sites; see Note
Note [Inline small things to avoid creating a thunk] in
Simplify.Utils. But if we do inline them, the entire process will
repeat -- back to exponential behaviour.

So we are careful to keep the demand-info on a2 and a3.  Then they'll
be /strict/ let-bindings, which will be dealt with by StrictBind.
That's why contIsDupableWithDmds is careful to propagage demand
info to the auxiliary bindings it creates.  See the Demand argument
to makeTrivial.

Note [Duplicating StrictBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We make a StrictBind duplicable in a very similar way to
that for case expressions.  After all,
   let x* = e in b   is similar to    case e of x -> b

So we potentially make a join-point for the body, thus:
   let x = <> in b   ==>   join j x = b
                           in j <>

Just like StrictArg in fact -- and indeed they share code.

Note [Join point abstraction]  Historical note
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: This note is now historical, describing how (in the past) we used
to add a void argument to nullary join points.  But now that "join
point" is not a fuzzy concept but a formal syntactic construct (as
distinguished by the JoinId constructor of IdDetails), each of these
concerns is handled separately, with no need for a vestigial extra
argument.

Join points always have at least one value argument,
for several reasons

* If we try to lift a primitive-typed something out
  for let-binding-purposes, we will *caseify* it (!),
  with potentially-disastrous strictness results.  So
  instead we turn it into a function: \v -> e
  where v::Void#.  The value passed to this function is void,
  which generates (almost) no code.

* CPR.  We used to say "&& isUnliftedType rhs_ty'" here, but now
  we make the join point into a function whenever used_bndrs'
  is empty.  This makes the join-point more CPR friendly.
  Consider:       let j = if .. then I# 3 else I# 4
                  in case .. of { A -> j; B -> j; C -> ... }

  Now CPR doesn't w/w j because it's a thunk, so
  that means that the enclosing function can't w/w either,
  which is a lose.  Here's the example that happened in practice:
          kgmod :: Int -> Int -> Int
          kgmod x y = if x > 0 && y < 0 || x < 0 && y > 0
                      then 78
                      else 5

* Let-no-escape.  We want a join point to turn into a let-no-escape
  so that it is implemented as a jump, and one of the conditions
  for LNE is that it's not updatable.  In CoreToStg, see
  Note [What is a non-escaping let]

* Floating.  Since a join point will be entered once, no sharing is
  gained by floating out, but something might be lost by doing
  so because it might be allocated.

I have seen a case alternative like this:
        True -> \v -> ...
It's a bit silly to add the realWorld dummy arg in this case, making
        $j = \s v -> ...
           True -> $j s
(the \v alone is enough to make CPR happy) but I think it's rare

There's a slight infelicity here: we pass the overall
case_bndr to all the join points if it's used in *any* RHS,
because we don't know its usage in each RHS separately



************************************************************************
*                                                                      *
                    Unfoldings
*                                                                      *
************************************************************************
-}

simplLetUnfolding :: SimplEnv-> TopLevelFlag
                  -> MaybeJoinCont
                  -> InId
                  -> OutExpr -> OutType -> ArityType
                  -> Unfolding -> SimplM Unfolding
simplLetUnfolding :: SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> Expr InBndr
-> OutType
-> ArityType
-> Unfolding
-> SimplM Unfolding
simplLetUnfolding SimplEnv
env TopLevelFlag
top_lvl MaybeJoinCont
cont_mb InBndr
id Expr InBndr
new_rhs OutType
rhs_ty ArityType
arity Unfolding
unf
  | Unfolding -> Bool
isStableUnfolding Unfolding
unf
  = SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> OutType
-> ArityType
-> Unfolding
-> SimplM Unfolding
simplStableUnfolding SimplEnv
env TopLevelFlag
top_lvl MaybeJoinCont
cont_mb InBndr
id OutType
rhs_ty ArityType
arity Unfolding
unf
  | InBndr -> Bool
isExitJoinId InBndr
id
  = Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return Unfolding
noUnfolding -- See Note [Do not inline exit join points] in GHC.Core.Opt.Exitify
  | Bool
otherwise
  = DynFlags
-> TopLevelFlag
-> UnfoldingSource
-> InBndr
-> Expr InBndr
-> SimplM Unfolding
mkLetUnfolding (SimplEnv -> DynFlags
seDynFlags SimplEnv
env) TopLevelFlag
top_lvl UnfoldingSource
InlineRhs InBndr
id Expr InBndr
new_rhs

