ghc-lib-9.10.1.20241103: The GHC API, decoupled from GHC versions
Safe HaskellIgnore
LanguageGHC2021

GHC.Plugins

Description

This module is not used by GHC itself. Rather, it exports all of the functions and types you are likely to need when writing a plugin for GHC. So authors of plugins can probably get away simply with saying "import GHC.Plugins".

Particularly interesting modules for plugin writers include GHC.Core and GHC.Core.Opt.Monad.

Synopsis

Documentation

data NameSpace #

Instances

Instances details
NFData NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

rnf :: NameSpace -> () #

Uniquable NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Binary NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Eq NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Ord NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

data OccName #

Occurrence Name

In this context that means: "classified (i.e. as a type name, value name, etc) but not qualified and not yet resolved"

Instances

Instances details
Data OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName #

toConstr :: OccName -> Constr #

dataTypeOf :: OccName -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) #

gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r #

gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName #

NFData OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

rnf :: OccName -> () #

HasOccName OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

occName :: OccName -> OccName #

Binary OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Outputable OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

ppr :: OccName -> SDoc #

OutputableBndr OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Eq OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

(==) :: OccName -> OccName -> Bool #

(/=) :: OccName -> OccName -> Bool #

Ord OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

class HasOccName name where #

Other names in the compiler add additional information to an OccName. This class provides a consistent way to access the underlying OccName.

Methods

occName :: name -> OccName #

Instances

Instances details
HasOccName IfaceClassOp 
Instance details

Defined in GHC.Iface.Syntax

HasOccName IfaceConDecl 
Instance details

Defined in GHC.Iface.Syntax

HasOccName IfaceDecl 
Instance details

Defined in GHC.Iface.Syntax

Methods

occName :: IfaceDecl -> OccName #

HasOccName HoleFitCandidate 
Instance details

Defined in GHC.Tc.Errors.Hole.FitTypes

HasOccName TcBinder 
Instance details

Defined in GHC.Tc.Types.BasicTypes

Methods

occName :: TcBinder -> OccName #

HasOccName FieldLabel 
Instance details

Defined in GHC.Types.FieldLabel

HasOccName Name 
Instance details

Defined in GHC.Types.Name

Methods

occName :: Name -> OccName #

HasOccName OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

occName :: OccName -> OccName #

HasOccName RdrName 
Instance details

Defined in GHC.Types.Name.Reader

Methods

occName :: RdrName -> OccName #

HasOccName Var 
Instance details

Defined in GHC.Types.Var

Methods

occName :: Var -> OccName #

HasOccName (GlobalRdrEltX info) 
Instance details

Defined in GHC.Types.Name.Reader

Methods

occName :: GlobalRdrEltX info -> OccName #

type FastStringEnv a = UniqFM FastString a #

A non-deterministic set of FastStrings. See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM for explanation why it's not deterministic and why it matters. Use DFastStringEnv if the set eventually gets converted into a list or folded over in a way where the order changes the generated code.

data OccSet #

data OccEnv a #

A map keyed on OccName. See Note [OccEnv].

Instances

Instances details
Functor OccEnv 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

fmap :: (a -> b) -> OccEnv a -> OccEnv b #

(<$) :: a -> OccEnv b -> OccEnv a #

NFData a => NFData (OccEnv a) 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

rnf :: OccEnv a -> () #

Outputable a => Outputable (OccEnv a) 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

ppr :: OccEnv a -> SDoc #

isSymOcc :: OccName -> Bool #

Test if the OccName is that for any operator (whether it is a data constructor or variable or whatever)

isTermVarOrFieldNameSpace :: NameSpace -> Bool #

Is this a term variable or field name namespace?

pprOccName :: IsLine doc => OccName -> doc #

occNameMangledFS :: OccName -> FastString #

Mangle field names to avoid duplicate symbols.

See Note [Mangling OccNames].

emptyOccEnv :: OccEnv a #

The empty OccEnv.

unitOccEnv :: OccName -> a -> OccEnv a #

A singleton OccEnv.

extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a #

Add a single element to an OccEnv.

extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a #

Extend an OccEnv by a list.

OccNames later on in the list override earlier OccNames.

lookupOccEnv :: OccEnv a -> OccName -> Maybe a #

Look an element up in an OccEnv.

lookupOccEnv_AllNameSpaces :: OccEnv a -> OccName -> [a] #

Lookup an element in an OccEnv, ignoring NameSpaces entirely.

lookupOccEnv_WithFields :: OccEnv a -> OccName -> [a] #

Lookup an element in an OccEnv, looking in the record field namespace for a variable.

lookupFieldsOccEnv :: OccEnv a -> FastString -> [a] #

Look up all the record fields that match with the given FastString in an OccEnv.

mkOccEnv :: [(OccName, a)] -> OccEnv a #

Create an OccEnv from a list.

OccNames later on in the list override earlier OccNames.

mkOccEnv_C #

Arguments

:: (a -> a -> a)

old -> new -> result

-> [(OccName, a)] 
-> OccEnv a 

Create an OccEnv from a list, combining different values with the same OccName using the combining function.

elemOccEnv :: OccName -> OccEnv a -> Bool #

Compute whether there is a value keyed by the given OccName.

nonDetFoldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b #

Fold over an OccEnv. Non-deterministic, unless the folding function is commutative (i.e. a1 f ( a2 f b ) == a2 f ( a1 f b ) for all a1, a2, b).

nonDetOccEnvElts :: OccEnv a -> [a] #

Obtain the elements of an OccEnv.

The resulting order is non-deterministic.

plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a #

Union of two OccEnvs, right-biased.

plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a #

Union of two OccEnvs with a combining function.

mapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b #

Map over an OccEnv (Functor instance).

mapMaybeOccEnv :: (a -> Maybe b) -> OccEnv a -> OccEnv b #

mapMaybe for b OccEnv.

extendOccEnv_Acc #

Arguments

:: (a -> b -> b)

add to existing

-> (a -> b)

new element

-> OccEnv b

old

-> OccName 
-> a

new

-> OccEnv b 

Add a single element to an OccEnv, using a different function whether the OccName already exists or not.

delFromOccEnv :: OccEnv a -> OccName -> OccEnv a #

Delete one element from an OccEnv.

delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a #

Delete multiple elements from an OccEnv.

filterOccEnv :: (a -> Bool) -> OccEnv a -> OccEnv a #

Filter out all elements in an OccEnv using a predicate.

alterOccEnv :: (Maybe a -> Maybe a) -> OccEnv a -> OccName -> OccEnv a #

Alter an OccEnv, adding or removing an element at the given key.

intersectOccEnv_C :: (a -> b -> c) -> OccEnv a -> OccEnv b -> OccEnv c #

minusOccEnv :: OccEnv a -> OccEnv b -> OccEnv a #

Remove elements of the first OccEnv that appear in the second OccEnv.

minusOccEnv_C :: (a -> b -> Maybe a) -> OccEnv a -> OccEnv b -> OccEnv a #

Alters (replaces or removes) those elements of the first OccEnv that are mentioned in the second OccEnv.

Same idea as differenceWith.

pprOccEnv :: (a -> SDoc) -> OccEnv a -> SDoc #

strictMapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b #

Map over an OccEnv strictly.

forceOccEnv :: (a -> ()) -> OccEnv a -> () #

Force an OccEnv with the provided function.

isValOcc :: OccName -> Bool #

Value OccNamess are those that are either in the variable, field name or data constructor namespaces

isDataSymOcc :: OccName -> Bool #

Test if the OccName is a data constructor that starts with a symbol (e.g. :, or [])

parenSymOcc :: OccName -> SDoc -> SDoc #

Wrap parens around an operator

startsWithUnderscore :: OccName -> Bool #

Haskell 98 encourages compilers to suppress warnings about unused names in a pattern if they start with _: this implements that test

isDerivedOccName :: OccName -> Bool #

Test for definitions internally generated by GHC. This predicate is used to suppress printing of internal definitions in some debug prints

isTypeableBindOcc :: OccName -> Bool #

Is an OccName one of a Typeable TyCon or Module binding? This is needed as these bindings are renamed differently. See Note [Grand plan for Typeable] in GHC.Tc.Instance.Typeable.

mkSuperDictSelOcc #

Arguments

:: Int

Index of superclass, e.g. 3

-> OccName

Class, e.g. Ord

-> OccName

Derived Occname, e.g. $p3Ord

mkLocalOcc #

Arguments

:: Unique

Unique to combine with the OccName

-> OccName

Local name, e.g. sat

-> OccName

Nice unique version, e.g. $L23sat

mkInstTyTcOcc #

Arguments

:: String

Family name, e.g. Map

-> OccSet

avoid these Occs

-> OccName
R:Map

Derive a name for the representation type constructor of a data/newtype instance.

mkDFunOcc #

Arguments

:: String

Typically the class and type glommed together e.g. OrdMaybe. Only used in debug mode, for extra clarity

-> Bool

Is this a hs-boot instance DFun?

-> OccSet

avoid these Occs

-> OccName

E.g. $f3OrdMaybe

data NameSpace #

Instances

Instances details
NFData NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

rnf :: NameSpace -> () #

Uniquable NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Binary NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Eq NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Ord NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

data Name #

A unique, unambiguous name for something, containing information about where that thing originated.

Instances

Instances details
Data Name 
Instance details

Defined in GHC.Types.Name

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name #

toConstr :: Name -> Constr #

dataTypeOf :: Name -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) #

gmapT :: (forall b. Data b => b -> b) -> Name -> Name #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r #

gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name #

NFData Name 
Instance details

Defined in GHC.Types.Name

Methods

rnf :: Name -> () #

NamedThing Name 
Instance details

Defined in GHC.Types.Name

HasOccName Name 
Instance details

Defined in GHC.Types.Name

Methods

occName :: Name -> OccName #

Uniquable Name 
Instance details

Defined in GHC.Types.Name

Methods

getUnique :: Name -> Unique #

Binary Name

Assumes that the Name is a non-binding one. See putIfaceTopBndr and getIfaceTopBndr for serializing binding Names. See UserData for the rationale for this distinction.

Instance details

Defined in GHC.Types.Name

Methods

put_ :: BinHandle -> Name -> IO () #

put :: BinHandle -> Name -> IO (Bin Name) #

get :: BinHandle -> IO Name #

Outputable Name 
Instance details

Defined in GHC.Types.Name

Methods

ppr :: Name -> SDoc #

OutputableBndr Name 
Instance details

Defined in GHC.Types.Name

Eq Name

The same comments as for Name's Ord instance apply.

Instance details

Defined in GHC.Types.Name

Methods

(==) :: Name -> Name -> Bool #

(/=) :: Name -> Name -> Bool #

Ord Name

Caution: This instance is implemented via nonDetCmpUnique, which means that the ordering is not stable across deserialization or rebuilds.

See nonDetCmpUnique for further information, and #15240 for a bug caused by improper use of this instance.

Instance details

Defined in GHC.Types.Name

Methods

compare :: Name -> Name -> Ordering #

(<) :: Name -> Name -> Bool #

(<=) :: Name -> Name -> Bool #

(>) :: Name -> Name -> Bool #

(>=) :: Name -> Name -> Bool #

max :: Name -> Name -> Name #

min :: Name -> Name -> Name #

type Anno Name 
Instance details

Defined in GHC.Hs.Extension

data OccName #

Occurrence Name

In this context that means: "classified (i.e. as a type name, value name, etc) but not qualified and not yet resolved"

Instances

Instances details
Data OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName #

toConstr :: OccName -> Constr #

dataTypeOf :: OccName -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) #

gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r #

gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName #

NFData OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

rnf :: OccName -> () #

HasOccName OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

occName :: OccName -> OccName #

Binary OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Outputable OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

ppr :: OccName -> SDoc #

OutputableBndr OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Eq OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

(==) :: OccName -> OccName -> Bool #

(/=) :: OccName -> OccName -> Bool #

Ord OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

class HasOccName name where #

Other names in the compiler add additional information to an OccName. This class provides a consistent way to access the underlying OccName.

Methods

occName :: name -> OccName #

Instances

Instances details
HasOccName IfaceClassOp 
Instance details

Defined in GHC.Iface.Syntax

HasOccName IfaceConDecl 
Instance details

Defined in GHC.Iface.Syntax

HasOccName IfaceDecl 
Instance details

Defined in GHC.Iface.Syntax

Methods

occName :: IfaceDecl -> OccName #

HasOccName HoleFitCandidate 
Instance details

Defined in GHC.Tc.Errors.Hole.FitTypes

HasOccName TcBinder 
Instance details

Defined in GHC.Tc.Types.BasicTypes

Methods

occName :: TcBinder -> OccName #

HasOccName FieldLabel 
Instance details

Defined in GHC.Types.FieldLabel

HasOccName Name 
Instance details

Defined in GHC.Types.Name

Methods

occName :: Name -> OccName #

HasOccName OccName 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

occName :: OccName -> OccName #

HasOccName RdrName 
Instance details

Defined in GHC.Types.Name.Reader

Methods

occName :: RdrName -> OccName #

HasOccName Var 
Instance details

Defined in GHC.Types.Var

Methods

occName :: Var -> OccName #

HasOccName (GlobalRdrEltX info) 
Instance details

Defined in GHC.Types.Name.Reader

Methods

occName :: GlobalRdrEltX info -> OccName #

class NamedThing a where #

A class allowing convenient access to the Name of various datatypes

Minimal complete definition

getName

Methods

getOccName :: a -> OccName #

getName :: a -> Name #

Instances

Instances details
NamedThing Class 
Instance details

Defined in GHC.Core.Class

NamedThing ConLike 
Instance details

Defined in GHC.Core.ConLike

NamedThing DataCon 
Instance details

Defined in GHC.Core.DataCon

NamedThing FamInst 
Instance details

Defined in GHC.Core.FamInstEnv

NamedThing ClsInst 
Instance details

Defined in GHC.Core.InstEnv

NamedThing PatSyn 
Instance details

Defined in GHC.Core.PatSyn

NamedThing TyCon 
Instance details

Defined in GHC.Core.TyCon

NamedThing IfaceClassOp 
Instance details

Defined in GHC.Iface.Syntax

NamedThing IfaceConDecl 
Instance details

Defined in GHC.Iface.Syntax

NamedThing IfaceDecl 
Instance details

Defined in GHC.Iface.Syntax

NamedThing HoleFitCandidate 
Instance details

Defined in GHC.Tc.Errors.Hole.FitTypes

NamedThing InvalidFamInstQTv 
Instance details

Defined in GHC.Tc.Errors.Types

NamedThing Name 
Instance details

Defined in GHC.Types.Name

NamedThing TyThing 
Instance details

Defined in GHC.Types.TyThing

NamedThing Var 
Instance details

Defined in GHC.Types.Var

Methods

getOccName :: Var -> OccName #

getName :: Var -> Name #

NamedThing (CoAxiom br) 
Instance details

Defined in GHC.Core.Coercion.Axiom

Methods

getOccName :: CoAxiom br -> OccName #

getName :: CoAxiom br -> Name #

NamedThing e => NamedThing (Located e) 
Instance details

Defined in GHC.Types.Name

NamedThing (Located a) => NamedThing (LocatedAn an a) 
Instance details

Defined in GHC.Parser.Annotation

Methods

getOccName :: LocatedAn an a -> OccName #

getName :: LocatedAn an a -> Name #

NamedThing tv => NamedThing (VarBndr tv flag) 
Instance details

Defined in GHC.Types.Var

Methods

getOccName :: VarBndr tv flag -> OccName #

getName :: VarBndr tv flag -> Name #

type FastStringEnv a = UniqFM FastString a #

A non-deterministic set of FastStrings. See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM for explanation why it's not deterministic and why it matters. Use DFastStringEnv if the set eventually gets converted into a list or folded over in a way where the order changes the generated code.

data OccSet #

data OccEnv a #

A map keyed on OccName. See Note [OccEnv].

