Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
This module is not used by GHC itself. Rather, it exports all of the functions and types you are likely to need when writing a plugin for GHC. So authors of plugins can probably get away simply with saying "import GHC.Plugins".
Particularly interesting modules for plugin writers include GHC.Core and GHC.Core.Opt.Monad.
Synopsis
- module GHC.Driver.Plugins
- module GHC.Types.Name.Reader
- tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName)
- avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv
- delTidyOccEnvList :: TidyOccEnv -> [FastString] -> TidyOccEnv
- initTidyOccEnv :: [OccName] -> TidyOccEnv
- emptyTidyOccEnv :: TidyOccEnv
- mkMethodOcc :: OccName -> OccName
- mkDFunOcc :: String -> Bool -> OccSet -> OccName
- mkInstTyTcOcc :: String -> OccSet -> OccName
- mkLocalOcc :: Unique -> OccName -> OccName
- mkSuperDictSelOcc :: Int -> OccName -> OccName
- mkSuperDictAuxOcc :: Int -> OccName -> OccName
- mkDataConWorkerOcc :: OccName -> OccName
- mkGen1R :: OccName -> OccName
- mkGenR :: OccName -> OccName
- mkTyConRepOcc :: OccName -> OccName
- mkDataCOcc :: OccName -> OccName
- mkDataTOcc :: OccName -> OccName
- mkMaxTagOcc :: OccName -> OccName
- mkTag2ConOcc :: OccName -> OccName
- mkCon2TagOcc :: OccName -> OccName
- mkEqPredCoOcc :: OccName -> OccName
- mkInstTyCoOcc :: OccName -> OccName
- mkNewTyCoOcc :: OccName -> OccName
- mkClassDataConOcc :: OccName -> OccName
- mkRepEqOcc :: OccName -> OccName
- mkForeignExportOcc :: OccName -> OccName
- mkSpecOcc :: OccName -> OccName
- mkIPOcc :: OccName -> OccName
- mkDictOcc :: OccName -> OccName
- mkClassOpAuxOcc :: OccName -> OccName
- mkDefaultMethodOcc :: OccName -> OccName
- mkBuilderOcc :: OccName -> OccName
- mkMatcherOcc :: OccName -> OccName
- mkWorkerOcc :: OccName -> OccName
- mkDataConWrapperOcc :: OccName -> OccName
- isTypeableBindOcc :: OccName -> Bool
- isDefaultMethodOcc :: OccName -> Bool
- isDerivedOccName :: OccName -> Bool
- startsWithUnderscore :: OccName -> Bool
- parenSymOcc :: OccName -> SDoc -> SDoc
- isSymOcc :: OccName -> Bool
- isDataSymOcc :: OccName -> Bool
- isDataOcc :: OccName -> Bool
- isValOcc :: OccName -> Bool
- isTcOcc :: OccName -> Bool
- isTvOcc :: OccName -> Bool
- isVarOcc :: OccName -> Bool
- setOccNameSpace :: NameSpace -> OccName -> OccName
- filterOccSet :: (OccName -> Bool) -> OccSet -> OccSet
- intersectOccSet :: OccSet -> OccSet -> OccSet
- isEmptyOccSet :: OccSet -> Bool
- elemOccSet :: OccName -> OccSet -> Bool
- minusOccSet :: OccSet -> OccSet -> OccSet
- unionManyOccSets :: [OccSet] -> OccSet
- unionOccSets :: OccSet -> OccSet -> OccSet
- extendOccSetList :: OccSet -> [OccName] -> OccSet
- extendOccSet :: OccSet -> OccName -> OccSet
- mkOccSet :: [OccName] -> OccSet
- unitOccSet :: OccName -> OccSet
- emptyOccSet :: OccSet
- pprOccEnv :: (a -> SDoc) -> OccEnv a -> SDoc
- alterOccEnv :: (Maybe elt -> Maybe elt) -> OccEnv elt -> OccName -> OccEnv elt
- filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt
- delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a