-------------------
mkLetUnfolding :: DynFlags -> TopLevelFlag -> UnfoldingSource
               -> InId -> OutExpr -> SimplM Unfolding
mkLetUnfolding :: DynFlags
-> TopLevelFlag
-> UnfoldingSource
-> InBndr
-> Expr InBndr
-> SimplM Unfolding
mkLetUnfolding DynFlags
dflags TopLevelFlag
top_lvl UnfoldingSource
src InBndr
id Expr InBndr
new_rhs
  = Bool
is_bottoming Bool -> SimplM Unfolding -> SimplM Unfolding
`seq`  -- See Note [Force bottoming field]
    Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return (DynFlags
-> UnfoldingSource -> Bool -> Bool -> Expr InBndr -> Unfolding
mkUnfolding DynFlags
dflags UnfoldingSource
src Bool
is_top_lvl Bool
is_bottoming Expr InBndr
new_rhs)
            -- We make an  unfolding *even for loop-breakers*.
            -- Reason: (a) It might be useful to know that they are WHNF
            --         (b) In GHC.Iface.Tidy we currently assume that, if we want to
            --             expose the unfolding then indeed we *have* an unfolding
            --             to expose.  (We could instead use the RHS, but currently
            --             we don't.)  The simple thing is always to have one.
  where
    is_top_lvl :: Bool
is_top_lvl   = TopLevelFlag -> Bool
isTopLevel TopLevelFlag
top_lvl
    is_bottoming :: Bool
is_bottoming = InBndr -> Bool
isDeadEndId InBndr
id

-------------------
simplStableUnfolding :: SimplEnv -> TopLevelFlag
                     -> MaybeJoinCont  -- Just k => a join point with continuation k
                     -> InId
                     -> OutType
                     -> ArityType      -- Used to eta expand, but only for non-join-points
                     -> Unfolding
                     ->SimplM Unfolding
-- Note [Setting the new unfolding]
simplStableUnfolding :: SimplEnv
-> TopLevelFlag
-> MaybeJoinCont
-> InBndr
-> OutType
-> ArityType
-> Unfolding
-> SimplM Unfolding
simplStableUnfolding SimplEnv
env TopLevelFlag
top_lvl MaybeJoinCont
mb_cont InBndr
id OutType
rhs_ty ArityType
id_arity Unfolding
unf
  = case Unfolding
unf of
      Unfolding
NoUnfolding   -> Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return Unfolding
unf
      Unfolding
BootUnfolding -> Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return Unfolding
unf
      OtherCon {}   -> Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return Unfolding
unf

      DFunUnfolding { df_bndrs :: Unfolding -> [InBndr]
df_bndrs = [InBndr]
bndrs, df_con :: Unfolding -> DataCon
df_con = DataCon
con, df_args :: Unfolding -> [Expr InBndr]
df_args = [Expr InBndr]
args }
        -> do { (SimplEnv
env', [InBndr]
bndrs') <- SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
simplBinders SimplEnv
unf_env [InBndr]
bndrs
              ; [Expr InBndr]
args' <- (Expr InBndr -> SimplM (Expr InBndr))
-> [Expr InBndr] -> SimplM [Expr InBndr]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (SimplEnv -> Expr InBndr -> SimplM (Expr InBndr)
simplExpr SimplEnv
env') [Expr InBndr]
args
              ; Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return ([InBndr] -> DataCon -> [Expr InBndr] -> Unfolding
mkDFunUnfolding [InBndr]
bndrs' DataCon
con [Expr InBndr]
args') }