Instances

Instances details
Functor OccEnv 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

fmap :: (a -> b) -> OccEnv a -> OccEnv b #

(<$) :: a -> OccEnv b -> OccEnv a #

NFData a => NFData (OccEnv a) 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

rnf :: OccEnv a -> () #

Outputable a => Outputable (OccEnv a) 
Instance details

Defined in GHC.Types.Name.Occurrence

Methods

ppr :: OccEnv a -> SDoc #

data BuiltInSyntax #

BuiltInSyntax is for things like (:), [] and tuples, which have special syntactic forms. They aren't in scope as such.

Constructors

BuiltInSyntax 
UserSyntax 

pprName :: IsLine doc => Name -> doc #

isSymOcc :: OccName -> Bool #

Test if the OccName is that for any operator (whether it is a data constructor or variable or whatever)

isTermVarOrFieldNameSpace :: NameSpace -> Bool #

Is this a term variable or field name namespace?

pprOccName :: IsLine doc => OccName -> doc #

occNameMangledFS :: OccName -> FastString #

Mangle field names to avoid duplicate symbols.

See Note [Mangling OccNames].

emptyOccEnv :: OccEnv a #

The empty OccEnv.

unitOccEnv :: OccName -> a -> OccEnv a #

A singleton OccEnv.

extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a #

Add a single element to an OccEnv.

extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a #

Extend an OccEnv by a list.

OccNames later on in the list override earlier OccNames.

lookupOccEnv :: OccEnv a -> OccName -> Maybe a #

Look an element up in an OccEnv.

lookupOccEnv_AllNameSpaces :: OccEnv a -> OccName -> [a] #

Lookup an element in an OccEnv, ignoring NameSpaces entirely.

lookupOccEnv_WithFields :: OccEnv a -> OccName -> [a] #

Lookup an element in an OccEnv, looking in the record field namespace for a variable.

lookupFieldsOccEnv :: OccEnv a -> FastString -> [a] #

Look up all the record fields that match with the given FastString in an OccEnv.

mkOccEnv :: [(OccName, a)] -> OccEnv a #

Create an OccEnv from a list.

OccNames later on in the list override earlier OccNames.

mkOccEnv_C #

Arguments

:: (a -> a -> a)

old -> new -> result

-> [(OccName, a)] 
-> OccEnv a 

Create an OccEnv from a list, combining different values with the same OccName using the combining function.

elemOccEnv :: OccName -> OccEnv a -> Bool #

Compute whether there is a value keyed by the given OccName.

nonDetFoldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b #

Fold over an OccEnv. Non-deterministic, unless the folding function is commutative (i.e. a1 f ( a2 f b ) == a2 f ( a1 f b ) for all a1, a2, b).

nonDetOccEnvElts :: OccEnv a -> [a] #

Obtain the elements of an OccEnv.

The resulting order is non-deterministic.

plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a #

Union of two OccEnvs, right-biased.

plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a #

Union of two OccEnvs with a combining function.

mapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b #

Map over an OccEnv (Functor instance).

mapMaybeOccEnv :: (a -> Maybe b) -> OccEnv a -> OccEnv b #

mapMaybe for b OccEnv.

extendOccEnv_Acc #

Arguments

:: (a -> b -> b)

add to existing

-> (a -> b)

new element

-> OccEnv b

old

-> OccName 
-> a

new

-> OccEnv b 

Add a single element to an OccEnv, using a different function whether the OccName already exists or not.

delFromOccEnv :: OccEnv a -> OccName -> OccEnv a #

Delete one element from an OccEnv.

delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a #

Delete multiple elements from an OccEnv.

filterOccEnv :: (a -> Bool) -> OccEnv a -> OccEnv a #

Filter out all elements in an OccEnv using a predicate.

alterOccEnv :: (Maybe a -> Maybe a) -> OccEnv a -> OccName -> OccEnv a #

Alter an OccEnv, adding or removing an element at the given key.

intersectOccEnv_C :: (a -> b -> c) -> OccEnv a -> OccEnv b -> OccEnv c #

minusOccEnv :: OccEnv a -> OccEnv b -> OccEnv a #

Remove elements of the first OccEnv that appear in the second OccEnv.

minusOccEnv_C :: (a -> b -> Maybe a) -> OccEnv a -> OccEnv b -> OccEnv a #

Alters (replaces or removes) those elements of the first OccEnv that are mentioned in the second OccEnv.

Same idea as differenceWith.

pprOccEnv :: (a -> SDoc) -> OccEnv a -> SDoc #

strictMapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b #

Map over an OccEnv strictly.

forceOccEnv :: (a -> ()) -> OccEnv a -> () #

Force an OccEnv with the provided function.

isValOcc :: OccName -> Bool #

Value OccNamess are those that are either in the variable, field name or data constructor namespaces

isDataSymOcc :: OccName -> Bool #

Test if the OccName is a data constructor that starts with a symbol (e.g. :, or [])

parenSymOcc :: OccName -> SDoc -> SDoc #

Wrap parens around an operator

startsWithUnderscore :: OccName -> Bool #

Haskell 98 encourages compilers to suppress warnings about unused names in a pattern if they start with _: this implements that test

isDerivedOccName :: OccName -> Bool #

Test for definitions internally generated by GHC. This predicate is used to suppress printing of internal definitions in some debug prints

isTypeableBindOcc :: OccName -> Bool #

Is an OccName one of a Typeable TyCon or Module binding? This is needed as these bindings are renamed differently. See Note [Grand plan for Typeable] in GHC.Tc.Instance.Typeable.

mkSuperDictSelOcc #

Arguments

:: Int

Index of superclass, e.g. 3

-> OccName

Class, e.g. Ord

-> OccName

Derived Occname, e.g. $p3Ord

mkLocalOcc #

Arguments

:: Unique

Unique to combine with the OccName

-> OccName

Local name, e.g. sat

-> OccName

Nice unique version, e.g. $L23sat

mkInstTyTcOcc #

Arguments

:: String

Family name, e.g. Map

-> OccSet

avoid these Occs

-> OccName
R:Map

Derive a name for the representation type constructor of a data/newtype instance.

mkDFunOcc #

Arguments

:: String

Typically the class and type glommed together e.g. OrdMaybe. Only used in debug mode, for extra clarity

-> Bool

Is this a hs-boot instance DFun?

-> OccSet

avoid these Occs

-> OccName

E.g. $f3OrdMaybe

isWiredIn :: NamedThing thing => thing -> Bool #

isUnboxedTupleDataConLikeName :: Name -> Bool #

This matches a datacon as well as its worker and promoted tycon.

isDynLinkName :: Platform -> Module -> Name -> Bool #

Will the Name come from a dynamically linked package?

nameIsLocalOrFrom :: Module -> Name -> Bool #

Returns True if the name is (a) Internal (b) External but from the specified module (c) External but from the interactive package

The key idea is that False means: the entity is defined in some other module you can find the details (type, fixity, instances) in some interface file those details will be stored in the EPT or HPT

True means: the entity is defined in this module or earlier in the GHCi session you can find details (type, fixity, instances) in the TcGblEnv or TcLclEnv

The isInteractiveModule part is because successive interactions of a GHCi session each give rise to a fresh module (Ghci1, Ghci2, etc), but they all come from the magic interactive package; and all the details are kept in the TcLclEnv, TcGblEnv, NOT in the HPT or EPT. See Note [The interactive package] in GHC.Runtime.Context

nameIsExternalOrFrom :: Module -> Name -> Bool #

Returns True if the name is external or from the interactive package See documentation of nameIsLocalOrFrom function

nameIsFromExternalPackage :: HomeUnit -> Name -> Bool #

Returns True if the Name comes from some other package: neither this package nor the interactive package.

mkInternalName :: Unique -> OccName -> SrcSpan -> Name #

Create a name which is (for now at least) local to the current module and hence does not need a GenModule to disambiguate it from other Names

mkExternalName :: Unique -> Module -> OccName -> SrcSpan -> Name #

Create a name which definitely originates in the given module

mkWiredInName :: Module -> OccName -> Unique -> TyThing -> BuiltInSyntax -> Name #

Create a name which is actually defined by the compiler itself

mkSystemName :: Unique -> OccName -> Name #

Create a name brought into being by the compiler

mkFCallName :: Unique -> FastString -> Name #

Make a name for a foreign call

localiseName :: Name -> Name #

Make the Name into an internal name, regardless of what it was to begin with

stableNameCmp :: Name -> Name -> Ordering #

Compare Names lexicographically This only works for Names that originate in the source code or have been tidied.

pprFullName :: Module -> Name -> SDoc #

Print fully qualified name (with unit-id, module and unique)

pprTickyName :: Module -> Name -> SDoc #

Print a ticky ticky styled name

Module argument is the module to use for internal and system names. When printing the name in a ticky profile, the module name is included even for local things. However, ticky uses the format "x (M)" rather than "M.x". Hence, this function provides a separation from normal styling.

pprNameUnqualified :: Name -> SDoc #

Print the string of Name unqualifiedly directly.

nameStableString :: Name -> String #

Get a string representation of a Name that's unique and stable across recompilations. Used for deterministic generation of binds for derived instances. eg. "$aeson_70dylHtv1FFGeai1IoxcQr$Data.Aeson.Types.Internal$String"

type Id = Var #

Identifier

data JoinPointHood #

Instances

Instances details
NFData JoinPointHood 
Instance details

Defined in GHC.Utils.Outputable

Methods

rnf :: JoinPointHood -> () #

Binary JoinPointHood 
Instance details

Defined in GHC.Utils.Binary

Outputable JoinPointHood 
Instance details

Defined in GHC.Utils.Outputable

Methods

ppr :: JoinPointHood -> SDoc #

Eq JoinPointHood 
Instance details

Defined in GHC.Utils.Outputable

data Var #

Variable

Essentially a typed Name, that may also contain some additional information about the Var and its use sites.

Instances

Instances details
Data Var 
Instance details

Defined in GHC.Types.Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var #

toConstr :: Var -> Constr #

dataTypeOf :: Var -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) #

gmapT :: (forall b. Data b => b -> b) -> Var -> Var #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

NamedThing Var 
Instance details

Defined in GHC.Types.Var

Methods

getOccName :: Var -> OccName #

getName :: Var -> Name #

HasOccName Var 
Instance details

Defined in GHC.Types.Var

Methods

occName :: Var -> OccName #

Uniquable Var 
Instance details

Defined in GHC.Types.Var

Methods

getUnique :: Var -> Unique #

Outputable Var 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: Var -> SDoc #

Eq Var 
Instance details

Defined in GHC.Types.Var

Methods

(==) :: Var -> Var -> Bool #

(/=) :: Var -> Var -> Bool #

Ord Var 
Instance details

Defined in GHC.Types.Var

Methods

compare :: Var -> Var -> Ordering #

(<) :: Var -> Var -> Bool #

(<=) :: Var -> Var -> Bool #

(>) :: Var -> Var -> Bool #

(>=) :: Var -> Var -> Bool #

max :: Var -> Var -> Var #

min :: Var -> Var -> Var #

Eq (DeBruijn Var) 
Instance details

Defined in GHC.Core.Map.Type

OutputableBndr (Id, TagSig) 
Instance details

Defined in GHC.Stg.InferTags.TagSig

type Anno Id 
Instance details

Defined in GHC.Hs.Extension

type OutId = Id #

type OutVar = Var #

type InId = Id #

type InVar = Var #

type JoinId = Id #

idName :: Id -> Name #

globaliseId :: Id -> Id #

If it's a local, make it global

updateIdTypeAndMultM :: Monad m => (Type -> m Type) -> Id -> m Id #

setIdMult :: Id -> Mult -> Id #

isId :: Var -> Bool #

Is this a value-level (i.e., computationally relevant) Varentifier? Satisfies isId = not . isTyVar.

isExportedId :: Var -> Bool #

isExportedIdVar means "don't throw this away"

idType :: Id -> Kind #

idMult :: Id -> Mult #

scaleIdBy :: Mult -> Id -> Id #

scaleVarBy :: Mult -> Var -> Var #

Like scaleIdBy, but skips non-Ids. Useful for scaling a mixed list of ids and tyvars.

setIdName :: Id -> Name -> Id #

setIdType :: Id -> Type -> Id #

Not only does this set the Id Type, it also evaluates the type to try and reduce space usage

mkGlobalId :: IdDetails -> Name -> Type -> IdInfo -> Id #

For an explanation of global vs. local Ids, see GHC.Types.Var.Var

mkVanillaGlobal :: Name -> Type -> Id #

Make a global Id without any extra information at all

mkVanillaGlobalWithInfo :: Name -> Type -> IdInfo -> Id #

Make a global Id with no global information but some generic IdInfo

mkLocalId :: HasDebugCallStack => Name -> Mult -> Type -> Id #

For an explanation of global vs. local Ids, see GHC.Types.Var

mkLocalCoVar :: Name -> Type -> CoVar #

Make a local CoVar

mkLocalIdOrCoVar :: Name -> Mult -> Type -> Id #

Like mkLocalId, but checks the type to see if it should make a covar

mkExportedLocalId :: IdDetails -> Name -> Type -> Id #

Create a local Id that is marked as exported. This prevents things attached to it from being removed as dead code. See Note [Exported LocalIds]

mkSysLocal :: FastString -> Unique -> Mult -> Type -> Id #

Create a system local Id. These are local Ids (see Var) that are created by the compiler out of thin air

mkSysLocalOrCoVar :: FastString -> Unique -> Mult -> Type -> Id #

Like mkSysLocal, but checks to see if we have a covar type

mkUserLocal :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id #

Create a user local Id. These are local Ids (see GHC.Types.Var) with a name and location that the user might recognize

mkUserLocalOrCoVar :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id #

Like mkUserLocal, but checks if we have a coercion type

mkWorkerId :: Unique -> Id -> Type -> Id #

Workers get local names. CoreTidy will externalise these if necessary

mkTemplateLocal :: Int -> Type -> Id #

Create a template local: a family of system local Ids in bijection with Ints, typically used in unfoldings

mkTemplateLocals :: [Type] -> [Id] #

Create a template local for a series of types

mkTemplateLocalsNum :: Int -> [Type] -> [Id] #

Create a template local for a series of type, but start from a specified template local

recordSelectorTyCon :: Id -> RecSelParent #

If the Id is that for a record selector, extract the sel_tycon. Panic otherwise.

isWorkerLikeId :: Id -> Bool #

An Id for which we might require all callers to pass strict arguments properly tagged + evaluated.

See Note [CBV Function Ids]

idJoinPointHood :: Var -> JoinPointHood #

Doesn't return strictness marks

idDataCon :: Id -> DataCon #

Get from either the worker or the wrapper Id to the DataCon. Currently used only in the desugarer.