- delFromOccEnv :: OccEnv a -> OccName -> OccEnv a
- mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a
- mapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b
- extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b
- extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a
- plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a
- plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a
- occEnvElts :: OccEnv a -> [a]
- foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b
- elemOccEnv :: OccName -> OccEnv a -> Bool
- mkOccEnv :: [(OccName, a)] -> OccEnv a
- lookupOccEnv :: OccEnv a -> OccName -> Maybe a
- extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a
- extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a
- unitOccEnv :: OccName -> a -> OccEnv a
- emptyOccEnv :: OccEnv a
- nameSpacesRelated :: NameSpace -> NameSpace -> Bool
- promoteOccName :: OccName -> Maybe OccName
- demoteOccName :: OccName -> Maybe OccName
- mkClsOccFS :: FastString -> OccName
- mkClsOcc :: String -> OccName
- mkTcOccFS :: FastString -> OccName
- mkTcOcc :: String -> OccName
- mkTyVarOccFS :: FastString -> OccName
- mkTyVarOcc :: String -> OccName
- mkDataOccFS :: FastString -> OccName
- mkDataOcc :: String -> OccName
- mkVarOcc :: String -> OccName
- mkOccNameFS :: NameSpace -> FastString -> OccName
- mkOccName :: NameSpace -> String -> OccName
- pprOccName :: OccName -> SDoc
- pprNameSpaceBrief :: NameSpace -> SDoc
- pprNonVarNameSpace :: NameSpace -> SDoc
- pprNameSpace :: NameSpace -> SDoc
- isValNameSpace :: NameSpace -> Bool
- isVarNameSpace :: NameSpace -> Bool
- isTvNameSpace :: NameSpace -> Bool
- isTcClsNameSpace :: NameSpace -> Bool
- isDataConNameSpace :: NameSpace -> Bool
- tvName :: NameSpace
- srcDataName :: NameSpace
- dataName :: NameSpace
- tcClsName :: NameSpace
- clsName :: NameSpace
- tcName :: NameSpace
- data NameSpace
- data OccEnv a
- type OccSet = UniqSet OccName
- type TidyOccEnv = UniqFM FastString Int
- mkFsEnv :: [(FastString, a)] -> FastStringEnv a
- lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a
- extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a
- emptyFsEnv :: FastStringEnv a
- type FastStringEnv a = UniqFM FastString a
- occNameString :: OccName -> String
- mkRecFldSelOcc :: String -> OccName
- mkVarOccFS :: FastString -> OccName
- data OccName
- class HasOccName name where
- pprPrefixName :: NamedThing a => a -> SDoc
- pprInfixName :: (Outputable a, NamedThing a) => a -> SDoc
- getOccFS :: NamedThing a => a -> FastString
- getOccString :: NamedThing a => a -> String
- getSrcSpan :: NamedThing a => a -> SrcSpan
- getSrcLoc :: NamedThing a => a -> SrcLoc
- nameStableString :: Name -> String
- pprNameDefnLoc :: Name -> SDoc
- pprDefinedAt :: Name -> SDoc
- pprModulePrefix :: PprStyle -> Module -> OccName -> SDoc
- pprNameUnqualified :: Name -> SDoc
- stableNameCmp :: Name -> Name -> Ordering
- localiseName :: Name -> Name
- setNameLoc :: Name -> SrcSpan -> Name
- mkFCallName :: Unique -> String -> Name
- mkSysTvName :: Unique -> FastString -> Name
- mkSystemVarName :: Unique -> FastString -> Name