      CoreUnfolding { uf_tmpl :: Unfolding -> Expr InBndr
uf_tmpl = Expr InBndr
expr, uf_src :: Unfolding -> UnfoldingSource
uf_src = UnfoldingSource
src, uf_guidance :: Unfolding -> UnfoldingGuidance
uf_guidance = UnfoldingGuidance
guide }
        | UnfoldingSource -> Bool
isStableSource UnfoldingSource
src
        -> do { Expr InBndr
expr' <- case MaybeJoinCont
mb_cont of
                           Just SimplCont
cont -> -- Binder is a join point
                                        -- See Note [Rules and unfolding for join points]
                                        SimplEnv
-> InBndr -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplJoinRhs SimplEnv
unf_env InBndr
id Expr InBndr
expr SimplCont
cont
                           MaybeJoinCont
Nothing   -> -- Binder is not a join point
                                        do { Expr InBndr
expr' <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
unf_env Expr InBndr
expr (OutType -> SimplCont
mkBoringStop OutType
rhs_ty)
                                           ; Expr InBndr -> SimplM (Expr InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Expr InBndr -> Expr InBndr
eta_expand Expr InBndr
expr') }
              ; case UnfoldingGuidance
guide of
                  UnfWhen { ug_arity :: UnfoldingGuidance -> Int
ug_arity = Int
arity
                          , ug_unsat_ok :: UnfoldingGuidance -> Bool
ug_unsat_ok = Bool
sat_ok
                          , ug_boring_ok :: UnfoldingGuidance -> Bool
ug_boring_ok = Bool
boring_ok
                          }
                          -- Happens for INLINE things
                     -> let guide' :: UnfoldingGuidance
guide' =
                              UnfWhen :: Int -> Bool -> Bool -> UnfoldingGuidance
UnfWhen { ug_arity :: Int
ug_arity = Int
arity
                                      , ug_unsat_ok :: Bool
ug_unsat_ok = Bool
sat_ok
                                      , ug_boring_ok :: Bool
ug_boring_ok =
                                          Bool
boring_ok Bool -> Bool -> Bool
|| Expr InBndr -> Bool
inlineBoringOk Expr InBndr
expr'
                                      }
                        -- Refresh the boring-ok flag, in case expr'
                        -- has got small. This happens, notably in the inlinings
                        -- for dfuns for single-method classes; see
                        -- Note [Single-method classes] in GHC.Tc.TyCl.Instance.
                        -- A test case is #4138
                        -- But retain a previous boring_ok of True; e.g. see
                        -- the way it is set in calcUnfoldingGuidanceWithArity
                        in Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return (UnfoldingSource
-> Bool -> Expr InBndr -> UnfoldingGuidance -> Unfolding
mkCoreUnfolding UnfoldingSource
src Bool
is_top_lvl Expr InBndr
expr' UnfoldingGuidance
guide')
                            -- See Note [Top-level flag on inline rules] in GHC.Core.Unfold

                  UnfoldingGuidance
_other              -- Happens for INLINABLE things
                     -> DynFlags
-> TopLevelFlag
-> UnfoldingSource
-> InBndr
-> Expr InBndr
-> SimplM Unfolding
mkLetUnfolding DynFlags
dflags TopLevelFlag
top_lvl UnfoldingSource
src InBndr
id Expr InBndr
expr' }
                -- If the guidance is UnfIfGoodArgs, this is an INLINABLE
                -- unfolding, and we need to make sure the guidance is kept up
                -- to date with respect to any changes in the unfolding.

        | Bool
otherwise -> Unfolding -> SimplM Unfolding
forall (m :: * -> *) a. Monad m => a -> m a
return Unfolding
noUnfolding   -- Discard unstable unfoldings
  where
    dflags :: DynFlags
dflags     = SimplEnv -> DynFlags
seDynFlags SimplEnv
env
    is_top_lvl :: Bool
is_top_lvl = TopLevelFlag -> Bool
isTopLevel TopLevelFlag
top_lvl
    act :: Activation
act        = InBndr -> Activation
idInlineActivation InBndr
id
    unf_env :: SimplEnv
unf_env    = (SimplMode -> SimplMode) -> SimplEnv -> SimplEnv
updMode (Activation -> SimplMode -> SimplMode
updModeForStableUnfoldings Activation
act) SimplEnv
env
         -- See Note [Simplifying inside stable unfoldings] in GHC.Core.Opt.Simplify.Utils

    -- See Note [Eta-expand stable unfoldings]
    eta_expand :: Expr InBndr -> Expr InBndr
eta_expand Expr InBndr
expr
      | Bool -> Bool
not Bool
eta_on         = Expr InBndr
expr
      | Expr InBndr -> Bool
exprIsTrivial Expr InBndr
expr = Expr InBndr
expr
      | Bool
otherwise          = ArityType -> Expr InBndr -> Expr InBndr
etaExpandAT ArityType
id_arity Expr InBndr
expr
    eta_on :: Bool
eta_on = SimplMode -> Bool
sm_eta_expand (SimplEnv -> SimplMode
getMode SimplEnv
env)

{- Note [Eta-expand stable unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For INLINE/INLINABLE things (which get stable unfoldings) there's a danger
of getting
   f :: Int -> Int -> Int -> Blah
   [ Arity = 3                 -- Good arity
   , Unf=Stable (\xy. blah)    -- Less good arity, only 2
   f = \pqr. e

This can happen because f's RHS is optimised more vigorously than
its stable unfolding.  Now suppose we have a call
   g = f x
Because f has arity=3, g will have arity=2.  But if we inline f (using
its stable unfolding) g's arity will reduce to 1, because <blah>
hasn't been optimised yet.  This happened in the 'parsec' library,
for Text.Pasec.Char.string.