INVARIANT: idDataCon (dataConWrapId d) = d: remember, dataConWrapId can return either the wrapper or the worker

hasNoBinding :: Id -> Bool #

Returns True of an Id which may not have a binding, even though it is defined in this module.

isImplicitId :: Id -> Bool #

isImplicitId tells whether an Ids info is implied by other declarations, so we don't need to put its signature in an interface file, even if it's mentioned in some other interface unfolding.

asJoinId :: Id -> JoinArity -> JoinId infixl 1 #

asJoinId_maybe :: Id -> JoinPointHood -> Id infixl 1 #

setIdArity :: Id -> Arity -> Id infixl 1 #

setIdCallArity :: Id -> Arity -> Id infixl 1 #

idFunRepArity :: Id -> RepArity #

This function counts all arguments post-unarisation, which includes arguments with no runtime representation -- see Note [Unarisation and arity]

isDeadEndId :: Var -> Bool #

Returns true if an application to n args diverges or throws an exception See Note [Dead ends] in GHC.Types.Demand.

idDmdSig :: Id -> DmdSig #

Accesses the Id's dmdSigInfo.

setIdDmdSig :: Id -> DmdSig -> Id infixl 1 #

setIdCprSig :: Id -> CprSig -> Id infixl 1 #

isStrictId :: Id -> Bool #

isStrictId says whether either (a) the Id has a strict demand placed on it or (b) definitely has a "strict type", such that it can always be evaluated strictly (i.e an unlifted type) We need to check (b) as well as (a), because when the demand for the given id hasn't been computed yet but id has a strict type, we still want `isStrictId id` to be True. Returns False if the type is levity polymorphic; False is always safe.

idUnfolding :: IdUnfoldingFun #

Returns the Ids unfolding, but does not expose the unfolding of a strong loop breaker. See unfoldingInfo.

If you really want the unfolding of a strong loopbreaker, call realIdUnfolding.

alwaysActiveUnfoldingFun :: IdUnfoldingFun #

Returns an unfolding only if (a) not a strong loop breaker and (b) always active

whenActiveUnfoldingFun :: (Activation -> Bool) -> IdUnfoldingFun #

Returns an unfolding only if (a) not a strong loop breaker and (b) active in according to is_active

realIdUnfolding :: Id -> Unfolding #

Expose the unfolding if there is one, including for loop breakers

setIdUnfolding :: Id -> Unfolding -> Id infixl 1 #

setIdDemandInfo :: Id -> Demand -> Id infixl 1 #

setIdCbvMarks :: Id -> [CbvMark] -> Id infixl 1 #

If all marks are NotMarkedStrict we just set nothing.

asNonWorkerLikeId :: Id -> Id #

Remove any cbv marks on arguments from a given Id.

asWorkerLikeId :: Id -> Id #

Turn this id into a WorkerLikeId if possible.

zapIdUnfolding :: Id -> Id #

Similar to trimUnfolding, but also removes evaldness info.

setIdSpecialisation :: Id -> RuleInfo -> Id infixl 1 #

idCafInfo :: Id -> CafInfo infixl 1 #

setIdOccInfo :: Id -> OccInfo -> Id infixl 1 #

setInlinePragma :: Id -> InlinePragma -> Id infixl 1 #

setIdOneShotInfo :: Id -> OneShotInfo -> Id infixl 1 #

transferPolyIdInfo :: Id -> [Var] -> Id -> Id #

module GHC.Core

data InScopeSet #

A set of variables that are in scope at some point.

Note that this is a superset of the variables that are currently in scope. See Note [The InScopeSet invariant].

"Secrets of the Glasgow Haskell Compiler inliner" Section 3.2 provides the motivation for this abstraction.

Instances

Instances details
Outputable InScopeSet 
Instance details

Defined in GHC.Types.Var.Env

Methods

ppr :: InScopeSet -> SDoc #

type TvSubstEnv = TyVarEnv Type #

A substitution of Types for TyVars and Kinds for KindVars

type IdSubstEnv = IdEnv CoreExpr #

A substitution of Exprs for non-coercion Ids

data Subst #

Type & coercion & id substitution

The Subst data type defined in this module contains substitution for tyvar, covar and id. However, operations on IdSubstEnv (mapping from Id to CoreExpr) that require the definition of the Expr data type are defined in GHC.Core.Subst to avoid circular module dependency.

Instances

Instances details
Outputable Subst 
Instance details

Defined in GHC.Core.TyCo.Subst

Methods

ppr :: Subst -> SDoc #

getSubstInScope :: Subst -> InScopeSet #

Find the in-scope set: see Note [The substitution invariant]

zapSubst :: Subst -> Subst #

Remove all substitutions that might have been built up while preserving the in-scope set originally called zapSubstEnv

extendSubstInScope :: Subst -> Var -> Subst #

Add the Var to the in-scope set

extendSubstInScopeList :: Subst -> [Var] -> Subst #

Add the Vars to the in-scope set: see also extendInScope

extendTvSubst :: Subst -> TyVar -> Type -> Subst #

Add a substitution for a TyVar to the Subst The TyVar *must* be a real TyVar, and not a CoVar You must ensure that the in-scope set is such that Note [The substitution invariant] holds after extending the substitution like this.

extendTvSubstList :: Subst -> [(TyVar, Type)] -> Subst #

Adds multiple TyVar substitutions to the Subst: see also extendTvSubst

substTyUnchecked :: Subst -> Type -> Type #

Substitute within a Type disabling the sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.

substCo :: HasDebugCallStack => Subst -> Coercion -> Coercion #

Substitute within a Coercion The substitution has to satisfy the invariants described in Note [The substitution invariant].

extendIdSubst :: Subst -> Id -> CoreExpr -> Subst #

Add a substitution for an Id to the Subst: you must ensure that the in-scope set is such that TyCoSubst Note [The substitution invariant] holds after extending the substitution like this

extendIdSubstList :: Subst -> [(Id, CoreExpr)] -> Subst #

Adds multiple Id substitutions to the Subst: see also extendIdSubst

extendSubst :: Subst -> Var -> CoreArg -> Subst #

Add a substitution appropriate to the thing being substituted (whether an expression, type, or coercion). See also extendIdSubst, extendTvSubst, extendCvSubst

extendSubstList :: Subst -> [(Var, CoreArg)] -> Subst #

Add a substitution as appropriate to each of the terms being substituted (whether expressions, types, or coercions). See also extendSubst.

lookupIdSubst :: HasDebugCallStack => Subst -> Id -> CoreExpr #

Find the substitution for an Id in the Subst The Id should not be a CoVar

delBndrs :: Subst -> [Var] -> Subst #

mkOpenSubst :: InScopeSet -> [(Var, CoreArg)] -> Subst #

Simultaneously substitute for a bunch of variables No left-right shadowing ie the substitution for (x y. e) a1 a2 so neither x nor y scope over a1 a2

substExpr :: HasDebugCallStack => Subst -> CoreExpr -> CoreExpr #

substExpr applies a substitution to an entire CoreExpr. Remember, you may only apply the substitution once: See Note [Substitutions apply only once] in GHC.Core.TyCo.Subst

Do *not* attempt to short-cut in the case of an empty substitution! See Note [Extending the IdSubstEnv]

substBindSC :: HasDebugCallStack => Subst -> CoreBind -> (Subst, CoreBind) #

Apply a substitution to an entire CoreBind, additionally returning an updated Subst that should be used by subsequent substitutions.

substBind :: HasDebugCallStack => Subst -> CoreBind -> (Subst, CoreBind) #

Apply a substitution to an entire CoreBind, additionally returning an updated Subst that should be used by subsequent substitutions.

deShadowBinds :: CoreProgram -> CoreProgram #

De-shadowing the program is sometimes a useful pre-pass. It can be done simply by running over the bindings with an empty substitution, because substitution returns a result that has no-shadowing guaranteed.

(Actually, within a single type there might still be shadowing, because substTy is a no-op for the empty substitution, but that's probably OK.)

Aug 09
This function is not used in GHC at the moment, but seems so short and simple that I'm going to leave it here

substBndr :: Subst -> Var -> (Subst, Var) #

Substitutes a Expr for another one according to the Subst given, returning the result and an updated Subst that should be used by subsequent substitutions. IdInfo is preserved by this process, although it is substituted into appropriately.

substBndrs :: Traversable f => Subst -> f Var -> (Subst, f Var) #

Applies substBndr to a number of Exprs, accumulating a new Subst left-to-right

substRecBndrs :: Traversable f => Subst -> f Id -> (Subst, f Id) #

Substitute in a mutually recursive group of Ids

cloneIdBndr :: Subst -> UniqSupply -> Id -> (Subst, Id) #

Very similar to substBndr, but it always allocates a new Unique for each variable in its output. It substitutes the IdInfo though. Discards non-Stable unfoldings

cloneIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id]) #

Applies cloneIdBndr to a number of Ids, accumulating a final substitution from left to right Discards non-Stable unfoldings

cloneBndrs :: MonadUnique m => Subst -> [Var] -> m (Subst, [Var]) #

cloneRecIdBndrs :: MonadUnique m => Subst -> [Id] -> m (Subst, [Id]) #

Clone a mutually recursive group of Ids

substIdInfo :: Subst -> Id -> IdInfo -> Maybe IdInfo #

Substitute into some IdInfo with regard to the supplied new Id. Discards unfoldings, unless they are Stable

substUnfoldingSC :: Subst -> Unfolding -> Unfolding #

Substitutes for the Ids within an unfolding NB: substUnfolding discards any unfolding without without a Stable source. This is usually what we want, but it may be a bit unexpected

substUnfolding :: Subst -> Unfolding -> Unfolding #

Substitutes for the Ids within an unfolding NB: substUnfolding discards any unfolding without without a Stable source. This is usually what we want, but it may be a bit unexpected

substRuleInfo :: Subst -> Id -> RuleInfo -> RuleInfo #

Substitutes for the Ids within the RuleInfo given the new function Id

substTickish :: Subst -> CoreTickish -> CoreTickish #

Drop free vars from the breakpoint if they have a non-variable substitution.

data Type #

Instances

Instances details
Data Type 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type #

toConstr :: Type -> Constr #

dataTypeOf :: Type -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) #

gmapT :: (forall b. Data b => b -> b) -> Type -> Type #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r #

gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type #

Outputable Type 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: Type -> SDoc #

Eq (DeBruijn Type) 
Instance details

Defined in GHC.Core.Map.Type

type Kind = Type #

The key type representing kinds in the compiler.

data Specificity #

Whether an Invisible argument may appear in source Haskell.

Constructors

InferredSpec

the argument may not appear in source Haskell, it is only inferred.

SpecifiedSpec

the argument may appear in source Haskell, but isn't required.

Instances

Instances details
Data Specificity 
Instance details

Defined in GHC.Types.Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Specificity -> c Specificity #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Specificity #

toConstr :: Specificity -> Constr #

dataTypeOf :: Specificity -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Specificity) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Specificity) #

gmapT :: (forall b. Data b => b -> b) -> Specificity -> Specificity #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r #

gmapQ :: (forall d. Data d => d -> u) -> Specificity -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Specificity -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity #

NFData Specificity 
Instance details

Defined in GHC.Types.Var

Methods

rnf :: Specificity -> () #

Binary Specificity 
Instance details

Defined in GHC.Types.Var

Eq Specificity 
Instance details

Defined in GHC.Types.Var

Ord Specificity 
Instance details

Defined in GHC.Types.Var

OutputableBndrFlag Specificity p 
Instance details

Defined in GHC.Hs.Type

Outputable tv => Outputable (VarBndr tv Specificity) 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: VarBndr tv Specificity -> SDoc #

type TyCoVar = Id #

Type or Coercion Variable

type TyVar = Var #

Type or kind Variable

data Var #

Variable

Essentially a typed Name, that may also contain some additional information about the Var and its use sites.

Instances

Instances details
Data Var 
Instance details

Defined in GHC.Types.Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var #

toConstr :: Var -> Constr #

dataTypeOf :: Var -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) #

gmapT :: (forall b. Data b => b -> b) -> Var -> Var #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

NamedThing Var 
Instance details

Defined in GHC.Types.Var

Methods

getOccName :: Var -> OccName #

getName :: Var -> Name #

HasOccName Var 
Instance details

Defined in GHC.Types.Var

Methods

occName :: Var -> OccName #

Uniquable Var 
Instance details

Defined in GHC.Types.Var

Methods

getUnique :: Var -> Unique #

Outputable Var 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: Var -> SDoc #

Eq Var 
Instance details

Defined in GHC.Types.Var

Methods

(==) :: Var -> Var -> Bool #

(/=) :: Var -> Var -> Bool #

Ord Var 
Instance details

Defined in GHC.Types.Var

Methods

compare :: Var -> Var -> Ordering #

(<) :: Var -> Var -> Bool #

(<=) :: Var -> Var -> Bool #

(>) :: Var -> Var -> Bool #

(>=) :: Var -> Var -> Bool #

max :: Var -> Var -> Var #

min :: Var -> Var -> Var #

Eq (DeBruijn Var) 
Instance details

Defined in GHC.Core.Map.Type

OutputableBndr (Id, TagSig) 
Instance details

Defined in GHC.Stg.InferTags.TagSig

type Anno Id 
Instance details

Defined in GHC.Hs.Extension

data FunTyFlag #

The non-dependent version of ForAllTyFlag. See Note [FunTyFlag] Appears here partly so that it's together with its friends ForAllTyFlag and ForallVisFlag, but also because it is used in IfaceType, rather early in the compilation chain

Constructors

FTF_T_T 
FTF_T_C 
FTF_C_T 
FTF_C_C 

Instances

Instances details
Data FunTyFlag 
Instance details

Defined in GHC.Types.Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunTyFlag -> c FunTyFlag #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunTyFlag #

toConstr :: FunTyFlag -> Constr #

dataTypeOf :: FunTyFlag -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunTyFlag) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunTyFlag) #

gmapT :: (forall b. Data b => b -> b) -> FunTyFlag -> FunTyFlag #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunTyFlag -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunTyFlag -> r #

gmapQ :: (forall d. Data d => d -> u) -> FunTyFlag -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> FunTyFlag -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunTyFlag -> m FunTyFlag #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunTyFlag -> m FunTyFlag #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunTyFlag -> m FunTyFlag #

Binary FunTyFlag 
Instance details

Defined in GHC.Types.Var

Outputable FunTyFlag 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: FunTyFlag -> SDoc #

Eq FunTyFlag 
Instance details

Defined in GHC.Types.Var

Ord FunTyFlag 
Instance details

Defined in GHC.Types.Var

data ForAllTyFlag #

ForAllTyFlag

Is something required to appear in source Haskell (Required), permitted by request (Specified) (visible type application), or prohibited entirely from appearing in source Haskell (Inferred)? See Note [VarBndrs, ForAllTyBinders, TyConBinders, and visibility] in GHC.Core.TyCo.Rep

Bundled Patterns

pattern Specified :: ForAllTyFlag 
pattern Inferred :: ForAllTyFlag 

Instances

Instances details
Data ForAllTyFlag 
Instance details

Defined in GHC.Types.Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForAllTyFlag -> c ForAllTyFlag #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForAllTyFlag #

toConstr :: ForAllTyFlag -> Constr #

dataTypeOf :: ForAllTyFlag -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ForAllTyFlag) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForAllTyFlag) #

gmapT :: (forall b. Data b => b -> b) -> ForAllTyFlag -> ForAllTyFlag #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForAllTyFlag -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForAllTyFlag -> r #

gmapQ :: (forall d. Data d => d -> u) -> ForAllTyFlag -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ForAllTyFlag -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForAllTyFlag -> m ForAllTyFlag #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForAllTyFlag -> m ForAllTyFlag #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForAllTyFlag -> m ForAllTyFlag #

NFData ForAllTyFlag 
Instance details

Defined in GHC.Types.Var

Methods

rnf :: ForAllTyFlag -> () #

Binary ForAllTyFlag 
Instance details

Defined in GHC.Types.Var

Outputable ForAllTyFlag 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: ForAllTyFlag -> SDoc #

Eq ForAllTyFlag 
Instance details

Defined in GHC.Types.Var

Ord ForAllTyFlag 
Instance details

Defined in GHC.Types.Var

Outputable tv => Outputable (VarBndr tv ForAllTyFlag) 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: VarBndr tv ForAllTyFlag -> SDoc #

type ThetaType = [PredType] #

A collection of PredTypes

type RuntimeRepType = Type #

Type synonym used for types of kind RuntimeRep.

type PredType = Type #

A type of the form p of constraint kind represents a value whose type is the Haskell predicate p, where a predicate is what occurs before the => in a Haskell type.