Generally, if we know that 'f' has arity N, it seems sensible to
eta-expand the stable unfolding to arity N too. Simple and consistent.

Wrinkles
* Don't eta-expand a trivial expr, else each pass will eta-reduce it,
  and then eta-expand again. See Note [Do not eta-expand trivial expressions]
  in GHC.Core.Opt.Simplify.Utils.
* Don't eta-expand join points; see Note [Do not eta-expand join points]
  in GHC.Core.Opt.Simplify.Utils.  We uphold this because the join-point
  case (mb_cont = Just _) doesn't use eta_expand.

Note [Force bottoming field]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to force bottoming, or the new unfolding holds
on to the old unfolding (which is part of the id).

Note [Setting the new unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* If there's an INLINE pragma, we simplify the RHS gently.  Maybe we
  should do nothing at all, but simplifying gently might get rid of
  more crap.

* If not, we make an unfolding from the new RHS.  But *only* for
  non-loop-breakers. Making loop breakers not have an unfolding at all
  means that we can avoid tests in exprIsConApp, for example.  This is
  important: if exprIsConApp says 'yes' for a recursive thing, then we
  can get into an infinite loop

If there's a stable unfolding on a loop breaker (which happens for
INLINABLE), we hang on to the inlining.  It's pretty dodgy, but the
user did say 'INLINE'.  May need to revisit this choice.

************************************************************************
*                                                                      *
                    Rules
*                                                                      *
************************************************************************