We use PredType as documentation to mark those types that we guarantee to have this kind.

It can be expanded into its representation, but:

  • The type checker must treat it as opaque
  • The rest of the compiler treats it as transparent

Consider these examples:

f :: (Eq a) => a -> Int
g :: (?x :: Int -> Int) => a -> Int
h :: (r\l) => {r} => {l::Int | r}

Here the Eq a and ?x :: Int -> Int and rl are all called "predicates"

type Mult = Type #

Mult is a type alias for Type.

Mult must contain Type because multiplicity variables are mere type variables (of kind Multiplicity) in Haskell. So the simplest implementation is to make Mult be Type.

Multiplicities can be formed with: - One: GHC.Types.One (= oneDataCon) - Many: GHC.Types.Many (= manyDataCon) - Multiplication: GHC.Types.MultMul (= multMulTyCon)

So that Mult feels a bit more structured, we provide pattern synonyms and smart constructors for these.

data Scaled a #

A shorthand for data with an attached Mult element (the multiplicity).

Instances

Instances details
Data a => Data (Scaled a) 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Scaled a -> c (Scaled a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Scaled a) #

toConstr :: Scaled a -> Constr #

dataTypeOf :: Scaled a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Scaled a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Scaled a)) #

gmapT :: (forall b. Data b => b -> b) -> Scaled a -> Scaled a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Scaled a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Scaled a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Scaled a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Scaled a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) #

Outputable a => Outputable (Scaled a) 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: Scaled a -> SDoc #

data PiTyBinder #

A PiTyBinder represents an argument to a function. PiTyBinders can be dependent (Named) or nondependent (Anon). They may also be visible or not. See Note [PiTyBinders]

Instances

Instances details
Data PiTyBinder 
Instance details

Defined in GHC.Types.Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PiTyBinder -> c PiTyBinder #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PiTyBinder #

toConstr :: PiTyBinder -> Constr #

dataTypeOf :: PiTyBinder -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PiTyBinder) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PiTyBinder) #

gmapT :: (forall b. Data b => b -> b) -> PiTyBinder -> PiTyBinder #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PiTyBinder -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PiTyBinder -> r #

gmapQ :: (forall d. Data d => d -> u) -> PiTyBinder -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PiTyBinder -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PiTyBinder -> m PiTyBinder #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PiTyBinder -> m PiTyBinder #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PiTyBinder -> m PiTyBinder #

Outputable PiTyBinder 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: PiTyBinder -> SDoc #

type ForAllTyBinder = VarBndr TyCoVar ForAllTyFlag #

Variable Binder

A ForAllTyBinder is the binder of a ForAllTy It's convenient to define this synonym here rather its natural home in GHC.Core.TyCo.Rep, because it's used in GHC.Core.DataCon.hs-boot

A TyVarBinder is a binder with only TyVar

data TyCoFolder env a #

Constructors

TyCoFolder 

Fields

type KnotTied (ty :: k) = ty #

A type labeled KnotTied might have knot-tied tycons in it. See Note [Type checking recursive type and class declarations] in GHC.Tc.TyCl

type FRRType = Type #

type KindOrType = Type #

The key representation of types within the compiler

type TvSubstEnv = TyVarEnv Type #

A substitution of Types for TyVars and Kinds for KindVars

type IdSubstEnv = IdEnv CoreExpr #

A substitution of Exprs for non-coercion Ids

data Subst #

Type & coercion & id substitution

The Subst data type defined in this module contains substitution for tyvar, covar and id. However, operations on IdSubstEnv (mapping from Id to CoreExpr) that require the definition of the Expr data type are defined in GHC.Core.Subst to avoid circular module dependency.

Instances

Instances details
Outputable Subst 
Instance details

Defined in GHC.Core.TyCo.Subst

Methods

ppr :: Subst -> SDoc #

type ErrorMsgType = Type #

A type of kind ErrorMessage (from the TypeError module).

data TyCoMapper env (m :: Type -> Type) #

This describes how a "map" operation over a type/coercion should behave

Constructors

TyCoMapper 

Fields

pattern ManyTy :: Mult #

pattern OneTy :: Mult #

funResultTy :: HasDebugCallStack => Type -> Type #

Extract the function result type and panic if that is not possible

mkFunTy :: HasDebugCallStack => FunTyFlag -> Mult -> Type -> Type -> Type infixr 3 #

splitTyConApp :: Type -> (TyCon, [Type]) #

Attempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor. Panics if that is not possible. See also splitTyConApp_maybe

isAlgType :: Type -> Bool #

See Type for what an algebraic type is. Should only be applied to types, as opposed to e.g. partially saturated type constructors

mkTyConTy :: TyCon -> Type #

(mkTyConTy tc) returns (TyConApp tc []) but arranges to share that TyConApp among all calls See Note [Sharing nullary TyConApps] So it's just an alias for tyConNullaryTy!

typeLevity_maybe :: HasDebugCallStack => Type -> Maybe Levity #

Tries to compute the PromDataConInfo of the given type. Returns either a definite PromDataConInfo, or Nothing if we aren't sure (e.g. the type is representation-polymorphic).

Panics if the kind does not have the shape TYPE r.

expandTypeSynonyms :: Type -> Type #

Expand out all type synonyms. Actually, it'd suffice to expand out just the ones that discard type variables (e.g. type Funny a = Int) But we don't know which those are currently, so we just expand all.

expandTypeSynonyms only expands out type synonyms mentioned in the type, not in the kinds of any TyCon or TyVar mentioned in the type.

Keep this synchronized with synonymTyConsOfType

mkForAllTy :: ForAllTyBinder -> Type -> Type #

Like mkTyCoForAllTy, but does not check the occurrence of the binder See Note [Unused coercion variable in ForAllTy]

isVisibleForAllTyFlag :: ForAllTyFlag -> Bool #

Does this ForAllTyFlag classify an argument that is written in Haskell?

isInvisibleForAllTyFlag :: ForAllTyFlag -> Bool #

Does this ForAllTyFlag classify an argument that is not written in Haskell?

binderVar :: VarBndr tv argf -> tv #

binderVars :: [VarBndr tv argf] -> [tv] #

binderFlag :: VarBndr tv argf -> argf #

binderFlags :: [VarBndr tv argf] -> [argf] #

mkForAllTyBinder :: vis -> TyCoVar -> VarBndr TyCoVar vis #

Make a named binder

mkTyVarBinder :: vis -> TyVar -> VarBndr TyVar vis #

Make a named binder var should be a type variable

mkForAllTyBinders :: vis -> [TyCoVar] -> [VarBndr TyCoVar vis] #

Make many named binders

mkTyVarBinders :: vis -> [TyVar] -> [VarBndr TyVar vis] #

Make many named binders Input vars should be type variables

isInvisiblePiTyBinder :: PiTyBinder -> Bool #

Does this binder bind an invisible argument?

isVisiblePiTyBinder :: PiTyBinder -> Bool #

Does this binder bind a visible argument?

isAnonPiTyBinder :: PiTyBinder -> Bool #

Does this binder bind a variable that is not erased? Returns True for anonymous binders.

anonPiTyBinderType_maybe :: PiTyBinder -> Maybe Type #

Extract a relevant type, if there is one.

isTyVar :: Var -> Bool #

Is this a type-level (i.e., computationally irrelevant, thus erasable) variable? Satisfies isTyVar = not . isId.

chooseFunTyFlag :: HasDebugCallStack => Type -> Type -> FunTyFlag #

See GHC.Types.Var Note [FunTyFlag]

partitionInvisibleTypes :: TyCon -> [Type] -> ([Type], [Type]) #

Given a TyCon and a list of argument types, partition the arguments into:

  1. Inferred or Specified (i.e., invisible) arguments and
  2. Required (i.e., visible) arguments

getLevity :: HasDebugCallStack => Type -> Type #

Extract the PromDataConInfo of a type. For example, getLevity Int = Lifted, or getLevity (Array# Int) = Unlifted.

Panics if this is not possible. Does not look through type family applications.

getTyVar_maybe :: Type -> Maybe TyVar #

Attempts to obtain the type variable underlying a Type

tyConAppTyCon_maybe :: Type -> Maybe TyCon #

The same as fst . splitTyConApp We can short-cut the FunTy case

splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) #

Attempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor

isLiftedTypeKind :: Kind -> Bool #

Returns True if the argument is (lifted) Type or Constraint See Note [TYPE and CONSTRAINT] in GHC.Builtin.Types.Prim

isMultiplicityTy :: Type -> Bool #

Is this the type Multiplicity?

isLevityTy :: Type -> Bool #

Is this the type PromDataConInfo?

isRuntimeRepTy :: Type -> Bool #

Is this the type RuntimeRep?

coreView :: Type -> Maybe Type #

This function strips off the top layer only of a type synonym application (if any) its underlying representation type. Returns Nothing if there is nothing to look through.

This function does not look through type family applications.

By being non-recursive and inlined, this case analysis gets efficiently joined onto the case analysis that the caller is already doing

mkTyConApp :: TyCon -> [Type] -> Type #

A key function: builds a TyConApp or FunTy as appropriate to its arguments. Applies its arguments to the constructor from left to right.

mkCastTy :: Type -> Coercion -> Type #

Make a CastTy. The Coercion must be nominal. Checks the Coercion for reflexivity, dropping it if it's reflexive. See Note [Respecting definitional equality] in GHC.Core.TyCo.Rep

mkAppTy :: Type -> Type -> Type #

Applies a type to another, as in e.g. k a

mkVisFunTyMany :: HasDebugCallStack => Type -> Type -> Type infixr 3 #

Make nested arrow types | Special, common, case: Arrow type with mult Many

mkForAllTys :: [ForAllTyBinder] -> Type -> Type #

Wraps foralls over the type using the provided TyCoVars from left to right

mkInvisForAllTys :: [InvisTVBinder] -> Type -> Type #

Wraps foralls over the type using the provided InvisTVBinders from left to right

foldTyCo :: Monoid a => TyCoFolder env a -> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a) #

noView :: Type -> Maybe Type #

A view function that looks through nothing.

closeOverKindsList :: [TyVar] -> [TyVar] #

Add the kind variables free in the kinds of the tyvars in the given set. Returns a deterministically ordered list.

closeOverKindsDSet :: DTyVarSet -> DTyVarSet #

Add the kind variables free in the kinds of the tyvars in the given set. Returns a deterministic set.

tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet #

tyCoFVsOfType that returns free variables of a type in a deterministic set. For explanation of why using VarSet is not deterministic see Note [Deterministic FV] in GHC.Utils.FV.

tyCoFVsOfType :: Type -> FV #

The worker for tyCoFVsOfType and tyCoFVsOfTypeList. The previous implementation used unionVarSet which is O(n+m) and can make the function quadratic. It's exported, so that it can be composed with other functions that compute free variables. See Note [FV naming conventions] in GHC.Utils.FV.

Eta-expanded because that makes it run faster (apparently) See Note [FV eta expansion] in GHC.Utils.FV for explanation.

scopedSort :: [TyCoVar] -> [TyCoVar] #

Do a topological sort on a list of tyvars, so that binders occur before occurrences E.g. given [ a::k, k::*, b::k ] it'll return a well-scoped list [ k::*, a::k, b::k ]

This is a deterministic sorting operation (that is, doesn't depend on Uniques).

It is also meant to be stable: that is, variables should not be reordered unnecessarily. This is specified in Note [ScopedSort] See also Note [Ordering of implicit variables] in GHC.Rename.HsType

tyCoVarsOfTypeWellScoped :: Type -> [TyVar] #

Get the free vars of a type in scoped order

tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar] #

Get the free vars of types in scoped order

tyConsOfType :: Type -> UniqSet TyCon #

All type constructors occurring in the type; looking through type synonyms, but not newtypes. When it finds a Class, it returns the class TyCon.

composeTCvSubst :: Subst -> Subst -> Subst #

Composes two substitutions, applying the second one provided first, like in function composition. This function leaves IdSubstEnv untouched because IdSubstEnv is not used during substitution for types.

isEmptyTCvSubst :: Subst -> Bool #

Checks whether the tyvar and covar environments are empty. This function should be used over isEmptySubst when substituting for types, because types currently do not contain expressions; we can safely disregard the expression environment when deciding whether to skip a substitution. Using isEmptyTCvSubst gives us a non-trivial performance boost (up to 70% less allocation for T18223)

getSubstInScope :: Subst -> InScopeSet #

Find the in-scope set: see Note [The substitution invariant]

getSubstRangeTyCoFVs :: Subst -> VarSet #

Returns the free variables of the types in the range of a substitution as a non-deterministic set.

zapSubst :: Subst -> Subst #

Remove all substitutions that might have been built up while preserving the in-scope set originally called zapSubstEnv

extendSubstInScope :: Subst -> Var -> Subst #

Add the Var to the in-scope set

extendSubstInScopeList :: Subst -> [Var] -> Subst #

Add the Vars to the in-scope set: see also extendInScope

extendSubstInScopeSet :: Subst -> VarSet -> Subst #

Add the Vars to the in-scope set: see also extendInScope

extendCvSubst :: Subst -> CoVar -> Coercion -> Subst #

Add a substitution from a CoVar to a Coercion to the Subst: you must ensure that the in-scope set satisfies Note [The substitution invariant] after extending the substitution like this

zipTvSubst :: HasDebugCallStack => [TyVar] -> [Type] -> Subst #

Generates the in-scope set for the Subst from the types in the incoming environment. No CoVars or Ids, please!

mkTvSubstPrs :: [(TyVar, Type)] -> Subst #

Generates the in-scope set for the TCvSubst from the types in the incoming environment. No CoVars, please! The InScopeSet is just a thunk so with a bit of luck it'll never be evaluated

zipTyEnv :: HasDebugCallStack => [TyVar] -> [Type] -> TvSubstEnv #

The InScopeSet is just a thunk so with a bit of luck it'll never be evaluated

substTyWith :: HasDebugCallStack => [TyVar] -> [Type] -> Type -> Type #

Type substitution, see zipTvSubst

substTyWithUnchecked :: [TyVar] -> [Type] -> Type -> Type #

Type substitution, see zipTvSubst. Disables sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.

substCoWithUnchecked :: [TyVar] -> [Type] -> Coercion -> Coercion #

Coercion substitution, see zipTvSubst. Disables sanity checks. The problems that the sanity checks in substCo catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substCoUnchecked to substCo and remove this function. Please don't use in new code.

substTysWith :: HasDebugCallStack => [TyVar] -> [Type] -> [Type] -> [Type] #

Type substitution, see zipTvSubst

substTyAddInScope :: HasDebugCallStack => Subst -> Type -> Type #

Substitute within a Type after adding the free variables of the type to the in-scope set. This is useful for the case when the free variables aren't already in the in-scope set or easily available. See also Note [The substitution invariant].

substTyUnchecked :: Subst -> Type -> Type #

Substitute within a Type disabling the sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.

substTys :: HasDebugCallStack => Subst -> [Type] -> [Type] #

Substitute within several Types The substitution has to satisfy the invariants described in Note [The substitution invariant].

substTysUnchecked :: Subst -> [Type] -> [Type] #

Substitute within several Types disabling the sanity checks. The problems that the sanity checks in substTys catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTysUnchecked to substTys and remove this function. Please don't use in new code.

substTheta :: HasDebugCallStack => Subst -> ThetaType -> ThetaType #

Substitute within a ThetaType The substitution has to satisfy the invariants described in Note [The substitution invariant].

substThetaUnchecked :: Subst -> ThetaType -> ThetaType #

Substitute within a ThetaType disabling the sanity checks. The problems that the sanity checks in substTys catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substThetaUnchecked to substTheta and remove this function. Please don't use in new code.

substCo :: HasDebugCallStack => Subst -> Coercion -> Coercion #

Substitute within a Coercion The substitution has to satisfy the invariants described in Note [The substitution invariant].

substCoUnchecked :: Subst -> Coercion -> Coercion #

Substitute within a Coercion disabling sanity checks. The problems that the sanity checks in substCo catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substCoUnchecked to substCo and remove this function. Please don't use in new code.

tidyVarBndrs :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar]) #

This tidies up a type for printing in an error message, or in an interface file.