Note [Rules in a letrec]
~~~~~~~~~~~~~~~~~~~~~~~~
After creating fresh binders for the binders of a letrec, we
substitute the RULES and add them back onto the binders; this is done
*before* processing any of the RHSs.  This is important.  Manuel found
cases where he really, really wanted a RULE for a recursive function
to apply in that function's own right-hand side.

See Note [Forming Rec groups] in "GHC.Core.Opt.OccurAnal"
-}

addBndrRules :: SimplEnv -> InBndr -> OutBndr
             -> MaybeJoinCont   -- Just k for a join point binder
                                -- Nothing otherwise
             -> SimplM (SimplEnv, OutBndr)
-- Rules are added back into the bin
addBndrRules :: SimplEnv
-> InBndr -> InBndr -> MaybeJoinCont -> SimplM (SimplEnv, InBndr)
addBndrRules SimplEnv
env InBndr
in_id InBndr
out_id MaybeJoinCont
mb_cont
  | [CoreRule] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [CoreRule]
old_rules
  = (SimplEnv, InBndr) -> SimplM (SimplEnv, InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv
env, InBndr
out_id)
  | Bool
otherwise
  = do { [CoreRule]
new_rules <- SimplEnv
-> Maybe InBndr -> [CoreRule] -> MaybeJoinCont -> SimplM [CoreRule]
simplRules SimplEnv
env (InBndr -> Maybe InBndr
forall a. a -> Maybe a
Just InBndr
out_id) [CoreRule]
old_rules MaybeJoinCont
mb_cont
       ; let final_id :: InBndr
final_id  = InBndr
out_id InBndr -> RuleInfo -> InBndr
`setIdSpecialisation` [CoreRule] -> RuleInfo
mkRuleInfo [CoreRule]
new_rules
       ; (SimplEnv, InBndr) -> SimplM (SimplEnv, InBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (SimplEnv -> InBndr -> SimplEnv
modifyInScope SimplEnv
env InBndr
final_id, InBndr
final_id) }
  where
    old_rules :: [CoreRule]
old_rules = RuleInfo -> [CoreRule]
ruleInfoRules (InBndr -> RuleInfo
idSpecialisation InBndr
in_id)

simplRules :: SimplEnv -> Maybe OutId -> [CoreRule]
           -> MaybeJoinCont -> SimplM [CoreRule]
simplRules :: SimplEnv
-> Maybe InBndr -> [CoreRule] -> MaybeJoinCont -> SimplM [CoreRule]
simplRules SimplEnv
env Maybe InBndr
mb_new_id [CoreRule]
rules MaybeJoinCont
mb_cont
  = (CoreRule -> SimplM CoreRule) -> [CoreRule] -> SimplM [CoreRule]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM CoreRule -> SimplM CoreRule
simpl_rule [CoreRule]
rules
  where
    simpl_rule :: CoreRule -> SimplM CoreRule
simpl_rule rule :: CoreRule
rule@(BuiltinRule {})
      = CoreRule -> SimplM CoreRule
forall (m :: * -> *) a. Monad m => a -> m a
return CoreRule
rule

    simpl_rule rule :: CoreRule
rule@(Rule { ru_bndrs :: CoreRule -> [InBndr]
ru_bndrs = [InBndr]
bndrs, ru_args :: CoreRule -> [Expr InBndr]
ru_args = [Expr InBndr]
args
                          , ru_fn :: CoreRule -> Name
ru_fn = Name
fn_name, ru_rhs :: CoreRule -> Expr InBndr
ru_rhs = Expr InBndr
rhs })
      = do { (SimplEnv
env', [InBndr]
bndrs') <- SimplEnv -> [InBndr] -> SimplM (SimplEnv, [InBndr])
simplBinders SimplEnv
env [InBndr]
bndrs
           ; let rhs_ty :: OutType
rhs_ty = SimplEnv -> OutType -> OutType
substTy SimplEnv
env' (Expr InBndr -> OutType
exprType Expr InBndr
rhs)
                 rhs_cont :: SimplCont
rhs_cont = case MaybeJoinCont
mb_cont of  -- See Note [Rules and unfolding for join points]
                                MaybeJoinCont
Nothing   -> OutType -> SimplCont
mkBoringStop OutType
rhs_ty
                                Just SimplCont
cont -> ASSERT2( join_ok, bad_join_msg )
                                             SimplCont
cont
                 rule_env :: SimplEnv
rule_env = (SimplMode -> SimplMode) -> SimplEnv -> SimplEnv
updMode SimplMode -> SimplMode
updModeForRules SimplEnv
env'
                 fn_name' :: Name
fn_name' = case Maybe InBndr
mb_new_id of
                              Just InBndr
id -> InBndr -> Name
idName InBndr
id
                              Maybe InBndr
Nothing -> Name
fn_name

                 -- join_ok is an assertion check that the join-arity of the
                 -- binder matches that of the rule, so that pushing the
                 -- continuation into the RHS makes sense
                 join_ok :: Bool
join_ok = case Maybe InBndr
mb_new_id of
                             Just InBndr
id | Just Int
join_arity <- InBndr -> Maybe Int
isJoinId_maybe InBndr
id
                                     -> [Expr InBndr] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Expr InBndr]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
join_arity
                             Maybe InBndr
_ -> Bool
False
                 bad_join_msg :: SDoc
bad_join_msg = [SDoc] -> SDoc
vcat [ Maybe InBndr -> SDoc
forall a. Outputable a => a -> SDoc
ppr Maybe InBndr
mb_new_id, CoreRule -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoreRule
rule
                                     , Maybe (Maybe Int) -> SDoc
forall a. Outputable a => a -> SDoc
ppr ((InBndr -> Maybe Int) -> Maybe InBndr -> Maybe (Maybe Int)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap InBndr -> Maybe Int
isJoinId_maybe Maybe InBndr
mb_new_id) ]

           ; [Expr InBndr]
args' <- (Expr InBndr -> SimplM (Expr InBndr))
-> [Expr InBndr] -> SimplM [Expr InBndr]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (SimplEnv -> Expr InBndr -> SimplM (Expr InBndr)
simplExpr SimplEnv
rule_env) [Expr InBndr]
args
           ; Expr InBndr
rhs'  <- SimplEnv -> Expr InBndr -> SimplCont -> SimplM (Expr InBndr)
simplExprC SimplEnv
rule_env Expr InBndr
rhs SimplCont
rhs_cont
           ; CoreRule -> SimplM CoreRule
forall (m :: * -> *) a. Monad m => a -> m a
return (CoreRule
rule { ru_bndrs :: [InBndr]
ru_bndrs = [InBndr]
bndrs'
                          , ru_fn :: Name
ru_fn    = Name
fn_name'
                          , ru_args :: [Expr InBndr]
ru_args  = [Expr InBndr]
args'
                          , ru_rhs :: Expr InBndr
ru_rhs   = Expr InBndr
rhs' }) }