It doesn't change the uniques at all, just the print names.

tidyFreeTyCoVars :: TidyEnv -> [TyCoVar] -> TidyEnv #

Add the free TyVars to the env in tidy form, so that we can tidy the type they are free in

tidyOpenTyCoVar :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar) #

Treat a new TyCoVar as a binder, and give it a fresh tidy name using the environment if one has not already been allocated. See also tidyVarBndr

tidyTypes :: TidyEnv -> [Type] -> [Type] #

Tidy a list of Types

See Note [Strictness in tidyType and friends]

tidyType :: TidyEnv -> Type -> Type #

Tidy a Type

See Note [Strictness in tidyType and friends]

tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type]) #

Grabs the free type variables, tidies them and then uses tidyType to work over the type itself

tidyTopType :: Type -> Type #

Calls tidyType on a top-level type (i.e. with an empty tidying environment)

coreFullView :: Type -> Type #

Iterates coreView until there is no more to synonym to expand. NB: coreFullView is non-recursive and can be inlined; core_full_view is the recursive one See Note [Inlining coreView].

kindRep :: HasDebugCallStack => Kind -> RuntimeRepType #

Extract the RuntimeRep classifier of a type from its kind. For example, kindRep * = LiftedRep; Panics if this is not possible. Treats * and Constraint as the same

kindRep_maybe :: HasDebugCallStack => Kind -> Maybe RuntimeRepType #

Given a kind (TYPE rr) or (CONSTRAINT rr), extract its RuntimeRep classifier rr. For example, kindRep_maybe * = Just LiftedRep Returns Nothing if the kind is not of form (TYPE rr)

isUnliftedTypeKind :: Kind -> Bool #

Returns True if the kind classifies unlifted types (like 'Int#') and False otherwise. Note that this returns False for representation-polymorphic kinds, which may be specialized to a kind that classifies unlifted types.

kindBoxedRepLevity_maybe :: Type -> Maybe Levity #

Check whether a kind is of the form `TYPE (BoxedRep Lifted)` or `TYPE (BoxedRep Unlifted)`.

Returns:

  • `Just Lifted` for `TYPE (BoxedRep Lifted)` and Type,
  • `Just Unlifted` for `TYPE (BoxedRep Unlifted)` and UnliftedType,
  • Nothing for anything else, e.g. `TYPE IntRep`, `TYPE (BoxedRep l)`, etc.

isLiftedRuntimeRep :: RuntimeRepType -> Bool #

Check whether a type of kind RuntimeRep is lifted.

isLiftedRuntimeRep is:

  • True of LiftedRep :: RuntimeRep
  • False of type variables, type family applications, and of other reps such as IntRep :: RuntimeRep.

isUnliftedRuntimeRep :: RuntimeRepType -> Bool #

Check whether a type of kind RuntimeRep is unlifted.

  • True of definitely unlifted RuntimeReps such as UnliftedRep, IntRep, FloatRep, ...
  • False of LiftedRep,
  • False for type variables and type family applications.

isRuntimeRepVar :: TyVar -> Bool #

Is a tyvar of type RuntimeRep?

isLevityVar :: TyVar -> Bool #

Is a tyvar of type PromDataConInfo?

isMultiplicityVar :: TyVar -> Bool #

Is a tyvar of type Multiplicity?

splitRuntimeRep_maybe :: RuntimeRepType -> Maybe (TyCon, [Type]) #

(splitRuntimeRep_maybe rr) takes a Type rr :: RuntimeRep, and returns the (TyCon,[Type]) for the RuntimeRep, if possible, where the TyCon is one of the promoted DataCons of RuntimeRep. Remember: the unique on TyCon that is a a promoted DataCon is the same as the unique on the DataCon See Note [Promoted data constructors] in GHC.Core.TyCon May not be possible if rr is a type variable or type family application

isBoxedRuntimeRep :: RuntimeRepType -> Bool #

See isBoxedRuntimeRep_maybe.

runtimeRepLevity_maybe :: RuntimeRepType -> Maybe Levity #

Check whether a type (usually of kind RuntimeRep) is lifted, unlifted, or unknown. Returns Nothing if the type isn't of kind RuntimeRep.

`runtimeRepLevity_maybe rr` returns:

  • `Just Lifted` if rr is `LiftedRep :: RuntimeRep`
  • `Just Unlifted` if rr is definitely unlifted, e.g. IntRep
  • Nothing if not known (e.g. it's a type variable or a type family application).

levityType_maybe :: LevityType -> Maybe Levity #

levityType_maybe takes a Type of kind Levity, and returns its levity May not be possible for a type variable or type family application

mapTyCo :: Monad m => TyCoMapper () m -> (Type -> m Type, [Type] -> m [Type], Coercion -> m Coercion, [Coercion] -> m [Coercion]) #

mapTyCoX :: Monad m => TyCoMapper env m -> (env -> Type -> m Type, env -> [Type] -> m [Type], env -> Coercion -> m Coercion, env -> [Coercion] -> m [Coercion]) #

getTyVar :: HasDebugCallStack => Type -> TyVar #

Attempts to obtain the type variable underlying a Type, and panics with the given message if this is not a type variable type. See also getTyVar_maybe

repGetTyVar_maybe :: Type -> Maybe TyVar #

Attempts to obtain the type variable underlying a Type, without any expansion

getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN) #

If the type is a tyvar, possibly under a cast, returns it, along with the coercion. Thus, the co is :: kind tv ~N kind ty

mkAppTys :: Type -> [Type] -> Type #

splitAppTy_maybe :: Type -> Maybe (Type, Type) #

Attempt to take a type application apart, whether it is a function, type constructor, or plain type application. Note that type family applications are NEVER unsaturated by this!

splitAppTy :: Type -> (Type, Type) #

Attempts to take a type application apart, as in splitAppTy_maybe, and panics if this is not possible

splitAppTyNoView_maybe :: HasDebugCallStack => Type -> Maybe (Type, Type) #

Does the AppTy split as in splitAppTy_maybe, but assumes that any coreView stuff is already done

tcSplitAppTyNoView_maybe :: Type -> Maybe (Type, Type) #

Just like splitAppTyNoView_maybe, but does not split (c => t) See Note [Decomposing fat arrow c=>t]

splitAppTys :: HasDebugCallStack => Type -> (Type, [Type]) #

Recursively splits a type as far as is possible, leaving a residual type being applied to and the type arguments applied to it. Never fails, even if that means returning an empty list of type applications.

splitAppTysNoView :: HasDebugCallStack => Type -> (Type, [Type]) #

Like splitAppTys, but doesn't look through type synonyms

isNumLitTy :: Type -> Maybe Integer #

Is this a numeric literal. We also look through type synonyms.

isStrLitTy :: Type -> Maybe FastString #

Is this a symbol literal. We also look through type synonyms.

isCharLitTy :: Type -> Maybe Char #

Is this a char literal? We also look through type synonyms.

isLitTy :: Type -> Maybe TyLit #

Is this a type literal (symbol, numeric, or char)?

userTypeError_maybe :: Type -> Maybe ErrorMsgType #

Is this type a custom user error? If so, give us the error message.

pprUserTypeErrorTy :: ErrorMsgType -> SDoc #

Render a type corresponding to a user type error into a SDoc.

funTyConAppTy_maybe :: FunTyFlag -> Type -> Type -> Type -> Maybe (TyCon, [Type]) #

Given the components of a FunTy figure out the corresponding TyConApp.

tyConAppFunTy_maybe :: HasDebugCallStack => TyCon -> [Type] -> Maybe Type #

Return Just if this TyConApp should be represented as a FunTy

tyConAppFunCo_maybe :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Maybe Coercion #

Return Just if this TyConAppCo should be represented as a FunCo

mkFunctionType :: HasDebugCallStack => Mult -> Type -> Type -> Type #

This one works out the FunTyFlag from the argument type See GHC.Types.Var Note [FunTyFlag]

mkScaledFunctionTys :: [Scaled Type] -> Type -> Type #

Like mkFunctionType, compute the FunTyFlag from the arguments

splitFunTy :: Type -> (Mult, Type, Type) #

Attempts to extract the multiplicity, argument and result types from a type, and panics if that is not possible. See also splitFunTy_maybe

splitFunTy_maybe :: Type -> Maybe (FunTyFlag, Mult, Type, Type) #

Attempts to extract the multiplicity, argument and result types from a type

funArgTy :: HasDebugCallStack => Type -> Type #

Just like piResultTys but for a single argument Try not to iterate piResultTy, because it's inefficient to substitute one variable at a time; instead use 'piResultTys"

Extract the function argument type and panic if that is not possible

piResultTys :: HasDebugCallStack => Type -> [Type] -> Type #

(piResultTys f_ty [ty1, .., tyn]) gives the type of (f ty1 .. tyn) where f :: f_ty piResultTys is interesting because: 1. f_ty may have more for-alls than there are args 2. Less obviously, it may have fewer for-alls For case 2. think of: piResultTys (forall a.a) [forall b.b, Int] This really can happen, but only (I think) in situations involving undefined. For example: undefined :: forall a. a Term: undefined (forall b. b->b) Int This term should have type (Int -> Int), but notice that there are more type args than foralls in undefineds type.

tyConAppTyConPicky_maybe :: Type -> Maybe TyCon #

Retrieve the tycon heading this type, if there is one. Does not look through synonyms.

tyConAppArgs_maybe :: Type -> Maybe [Type] #

The same as snd . splitTyConApp

tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type]) #

tcSplitTyConApp_maybe splits a type constructor application into its type constructor and applied types.

Differs from splitTyConApp_maybe in that it does *not* split types headed with (=>), as that's not a TyCon in the type-checker.

Note that this may fail (in funTyConAppTy_maybe) in the case of a FunTy with an argument of unknown kind FunTy (e.g. `FunTy (a :: k) Int`, since the kind of a isn't of the form `TYPE rep`. This isn't usually a problem but may be temporarily the case during canonicalization: see Note [Decomposing FunTy] in GHC.Tc.Solver.Equality and Note [The Purely Kinded Type Invariant (PKTI)] in GHC.Tc.Gen.HsType, Wrinkle around FunTy

Consequently, you may need to zonk your type before using this function.

newTyConInstRhs :: TyCon -> [Type] -> Type #

Unwrap one layer of newtype on a type constructor and its arguments, using an eta-reduced version of the newtype if possible. This requires tys to have at least newTyConInstArity tycon elements.

mkTyCoForAllTy :: TyCoVar -> ForAllTyFlag -> Type -> Type #

Make a dependent forall over a TyCoVar

mkTyCoForAllTys :: [ForAllTyBinder] -> Type -> Type #

Make a dependent forall over a TyCoVar

mkTyCoInvForAllTy :: TyCoVar -> Type -> Type #

Make a dependent forall over an Inferred variable

mkInfForAllTy :: TyVar -> Type -> Type #

Like mkTyCoInvForAllTy, but tv should be a tyvar

mkTyCoInvForAllTys :: [TyCoVar] -> Type -> Type #

Like mkForAllTys, but assumes all variables are dependent and Inferred, a common case

mkInfForAllTys :: [TyVar] -> Type -> Type #

Like mkTyCoInvForAllTys, but tvs should be a list of tyvar

mkSpecForAllTy :: TyVar -> Type -> Type #

Like mkForAllTy, but assumes the variable is dependent and Specified, a common case

mkSpecForAllTys :: [TyVar] -> Type -> Type #

Like mkForAllTys, but assumes all variables are dependent and Specified, a common case

mkVisForAllTys :: [TyVar] -> Type -> Type #

Like mkForAllTys, but assumes all variables are dependent and visible

mkTyConBindersPreferAnon #

Arguments

:: [TyVar]

binders

-> TyCoVarSet

free variables of result

-> [TyConBinder] 

Given a list of type-level vars and the free vars of a result kind, makes PiTyBinders, preferring anonymous binders if the variable is, in fact, not dependent. e.g. mkTyConBindersPreferAnon (k:*),(b:k),(c:k) We want (k:*) Named, (b:k) Anon, (c:k) Anon

All non-coercion binders are visible.

splitForAllForAllTyBinders :: Type -> ([ForAllTyBinder], Type) #

Take a ForAllTy apart, returning the binders and result type

splitForAllTyCoVars :: Type -> ([TyCoVar], Type) #

Take a ForAllTy apart, returning the list of tycovars and the result type. This always succeeds, even if it returns only an empty list. Note that the result type returned may have free variables that were bound by a forall.

splitForAllTyVars :: Type -> ([TyVar], Type) #

Like splitForAllTyCoVars, but split only for tyvars. This always succeeds, even if it returns only an empty list. Note that the result type returned may have free variables that were bound by a forall.

splitForAllReqTyBinders :: Type -> ([ReqTyBinder], Type) #

Like splitForAllTyCoVars, but only splits ForAllTys with Required type variable binders. Furthermore, each returned tyvar is annotated with ().

splitForAllInvisTyBinders :: Type -> ([InvisTyBinder], Type) #

Like splitForAllTyCoVars, but only splits ForAllTys with Invisible type variable binders. Furthermore, each returned tyvar is annotated with its Specificity.

isForAllTy :: Type -> Bool #

Checks whether this is a proper forall (with a named binder)

isForAllTy_ty :: Type -> Bool #

Like isForAllTy, but returns True only if it is a tyvar binder

isForAllTy_invis_ty :: Type -> Bool #

Like isForAllTy, but returns True only if it is an inferred tyvar binder

isForAllTy_co :: Type -> Bool #

Like isForAllTy, but returns True only if it is a covar binder

isPiTy :: Type -> Bool #

Is this a function or forall?

isFunTy :: Type -> Bool #

Is this a function?

splitForAllTyCoVar :: Type -> (TyCoVar, Type) #

Take a forall type apart, or panics if that is not possible.

dropForAlls :: Type -> Type #

Drops all ForAllTys

splitForAllForAllTyBinder_maybe :: Type -> Maybe (ForAllTyBinder, Type) #

Attempts to take a ForAllTy apart, returning the full ForAllTyBinder

splitForAllTyCoVar_maybe :: Type -> Maybe (TyCoVar, Type) #

Attempts to take a ForAllTy apart, returning the Var

splitForAllTyVar_maybe :: Type -> Maybe (TyVar, Type) #

Attempts to take a ForAllTy apart, but only if the binder is a TyVar

splitForAllCoVar_maybe :: Type -> Maybe (CoVar, Type) #

Like splitForAllTyCoVar_maybe, but only returns Just if it is a covar binder.

splitPiTy_maybe :: Type -> Maybe (PiTyBinder, Type) #

Attempts to take a forall type apart; works with proper foralls and functions

splitPiTy :: Type -> (PiTyBinder, Type) #

Takes a forall type apart, or panics

splitPiTys :: Type -> ([PiTyBinder], Type) #

Split off all PiTyBinders to a type, splitting both proper foralls and functions

getRuntimeArgTys :: Type -> [(Scaled Type, FunTyFlag)] #

Extracts a list of run-time arguments from a function type, looking through newtypes to the right of arrows.

Examples:

   newtype Identity a = I a

   getRuntimeArgTys (Int -> Bool -> Double) == [(Int, FTF_T_T), (Bool, FTF_T_T)]
   getRuntimeArgTys (Identity Int -> Bool -> Double) == [(Identity Int, FTF_T_T), (Bool, FTF_T_T)]
   getRuntimeArgTys (Int -> Identity (Bool -> Identity Double)) == [(Int, FTF_T_T), (Bool, FTF_T_T)]
   getRuntimeArgTys (forall a. Show a => Identity a -> a -> Int -> Bool)
            == [(Show a, FTF_C_T), (Identity a, FTF_T_T),(a, FTF_T_T),(Int, FTF_T_T)]

Note that, in the last case, the returned types might mention an out-of-scope type variable. This function is used only when we really care about the kinds of the returned types, so this is OK.

  • *Warning**: this function can return an infinite list. For example:
  newtype N a = MkN (a -> N a)
  getRuntimeArgTys (N a) == repeat (a, FTF_T_T)

splitInvisPiTys :: Type -> ([PiTyBinder], Type) #

Like splitPiTys, but returns only *invisible* binders, including constraints. Stops at the first visible binder.

splitInvisPiTysN :: Int -> Type -> ([PiTyBinder], Type) #

Same as splitInvisPiTys, but stop when - you have found n PiTyBinders, - or you run out of invisible binders

filterOutInvisibleTypes :: TyCon -> [Type] -> [Type] #

Given a TyCon and a list of argument types, filter out any invisible (i.e., Inferred or Specified) arguments.

filterOutInferredTypes :: TyCon -> [Type] -> [Type] #

Given a TyCon and a list of argument types, filter out any Inferred arguments.

partitionInvisibles :: [(a, ForAllTyFlag)] -> ([a], [a]) #

Given a list of things paired with their visibilities, partition the things into (invisible things, visible things).

tyConForAllTyFlags :: TyCon -> [Type] -> [ForAllTyFlag] #

Given a TyCon and a list of argument types to which the TyCon is applied, determine each argument's visibility (Inferred, Specified, or Required).

Wrinkle: consider the following scenario:

T :: forall k. k -> k
tyConForAllTyFlags T [forall m. m -> m -> m, S, R, Q]

After substituting, we get

T (forall m. m -> m -> m) :: (forall m. m -> m -> m) -> forall n. n -> n -> n

Thus, the first argument is invisible, S is visible, R is invisible again, and Q is visible.

appTyForAllTyFlags :: Type -> [Type] -> [ForAllTyFlag] #

Given a Type and a list of argument types to which the Type is applied, determine each argument's visibility (Inferred, Specified, or Required).

Most of the time, the arguments will be Required, but not always. Consider f :: forall a. a -> Type. In f Type Bool, the first argument (Type) is Specified and the second argument (Bool) is Required. It is precisely this sort of higher-rank situation in which appTyForAllTyFlags comes in handy, since f Type Bool would be represented in Core using AppTys. (See also #15792).

mkFamilyTyConApp :: TyCon -> [Type] -> Type #

Given a family instance TyCon and its arg types, return the corresponding family type. E.g:

data family T a
data instance T (Maybe b) = MkT b

Where the instance tycon is :RTL, so:

mkFamilyTyConApp :RTL Int  =  T (Maybe Int)

coAxNthLHS :: forall (br :: BranchFlag). CoAxiom br -> Int -> Type #

Get the type on the LHS of a coercion induced by a type/data family instance.

buildSynTyCon #

Arguments

:: Name 
-> [KnotTied TyConBinder] 
-> Kind

result kind

-> [Role] 
-> KnotTied Type 
-> TyCon 

isUnliftedType :: HasDebugCallStack => Type -> Bool #

Is the given type definitely unlifted? See Type for what an unlifted type is.

Panics on representation-polymorphic types; See mightBeUnliftedType for a more approximate predicate that behaves better in the presence of representation polymorphism.

mightBeLiftedType :: Type -> Bool #

Returns:

  • False if the type is guaranteed unlifted or
  • True if it lifted, OR we aren't sure (e.g. in a representation-polymorphic case)

mightBeUnliftedType :: Type -> Bool #

Returns:

  • False if the type is guaranteed lifted or
  • True if it is unlifted, OR we aren't sure (e.g. in a representation-polymorphic case)

isBoxedType :: Type -> Bool #

See Type for what a boxed type is. Panics on representation-polymorphic types; See mightBeUnliftedType for a more approximate predicate that behaves better in the presence of representation polymorphism.

isRuntimeRepKindedTy :: Type -> Bool #

Is this a type of kind RuntimeRep? (e.g. LiftedRep)

dropRuntimeRepArgs :: [Type] -> [Type] #

Drops prefix of RuntimeRep constructors in TyConApps. Useful for e.g. dropping 'LiftedRep arguments of unboxed tuple TyCon applications:

dropRuntimeRepArgs [ 'LiftedRep, 'IntRep , String, Int# ] == [String, Int#]

getRuntimeRep :: HasDebugCallStack => Type -> RuntimeRepType #

Extract the RuntimeRep classifier of a type. For instance, getRuntimeRep_maybe Int = LiftedRep. Panics if this is not possible.

isDataFamilyAppType :: Type -> Bool #

Check whether a type is a data family type

isStrictType :: HasDebugCallStack => Type -> Bool #

Computes whether an argument (or let right hand side) should be computed strictly or lazily, based only on its type. Currently, it's just isUnliftedType. Panics on representation-polymorphic types.

isTerminatingType :: HasDebugCallStack => Type -> Bool #

True = a term of this type cannot be bottom This identifies the types described by Note [NON-BOTTOM-DICTS invariant] in GHC.Core NB: unlifted types are not terminating types! e.g. you can write a term (loop 1)::Int# that diverges.

isCoVarType :: Type -> Bool #

Does this type classify a core (unlifted) Coercion? At either role nominal or representational (t1 ~# t2) or (t1 ~R# t2) See Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep

isPrimitiveType :: Type -> Bool #

Returns true of types that are opaque to Haskell.

isValidJoinPointType :: JoinArity -> Type -> Bool #

Determine whether a type could be the type of a join point of given total arity, according to the polymorphism rule. A join point cannot be polymorphic in its return type, since given join j a b x y z = e1 in e2, the types of e1 and e2 must be the same, and a and b are not in scope for e2. (See Note [The polymorphism rule of join points] in GHC.Core.) Returns False also if the type simply doesn't have enough arguments.

Note that we need to know how many arguments (type *and* value) the putative join point takes; for instance, if j :: forall a. a -> Int then j could be a binary join point returning an Int, but it could *not* be a unary join point returning a -> Int.

TODO: See Note [Excess polymorphism and join points]

seqType :: Type -> () #

seqTypes :: [Type] -> () #

isTYPEorCONSTRAINT :: Kind -> Bool #

Does this classify a type allowed to have values? Responds True to things like *, TYPE Lifted, TYPE IntRep, TYPE v, Constraint.

True of a kind `TYPE _` or `CONSTRAINT _`

tcIsLiftedTypeKind :: Kind -> Bool #

Is this kind equivalent to Type i.e. TYPE LiftedRep?

tcIsBoxedTypeKind :: Kind -> Bool #

Is this kind equivalent to TYPE (BoxedRep l) for some l :: Levity?

isTypeLikeKind :: Kind -> Bool #

Is this kind equivalent to TYPE r (for some unknown r)?

This considers Constraint to be distinct from *.

typeHasFixedRuntimeRep :: HasDebugCallStack => Type -> Bool #

Returns True if a type has a syntactically fixed runtime rep, as per Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete.

This function is equivalent to `isFixedRuntimeRepKind . typeKind` but much faster.

Precondition: The type has kind (TYPE blah)

isFixedRuntimeRepKind :: HasDebugCallStack => Kind -> Bool #

Checks that a kind of the form Type, Constraint or 'TYPE r is concrete. See isConcreteType.

Precondition: The type has kind `TYPE blah` or `CONSTRAINT blah`

isConcreteType :: Type -> Bool #

Tests whether the given type is concrete, i.e. it whether it consists only of concrete type constructors, concrete type variables, and applications.

See Note [Concrete types] in GHC.Tc.Utils.Concrete.

tyConAppNeedsKindSig #

Arguments

:: Bool

Should specified binders count towards injective positions in the kind of the TyCon? (If you're using visible kind applications, then you want True here.

-> TyCon 
-> Int

The number of args the TyCon is applied to.

-> Bool

Does T t_1 ... t_n need a kind signature? (Where n is the number of arguments)

Does a TyCon (that is applied to some number of arguments) need to be ascribed with an explicit kind signature to resolve ambiguity if rendered as a source-syntax type? (See Note [When does a tycon application need an explicit kind signature?] for a full explanation of what this function checks for.)

unrestricted :: a -> Scaled a #

Scale a payload by Many

linear :: a -> Scaled a #

Scale a payload by One

tymult :: a -> Scaled a #

Scale a payload by Many; used for type arguments in core

mkScaled :: Mult -> a -> Scaled a #

scaledSet :: Scaled a -> b -> Scaled b #

isLinearType :: Type -> Bool #

isLinear t returns True of a if t is a type of (curried) function where at least one argument is linear (or otherwise non-unrestricted). We use this function to check whether it is safe to eta reduce an Id in CorePrep. It is always safe to return True, because True deactivates the optimisation.

mkTYPEapp_maybe :: RuntimeRepType -> Maybe Type #

Given a RuntimeRep, applies TYPE to it. On the fly it rewrites TYPE LiftedRep --> liftedTypeKind (a synonym) TYPE UnliftedRep --> unliftedTypeKind (ditto) TYPE ZeroBitRep --> zeroBitTypeKind (ditto) NB: no need to check for TYPE (BoxedRep Lifted), TYPE (BoxedRep Unlifted) because those inner types should already have been rewritten to LiftedRep and UnliftedRep respectively, by mkTyConApp

see Note [TYPE and CONSTRAINT] in GHC.Builtin.Types.Prim. See Note [Using synonyms to compress types] in GHC.Core.Type

mkCONSTRAINTapp :: RuntimeRepType -> Type #

Just like mkTYPEapp

mkCONSTRAINTapp_maybe :: RuntimeRepType -> Maybe Type #

Just like mkTYPEapp_maybe

mkBoxedRepApp_maybe :: LevityType -> Maybe Type #

Given a PromDataConInfo, apply BoxedRep to it On the fly, rewrite BoxedRep Lifted --> liftedRepTy (a synonym) BoxedRep Unlifted --> unliftedRepTy (ditto) See Note [TYPE and CONSTRAINT] in GHC.Builtin.Types.Prim. See Note [Using synonyms to compress types] in GHC.Core.Type

mkTupleRepApp_maybe :: Type -> Maybe Type #

Given a `[RuntimeRep]`, apply TupleRep to it On the fly, rewrite TupleRep [] -> zeroBitRepTy (a synonym) See Note [TYPE and CONSTRAINT] in GHC.Builtin.Types.Prim. See Note [Using synonyms to compress types] in GHC.Core.Type

data Coercion #

A Coercion is concrete evidence of the equality/convertibility of two types.

Instances

Instances details
Data Coercion 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Coercion -> c Coercion #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Coercion #

toConstr :: Coercion -> Constr #

dataTypeOf :: Coercion -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Coercion) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Coercion) #

gmapT :: (forall b. Data b => b -> b) -> Coercion -> Coercion #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r #

gmapQ :: (forall d. Data d => d -> u) -> Coercion -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion #

Outputable Coercion 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: Coercion -> SDoc #

Eq (DeBruijn Coercion) 
Instance details

Defined in GHC.Core.Map.Type

data Role #

See Note [Roles] in GHC.Core.Coercion

Order of constructors matters: the Ord instance coincides with the *super*typing relation on roles.

Instances

Instances details
Data Role 
Instance details

Defined in Language.Haskell.Syntax.Basic

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role #

toConstr :: Role -> Constr #

dataTypeOf :: Role -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) #

gmapT :: (forall b. Data b => b -> b) -> Role -> Role #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r #

gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role #

Eq Role 
Instance details

Defined in Language.Haskell.Syntax.Basic

Methods

(==) :: Role -> Role -> Bool #

(/=) :: Role -> Role -> Bool #

Ord Role 
Instance details

Defined in Language.Haskell.Syntax.Basic

Methods

compare :: Role -> Role -> Ordering #

(<) :: Role -> Role -> Bool #

(<=) :: Role -> Role -> Bool #

(>) :: Role -> Role -> Bool #

(>=) :: Role -> Role -> Bool #

max :: Role -> Role -> Role #

min :: Role -> Role -> Role #

type Anno (Maybe Role) 
Instance details

Defined in GHC.Hs.Decls

type Anno (Maybe Role) 
Instance details

Defined in GHC.Hs.Decls

type TyCoVar = Id #

Type or Coercion Variable

data Var #

Variable

Essentially a typed Name, that may also contain some additional information about the Var and its use sites.

Instances

Instances details
Data Var 
Instance details

Defined in GHC.Types.Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var #

toConstr :: Var -> Constr #

dataTypeOf :: Var -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) #

gmapT :: (forall b. Data b => b -> b) -> Var -> Var #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

NamedThing Var 
Instance details

Defined in GHC.Types.Var

Methods

getOccName :: Var -> OccName #

getName :: Var -> Name #

HasOccName Var 
Instance details

Defined in GHC.Types.Var

Methods

occName :: Var -> OccName #

Uniquable Var 
Instance details

Defined in GHC.Types.Var

Methods

getUnique :: Var -> Unique #

Outputable Var 
Instance details

Defined in GHC.Types.Var

Methods

ppr :: Var -> SDoc #

Eq Var 
Instance details

Defined in GHC.Types.Var

Methods

(==) :: Var -> Var -> Bool #

(/=) :: Var -> Var -> Bool #

Ord Var 
Instance details

Defined in GHC.Types.Var

Methods

compare :: Var -> Var -> Ordering #

(<) :: Var -> Var -> Bool #

(<=) :: Var -> Var -> Bool #

(>) :: Var -> Var -> Bool #

(>=) :: Var -> Var -> Bool #

max :: Var -> Var -> Var #

min :: Var -> Var -> Var #

Eq (DeBruijn Var) 
Instance details

Defined in GHC.Core.Map.Type

OutputableBndr (Id, TagSig) 
Instance details

Defined in GHC.Stg.InferTags.TagSig

type Anno Id 
Instance details

Defined in GHC.Hs.Extension

data MCoercion #

A semantically more meaningful type to represent what may or may not be a useful Coercion.

Constructors

MRefl 
MCo Coercion 

Instances

Instances details
Data MCoercion 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MCoercion -> c MCoercion #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MCoercion #

toConstr :: MCoercion -> Constr #

dataTypeOf :: MCoercion -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c MCoercion) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MCoercion) #

gmapT :: (forall b. Data b => b -> b) -> MCoercion -> MCoercion #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MCoercion -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MCoercion -> r #

gmapQ :: (forall d. Data d => d -> u) -> MCoercion -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> MCoercion -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion #

Outputable MCoercion 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: MCoercion -> SDoc #

data UnivCoProvenance #

For simplicity, we have just one UnivCo that represents a coercion from some type to some other type, with (in general) no restrictions on the type. The UnivCoProvenance specifies more exactly what the coercion really is and why a program should (or shouldn't!) trust the coercion. It is reasonable to consider each constructor of UnivCoProvenance as a totally independent coercion form; their only commonality is that they don't tell you what types they coercion between. (That info is in the UnivCo constructor of Coercion.

Instances

Instances details
Data UnivCoProvenance 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnivCoProvenance -> c UnivCoProvenance #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnivCoProvenance #

toConstr :: UnivCoProvenance -> Constr #

dataTypeOf :: UnivCoProvenance -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnivCoProvenance) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnivCoProvenance) #

gmapT :: (forall b. Data b => b -> b) -> UnivCoProvenance -> UnivCoProvenance #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnivCoProvenance -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnivCoProvenance -> r #

gmapQ :: (forall d. Data d => d -> u) -> UnivCoProvenance -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UnivCoProvenance -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance #

Outputable UnivCoProvenance 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: UnivCoProvenance -> SDoc #

data CoSel #

Instances

Instances details
Data CoSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CoSel -> c CoSel #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CoSel #

toConstr :: CoSel -> Constr #

dataTypeOf :: CoSel -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CoSel) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CoSel) #

gmapT :: (forall b. Data b => b -> b) -> CoSel -> CoSel #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CoSel -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CoSel -> r #

gmapQ :: (forall d. Data d => d -> u) -> CoSel -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> CoSel -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> CoSel -> m CoSel #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CoSel -> m CoSel #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CoSel -> m CoSel #

NFData CoSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

rnf :: CoSel -> () #

Binary CoSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

put_ :: BinHandle -> CoSel -> IO () #

put :: BinHandle -> CoSel -> IO (Bin CoSel) #

get :: BinHandle -> IO CoSel #

Outputable CoSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: CoSel -> SDoc #

Eq CoSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

(==) :: CoSel -> CoSel -> Bool #

(/=) :: CoSel -> CoSel -> Bool #

data FunSel #

Constructors

SelMult 
SelArg 
SelRes 

Instances

Instances details
Data FunSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunSel -> c FunSel #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunSel #

toConstr :: FunSel -> Constr #

dataTypeOf :: FunSel -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunSel) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunSel) #

gmapT :: (forall b. Data b => b -> b) -> FunSel -> FunSel #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunSel -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunSel -> r #

gmapQ :: (forall d. Data d => d -> u) -> FunSel -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> FunSel -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunSel -> m FunSel #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunSel -> m FunSel #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunSel -> m FunSel #

Outputable FunSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: FunSel -> SDoc #

Eq FunSel 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

(==) :: FunSel -> FunSel -> Bool #

(/=) :: FunSel -> FunSel -> Bool #

data LeftOrRight #

Constructors

CLeft 
CRight 

Instances

Instances details
Data LeftOrRight 
Instance details

Defined in GHC.Types.Basic

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LeftOrRight -> c LeftOrRight #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LeftOrRight #

toConstr :: LeftOrRight -> Constr #

dataTypeOf :: LeftOrRight -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LeftOrRight) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LeftOrRight) #

gmapT :: (forall b. Data b => b -> b) -> LeftOrRight -> LeftOrRight #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r #

gmapQ :: (forall d. Data d => d -> u) -> LeftOrRight -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LeftOrRight -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight #

Binary LeftOrRight 
Instance details

Defined in GHC.Types.Basic

Outputable LeftOrRight 
Instance details

Defined in GHC.Types.Basic

Methods

ppr :: LeftOrRight -> SDoc #

Eq LeftOrRight 
Instance details

Defined in GHC.Types.Basic

type CoVar = Id #

Coercion Variable

data CoercionHole #

A coercion to be filled in by the type-checker. See Note [Coercion holes]

Instances

Instances details
Data CoercionHole 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CoercionHole -> c CoercionHole #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CoercionHole #

toConstr :: CoercionHole -> Constr #

dataTypeOf :: CoercionHole -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CoercionHole) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CoercionHole) #

gmapT :: (forall b. Data b => b -> b) -> CoercionHole -> CoercionHole #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r #

gmapQ :: (forall d. Data d => d -> u) -> CoercionHole -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> CoercionHole -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole #

Uniquable CoercionHole 
Instance details

Defined in GHC.Core.TyCo.Rep

Outputable CoercionHole 
Instance details

Defined in GHC.Core.TyCo.Rep

Methods

ppr :: CoercionHole -> SDoc #

type CvSubstEnv = CoVarEnv Coercion #

A substitution of Coercions for CoVars

data LiftingContext #

Constructors

LC Subst LiftCoEnv 

Instances

Instances details
Outputable LiftingContext 
Instance details

Defined in GHC.Core.Coercion

Methods

ppr :: LiftingContext -> SDoc #

data NormaliseStepResult ev #

The result of stepping in a normalisation function. See topNormaliseTypeX.

Constructors

NS_Done

Nothing more to do

NS_Abort

Utter failure. The outer function should fail too.

NS_Step RecTcChecker Type ev

We stepped, yielding new bits; ^ ev is evidence; Usually a co :: old type ~ new type

Instances

Instances details
Functor NormaliseStepResult 
Instance details

Defined in GHC.Core.Coercion

Outputable ev => Outputable (NormaliseStepResult ev) 
Instance details

Defined in GHC.Core.Coercion

Methods

ppr :: NormaliseStepResult ev -> SDoc #

type NormaliseStepper ev = RecTcChecker -> TyCon -> [Type] -> NormaliseStepResult ev #

A function to check if we can reduce a type by one step. Used with topNormaliseTypeX.

pickLR :: LeftOrRight -> (a, a) -> a #

isCoVar :: Var -> Bool #

Is this a coercion variable? Satisfies isId v ==> isCoVar v == not (isNonCoVarId v).

topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type) #

Sometimes we want to look through a newtype and get its associated coercion. This function strips off newtype layers enough to reveal something that isn't a newtype. Specifically, here's the invariant:

topNormaliseNewType_maybe rec_nts ty = Just (co, ty')

then (a) co : ty ~R ty'. (b) ty' is not a newtype.

The function returns Nothing for non-newtypes, or unsaturated applications

This function does *not* look through type families, because it has no access to the type family environment. If you do have that at hand, consider to use topNormaliseType_maybe, which should be a drop-in replacement for topNormaliseNewType_maybe If topNormliseNewType_maybe ty = Just (co, ty'), then co : ty ~R ty'

coercionKind :: Coercion -> Pair Type #

If it is the case that

c :: (t1 ~ t2)

i.e. the kind of c relates t1 and t2, then coercionKind c = Pair t1 t2.

seqCo :: Coercion -> () #

mkCoercionType :: Role -> Type -> Type -> Type #

Makes a coercion type from two types: the types whose equality is proven by the relevant Coercion

isReflexiveCo :: Coercion -> Bool #

Slowly checks if the coercion is reflexive. Don't call this in a loop, as it walks over the entire coercion.

isReflCo :: Coercion -> Bool #

Tests if this coercion is obviously reflexive. Guaranteed to work very quickly. Sometimes a coercion can be reflexive, but not obviously so. c.f. isReflexiveCo

isGReflCo :: Coercion -> Bool #

Tests if this coercion is obviously a generalized reflexive coercion. Guaranteed to work very quickly.

mkProofIrrelCo #

Arguments

:: Role

role of the created coercion, "r"

-> CoercionN

:: phi1 ~N phi2

-> Coercion

g1 :: phi1

-> Coercion

g2 :: phi2

-> Coercion

:: g1 ~r g2

Make a "coercion between coercions".

mkKindCo :: Coercion -> Coercion #

Given co :: (a :: k) ~ (b :: k') produce co' :: k ~ k'.

mkNomReflCo :: Type -> Coercion #

Make a nominal reflexive coercion

mkGReflCo :: Role -> Type -> MCoercionN -> Coercion #

Make a generalized reflexive coercion

mkInstCo :: Coercion -> CoercionN -> Coercion #

Instantiates a Coercion.

mkTransCo :: Coercion -> Coercion -> Coercion #

Create a new Coercion by composing the two given Coercions transitively. (co1 ; co2)

mkSymCo :: Coercion -> Coercion #

Create a symmetric version of the given Coercion that asserts equality between the same types but in the other "direction", so a kind of t1 ~ t2 becomes the kind t2 ~ t1.

mkUnivCo #

Arguments

:: UnivCoProvenance 
-> Role

role of the built coercion, "r"

-> Type

t1 :: k1

-> Type

t2 :: k2

-> Coercion

:: t1 ~r t2

Make a universal coercion between two arbitrary types.

mkPhantomCo :: Coercion -> Type -> Type -> Coercion #

Make a phantom coercion between two types. The coercion passed in must be a nominal coercion between the kinds of the types.

mkFunCo :: Role -> FunTyFlag -> CoercionN -> Coercion -> Coercion -> Coercion #

Build a function Coercion from two other Coercions. That is, given co1 :: a ~ b and co2 :: x ~ y produce co :: (a -> x) ~ (b -> y) or (a => x) ~ (b => y), depending on the kind of a/b. This (most common) version takes a single FunTyFlag, which is used for both fco_afl and ftf_afr of the FunCo

mkForAllCo :: HasDebugCallStack => TyCoVar -> ForAllTyFlag -> ForAllTyFlag -> CoercionN -> Coercion -> Coercion #

Make a Coercion from a tycovar, a kind coercion, and a body coercion.

mkAppCo #

Arguments

:: Coercion

:: t1 ~r t2

-> Coercion

:: s1 ~N s2, where s1 :: k1, s2 :: k2

-> Coercion

:: t1 s1 ~r t2 s2

Apply a Coercion to another Coercion. The second coercion must be Nominal, unless the first is Phantom. If the first is Phantom, then the second can be either Phantom or Nominal.

mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion #

Apply a type constructor to a list of coercions. It is the caller's responsibility to get the roles correct on argument coercions.

mkReflCo :: Role -> Type -> Coercion #

Make a reflexive coercion

tyCoVarsOfCoDSet :: Coercion -> DTyCoVarSet #

Get a deterministic set of the vars free in a coercion

substCoWith :: HasDebugCallStack => [TyVar] -> [Type] -> Coercion -> Coercion #

Coercion substitution, see zipTvSubst

substCos :: HasDebugCallStack => Subst -> [Coercion] -> [Coercion] #

Substitute within several Coercions The substitution has to satisfy the invariants described in Note [The substitution invariant].

tidyCo :: TidyEnv -> Coercion -> Coercion #

Tidy a Coercion

See Note [Strictness in tidyType and friends]

pprCoAxiom :: forall (br :: BranchFlag). CoAxiom br -> SDoc #

isGReflMCo :: MCoercion -> Bool #

Tests if this MCoercion is obviously generalized reflexive Guaranteed to work very quickly.

mkTransMCo :: MCoercion -> MCoercion -> MCoercion #

Compose two MCoercions via transitivity

mkSymMCo :: MCoercion -> MCoercion #

Get the reverse of an MCoercion

mkCastTyMCo :: Type -> MCoercion -> Type #

Cast a type by an MCoercion

decomposeCo :: Arity -> Coercion -> Infinite Role -> [Coercion] #

This breaks a Coercion with type T A B C ~ T D E F into a list of Coercions of kinds A ~ D, B ~ E and E ~ F. Hence:

decomposeCo 3 c [r1, r2, r3] = [nth r1 0 c, nth r2 1 c, nth r3 2 c]

getCoVar_maybe :: Coercion -> Maybe CoVar #

Extract a covar, if possible. This check is dirty. Be ashamed of yourself. (It's dirty because it cares about the structure of a coercion, which is morally reprehensible.)

splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion) #

Attempt to take a coercion application apart.

mkRuntimeRepCo :: HasDebugCallStack => Coercion -> Coercion #

Given a coercion `co :: (t1 :: TYPE r1) ~ (t2 :: TYPE r2)` produce a coercion `rep_co :: r1 ~ r2` But actually it is possible that co :: (t1 :: CONSTRAINT r1) ~ (t2 :: CONSTRAINT r2) or co :: (t1 :: TYPE r1) ~ (t2 :: CONSTRAINT r2) or co :: (t1 :: CONSTRAINT r1) ~ (t2 :: TYPE r2) See Note [mkRuntimeRepCo]

isGReflCo_maybe :: Coercion -> Maybe (Type, Role) #

Returns the type coerced if this coercion is a generalized reflexive coercion. Guaranteed to work very quickly.

isReflCo_maybe :: Coercion -> Maybe (Type, Role) #

Returns the type coerced if this coercion is reflexive. Guaranteed to work very quickly. Sometimes a coercion can be reflexive, but not obviously so. c.f. isReflexiveCo_maybe

isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role) #

Extracts the coerced type from a reflexive coercion. This potentially walks over the entire coercion, so avoid doing this in a loop.

mkRepReflCo :: Type -> Coercion #

Make a representational reflexive coercion

mkAppCos :: Coercion -> [Coercion] -> Coercion #

Applies multiple Coercions to another Coercion, from left to right. See also mkAppCo.

mkHomoForAllCos :: [ForAllTyBinder] -> Coercion -> Coercion #

Make a Coercion quantified over a type/coercion variable; the variable has the same kind and visibility in both sides of the coercion

mkAxInstCo :: forall (br :: BranchFlag). Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Coercion #

mkAxInstRHS :: forall (br :: BranchFlag). CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type #

mkAxInstLHS :: forall (br :: BranchFlag). CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type #

Return the left-hand type of the axiom, when the axiom is instantiated at the types given.

mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type #

Instantiate the left-hand side of an unbranched axiom

mkHoleCo :: CoercionHole -> Coercion #

Make a coercion from a coercion hole

getNthFun #

Arguments

:: FunSel 
-> a

multiplicity

-> a

argument

-> a

result

-> a

One of the above three

Extract the nth field of a FunCo

mkGReflRightCo :: Role -> Type -> CoercionN -> Coercion #

Given ty :: k1, co :: k1 ~ k2, produces co' :: ty ~r (ty |> co)

mkGReflLeftCo :: Role -> Type -> CoercionN -> Coercion #

Given r, ty :: k1, and co :: k1 ~N k2, produces co' :: (ty |> co) ~r ty

mkCoherenceLeftCo :: Role -> Type -> CoercionN -> Coercion -> Coercion #

Given ty :: k1, co :: k1 ~ k2, co2:: ty ~r ty', produces @co' :: (ty |> co) ~r ty' It is not only a utility function, but it saves allocation when co is a GRefl coercion.

mkCoherenceRightCo :: Role -> Type -> CoercionN -> Coercion -> Coercion #

Given ty :: k1, co :: k1 ~ k2, co2:: ty' ~r ty, produces @co' :: ty' ~r (ty |> co) It is not only a utility function, but it saves allocation when co is a GRefl coercion.

downgradeRole :: Role -> Role -> Coercion -> Coercion #

Like downgradeRole_maybe, but panics if the change isn't a downgrade. See Note [Role twiddling functions]

setNominalRole_maybe :: Role -> Coercion -> Maybe CoercionN #

Converts a coercion to be nominal, if possible. See Note [Role twiddling functions]

ltRole :: Role -> Role -> Bool #

promoteCoercion :: HasDebugCallStack => Coercion -> CoercionN #

like mkKindCo, but aggressively & recursively optimizes to avoid using a KindCo constructor. The output role is nominal.

castCoercionKind2 :: Coercion -> Role -> Type -> Type -> CoercionN -> CoercionN -> Coercion #

Creates a new coercion with both of its types casted by different casts castCoercionKind2 g r t1 t2 h1 h2, where g :: t1 ~r t2, has type (t1 |> h1) ~r (t2 |> h2). h1 and h2 must be nominal.

castCoercionKind1 :: Coercion -> Role -> Type -> Type -> CoercionN -> Coercion #

castCoercionKind1 g r t1 t2 h = coercionKind g r t1 t2 h h That is, it's a specialised form of castCoercionKind, where the two kind coercions are identical castCoercionKind1 g r t1 t2 h, where g :: t1 ~r t2, has type (t1 |> h) ~r (t2 |> h). h must be nominal. See Note [castCoercionKind1]

castCoercionKind :: Coercion -> CoercionN -> CoercionN -> Coercion #

Creates a new coercion with both of its types casted by different casts castCoercionKind g h1 h2, where g :: t1 ~r t2, has type (t1 |> h1) ~r (t2 |> h2). h1 and h2 must be nominal. It calls coercionKindRole, so it's quite inefficient (which I stands for) Use castCoercionKind2 instead if t1, t2, and r are known beforehand.

mkPiCo :: Role -> Var -> Coercion -> Coercion #

Make a forall Coercion, where both types related by the coercion are quantified over the same variable.

instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion) #

If `instNewTyCon_maybe T ts = Just (rep_ty, co)` then `co :: T ts ~R# rep_ty`

Checks for a newtype, and for being saturated

composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev -> NormaliseStepper ev #

Try one stepper and then try the next, if the first doesn't make progress. So if it returns NS_Done, it means that both steppers are satisfied

unwrapNewTypeStepper :: NormaliseStepper Coercion #

A NormaliseStepper that unwraps newtypes, careful not to fall into a loop. If it would fall into a loop, it produces NS_Abort.

topNormaliseTypeX :: NormaliseStepper ev -> (ev -> ev -> ev) -> Type -> Maybe (ev, Type) #

A general function for normalising the top-level of a type. It continues to use the provided NormaliseStepper until that function fails, and then this function returns. The roles of the coercions produced by the NormaliseStepper must all be the same, which is the role returned from the call to topNormaliseTypeX.

Typically ev is Coercion.

If topNormaliseTypeX step plus ty = Just (ev, ty') then ty ~ev1~ t1 ~ev2~ t2 ... ~evn~ ty' and ev = ev1 plus ev2 plus ... plus evn If it returns Nothing then no newtype unwrapping could happen

eqCoercion :: Coercion -> Coercion -> Bool #

Syntactic equality of coercions

eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool #

Compare two Coercions, with respect to an RnEnv2

liftCoSubstWithEx :: Role -> [TyVar] -> [Coercion] -> [TyCoVar] -> [Type] -> (Type -> Coercion, [Type]) #

liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion #

liftCoSubst role lc ty produces a coercion (at role role) that coerces between lc_left(ty) and lc_right(ty), where lc_left is a substitution mapping type variables to the left-hand types of the mapped coercions in lc, and similar for lc_right.

extendLiftingContext #

Arguments

:: LiftingContext

original LC

-> TyCoVar

new variable to map...

-> Coercion

...to this lifted version

-> LiftingContext 

Extend a lifting context with a new mapping.

extendLiftingContextCvSubst :: LiftingContext -> CoVar -> Coercion -> LiftingContext #

Extend the substitution component of a lifting context with a new binding for a coercion variable. Used during coercion optimisation.

extendLiftingContextAndInScope #

Arguments

:: LiftingContext

Original LC

-> TyCoVar

new variable to map...

-> Coercion

to this coercion

-> LiftingContext 

Extend a lifting context with a new mapping, and extend the in-scope set

zapLiftingContext :: LiftingContext -> LiftingContext #

Erase the environments in a lifting context

liftCoSubstVarBndrUsing #

Arguments

:: (r -> CoercionN)

coercion getter

-> (LiftingContext -> Type -> r)

callback

-> LiftingContext 
-> TyCoVar 
-> (LiftingContext, TyCoVar, r) 

isMappedByLC :: TyCoVar -> LiftingContext -> Bool #

Is a var in the domain of a lifting context?

swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv #

Apply "sym" to all coercions in a LiftCoEnv

lcLookupCoVar :: LiftingContext -> CoVar -> Maybe Coercion #

Lookup a CoVar in the substitution in a LiftingContext

coercionKinds :: [Coercion] -> Pair [Type] #

Apply coercionKind to multiple Coercions

coercionKindRole :: Coercion -> (Pair Type, Role) #

Get a coercion's kind and role.

coercionRole :: Coercion -> Role #

Retrieve the role from a coercion.

mkPrimEqPred :: Type -> Type -> Type #

Creates a primitive nominal type equality predicate. t1 ~# t2 Invariant: the types are not Coercions

mkReprPrimEqPred :: Type -> Type -> Type #

Creates a primitive representational type equality predicate. t1 ~R# t2 Invariant: the types are not Coercions

mkPrimEqPredRole :: Role -> Type -> Type -> PredType #

Makes a lifted equality predicate at the given role

mkNomPrimEqPred :: Kind -> Type -> Type -> Type #

Creates a primitive nominal type equality predicate with an explicit (but homogeneous) kind: (~#) k k ty1 ty2

buildCoercion :: Type -> Type -> CoercionN #

Assuming that two types are the same, ignoring coercions, find a nominal coercion between the types. This is useful when optimizing transitivity over coercion applications, where splitting two AppCos might yield different kinds. See Note [EtaAppCo] in GHC.Core.Coercion.Opt.

hasCoercionHoleTy :: Type -> Bool #

Is there a hetero-kind coercion hole in this type? (That is, a coercion hole with ch_hetero_kind=True.) See wrinkle (EIK2) of Note [Equalities with incompatible kinds] in GHC.Tc.Solver.Equality

hasCoercionHoleCo :: Coercion -> Bool #

Is there a hetero-kind coercion hole in this coercion?

data Unique #

Unique identifier.

The type of unique identifiers that are used in many places in GHC for fast ordering and equality tests. You should generate these with the functions from the UniqSupply module

These are sometimes also referred to as "keys" in comments in GHC.

Instances

Instances details
Show Unique 
Instance details

Defined in GHC.Types.Unique

Uniquable Unique 
Instance details

Defined in GHC.Types.Unique

Methods

getUnique :: Unique -> Unique #

Outputable Unique 
Instance details

Defined in GHC.Types.Unique

Methods

ppr :: Unique -> SDoc #

Eq Unique 
Instance details

Defined in GHC.Types.Unique

Methods

(==) :: Unique -> Unique -> Bool #

(/=) :: Unique -> Unique -> Bool #

class Uniquable a where #

Class of things that we can obtain a Unique from

Methods

getUnique :: a -> Unique #

Instances

Instances details
Uniquable SymName Source # 
Instance details

Defined in GHC.CmmToAsm.Wasm.Types

Methods

getUnique :: SymName -> Unique #

Uniquable Label 
Instance details

Defined in GHC.Cmm.Dataflow.Label

Methods

getUnique :: Label -> Unique #

Uniquable LocalReg 
Instance details

Defined in GHC.Cmm.Reg

Methods

getUnique :: LocalReg -> Unique #

Uniquable Class 
Instance details

Defined in GHC.Core.Class

Methods

getUnique :: Class -> Unique #

Uniquable CoAxiomRule 
Instance details

Defined in GHC.Core.Coercion.Axiom

Uniquable ConLike 
Instance details

Defined in GHC.Core.ConLike

Methods

getUnique :: ConLike -> Unique #

Uniquable DataCon 
Instance details

Defined in GHC.Core.DataCon

Methods

getUnique :: DataCon -> Unique #

Uniquable PatSyn 
Instance details

Defined in GHC.Core.PatSyn

Methods

getUnique :: PatSyn -> Unique #

Uniquable CoercionHole 
Instance details

Defined in GHC.Core.TyCo.Rep

Uniquable TyCon 
Instance details

Defined in GHC.Core.TyCon

Methods

getUnique :: TyCon -> Unique #

Uniquable FastString 
Instance details

Defined in GHC.Types.Unique

Uniquable Ident 
Instance details

Defined in GHC.JS.Ident

Methods

getUnique :: Ident -> Unique #

Uniquable RealReg 
Instance details

Defined in GHC.Platform.Reg

Methods

getUnique :: RealReg -> Unique #

Uniquable Reg 
Instance details

Defined in GHC.Platform.Reg

Methods

getUnique :: Reg -> Unique #

Uniquable VirtualReg 
Instance details

Defined in GHC.Platform.Reg

Uniquable RegClass 
Instance details

Defined in GHC.Platform.Reg.Class

Methods

getUnique :: RegClass -> Unique #

Uniquable EvBindsVar 
Instance details

Defined in GHC.Tc.Types.Evidence

Uniquable SkolemInfo 
Instance details

Defined in GHC.Tc.Types.Origin

Uniquable ConLikeName 
Instance details

Defined in GHC.Types.GREInfo

Uniquable Name 
Instance details

Defined in GHC.Types.Name

Methods

getUnique :: Name -> Unique #

Uniquable NameSpace 
Instance details

Defined in GHC.Types.Name.Occurrence

Uniquable Unique 
Instance details

Defined in GHC.Types.Unique

Methods

getUnique :: Unique -> Unique #

Uniquable Var 
Instance details

Defined in GHC.Types.Var

Methods

getUnique :: Var -> Unique #

Uniquable PackageId 
Instance details

Defined in GHC.Unit.Info

Uniquable PackageName 
Instance details

Defined in GHC.Unit.Info

Uniquable WarningCategory 
Instance details

Defined in GHC.Unit.Module.Warnings

Uniquable Module 
Instance details

Defined in GHC.Unit.Types

Methods

getUnique :: Module -> Unique #

Uniquable UnitId 
Instance details

Defined in GHC.Unit.Types

Methods

getUnique :: UnitId -> Unique #

Uniquable ModuleName 
Instance details

Defined in GHC.Types.Unique

Uniquable Int 
Instance details

Defined in GHC.Types.Unique

Methods

getUnique :: Int -> Unique #

Uniquable (CoAxiom br) 
Instance details

Defined in GHC.Core.Coercion.Axiom

Methods

getUnique :: CoAxiom br -> Unique #

Uniquable unit => Uniquable (Definite unit) 
Instance details

Defined in GHC.Unit.Types

Methods

getUnique :: Definite unit -> Unique #

IsUnitId u => Uniquable (GenUnit u) 
Instance details

Defined in GHC.Unit.Types

Methods

getUnique :: GenUnit u -> Unique #

data Messages e #

A collection of messages emitted by GHC during error reporting. A diagnostic message is typically a warning or an error. See Note [Messages].

INVARIANT: All the messages in this collection must be relevant, i.e. their Severity should not be SevIgnore. The smart constructor mkMessages will filter out any message which Severity is SevIgnore.

Instances

Instances details
Foldable Messages 
Instance details

Defined in GHC.Types.Error

Methods

fold :: Monoid m => Messages m -> m #

foldMap :: Monoid m => (a -> m) -> Messages a -> m #

foldMap' :: Monoid m => (a -> m) -> Messages a -> m #

foldr :: (a -> b -> b) -> b -> Messages a -> b #

foldr' :: (a -> b -> b) -> b -> Messages a -> b #

foldl :: (b -> a -> b) -> b -> Messages a -> b #

foldl' :: (b -> a -> b) -> b -> Messages a -> b #

foldr1 :: (a -> a -> a) -> Messages a -> a #

foldl1 :: (a -> a -> a) -> Messages a -> a #

toList :: Messages a -> [a] #

null :: Messages a -> Bool #

length :: Messages a -> Int #

elem :: Eq a => a -> Messages a -> Bool #

maximum :: Ord a => Messages a -> a #

minimum :: Ord a => Messages a -> a #

sum :: Num a => Messages a -> a #

product :: Num a => Messages a -> a #

Traversable Messages 
Instance details

Defined in GHC.Types.Error

Methods

traverse :: Applicative f => (a -> f b) -> Messages a -> f (Messages b) #

sequenceA :: Applicative f => Messages (f a) -> f (Messages a) #

mapM :: Monad m => (a -> m b) -> Messages a -> m (Messages b) #

sequence :: Monad m => Messages (m a) -> m (Messages a) #

Functor Messages 
Instance details

Defined in GHC.Types.Error

Methods

fmap :: (a -> b) -> Messages a -> Messages b #

(<$) :: a -> Messages b -> Messages a #

Monoid (Messages e) 
Instance details

Defined in GHC.Types.Error

Methods

mempty :: Messages e #

mappend :: Messages e -> Messages e -> Messages e #

mconcat :: [Messages e] -> Messages e #

Semigroup (Messages e) 
Instance details

Defined in GHC.Types.Error

Methods

(<>) :: Messages e -> Messages e -> Messages e #

sconcat :: NonEmpty (Messages e) -> Messages e #

stimes :: Integral b => b -> Messages e -> Messages e #

Diagnostic e => ToJson (Messages e) 
Instance details

Defined in GHC.Types.Error

Methods

json :: Messages e -> JsonDoc #

Diagnostic e => Outputable (Messages e) 
Instance details

Defined in GHC.Types.Error

Methods

ppr :: Messages e -> SDoc #

Getting Names

thNameToGhcName :: Name -> CoreM (Maybe Name) Source #

Attempt to convert a Template Haskell name to one that GHC can understand. Original TH names such as those you get when you use the 'foo syntax will be translated to their equivalent GHC name exactly. Qualified or unqualified TH names will be dynamically bound to names in the module being compiled, if possible. Exact TH names will be bound to the name they represent, exactly.

thNameToGhcNameIO :: NameCache -> Name -> IO (Maybe Name) Source #

Attempt to convert a Template Haskell name to one that GHC can understand. Original TH names such as those you get when you use the 'foo syntax will be translated to their equivalent GHC name exactly. Qualified or unqualified TH names will be dynamically bound to names in the module being compiled, if possible. Exact TH names will be bound to the name they represent, exactly.

One must be careful to consistently use the same NameCache to create identifier that might be compared. (C.f. how the ST Monad enforces that variables from separate runST invocations are never intermingled; it would be valid to use the same tricks for Names and NameCaches.)

For now, the easiest and recommended way to ensure a consistent NameCache is used it to retrieve the preexisting one from an active HscEnv. A single HscEnv is created per GHC "session", and this ensures everything in that session will get the same name cache.

Orphan instances