- mkSystemNameAt :: Unique -> OccName -> SrcSpan -> Name
- mkSystemName :: Unique -> OccName -> Name
- mkWiredInName :: Module -> OccName -> Unique -> TyThing -> BuiltInSyntax -> Name
- mkExternalName :: Unique -> Module -> OccName -> SrcSpan -> Name
- mkDerivedInternalName :: (OccName -> OccName) -> Unique -> Name -> Name
- mkClonedInternalName :: Unique -> Name -> Name
- mkInternalName :: Unique -> OccName -> SrcSpan -> Name
- isSystemName :: Name -> Bool
- isVarName :: Name -> Bool
- isValName :: Name -> Bool
- isDataConName :: Name -> Bool
- isTyConName :: Name -> Bool
- isTyVarName :: Name -> Bool
- nameIsFromExternalPackage :: HomeUnit -> Name -> Bool
- nameIsHomePackageImport :: Module -> Name -> Bool
- nameIsHomePackage :: Module -> Name -> Bool
- nameIsLocalOrFrom :: Module -> Name -> Bool
- nameModule_maybe :: Name -> Maybe Module
- nameModule :: HasDebugCallStack => Name -> Module
- isDynLinkName :: Platform -> Module -> Name -> Bool
- isHoleName :: Name -> Bool
- isInternalName :: Name -> Bool
- isExternalName :: Name -> Bool
- isBuiltInSyntax :: Name -> Bool
- wiredInNameTyThing_maybe :: Name -> Maybe TyThing
- isWiredIn :: NamedThing thing => thing -> Bool
- isWiredInName :: Name -> Bool
- nameSrcSpan :: Name -> SrcSpan
- nameSrcLoc :: Name -> SrcLoc
- nameNameSpace :: Name -> NameSpace
- data BuiltInSyntax
- tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName)
- avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv
- delTidyOccEnvList :: TidyOccEnv -> [FastString] -> TidyOccEnv
- initTidyOccEnv :: [OccName] -> TidyOccEnv
- emptyTidyOccEnv :: TidyOccEnv
- mkMethodOcc :: OccName -> OccName
- mkDFunOcc :: String -> Bool -> OccSet -> OccName
- mkInstTyTcOcc :: String -> OccSet -> OccName
- mkLocalOcc :: Unique -> OccName -> OccName
- mkSuperDictSelOcc :: Int -> OccName -> OccName
- mkSuperDictAuxOcc :: Int -> OccName -> OccName
- mkDataConWorkerOcc :: OccName -> OccName
- mkGen1R :: OccName -> OccName
- mkGenR :: OccName -> OccName
- mkTyConRepOcc :: OccName -> OccName
- mkDataCOcc :: OccName -> OccName
- mkDataTOcc :: OccName -> OccName
- mkMaxTagOcc :: OccName -> OccName
- mkTag2ConOcc :: OccName -> OccName
- mkCon2TagOcc :: OccName -> OccName
- mkEqPredCoOcc :: OccName -> OccName
- mkInstTyCoOcc :: OccName -> OccName
- mkNewTyCoOcc :: OccName -> OccName
- mkClassDataConOcc :: OccName -> OccName
- mkRepEqOcc :: OccName -> OccName
- mkForeignExportOcc :: OccName -> OccName
- mkSpecOcc :: OccName -> OccName
- mkIPOcc :: OccName -> OccName
- mkDictOcc :: OccName -> OccName
- mkClassOpAuxOcc :: OccName -> OccName
- mkDefaultMethodOcc :: OccName -> OccName
- mkBuilderOcc :: OccName -> OccName
- mkMatcherOcc :: OccName -> OccName
- mkWorkerOcc :: OccName -> OccName
- mkDataConWrapperOcc :: OccName -> OccName
- isTypeableBindOcc :: OccName -> Bool
- isDefaultMethodOcc :: OccName -> Bool
- isDerivedOccName :: OccName -> Bool
- startsWithUnderscore :: OccName -> Bool
- parenSymOcc :: OccName -> SDoc -> SDoc
- isSymOcc :: OccName -> Bool
- isDataSymOcc :: OccName -> Bool
- isDataOcc :: OccName -> Bool
- isValOcc :: OccName -> Bool
- isTcOcc :: OccName -> Bool
- isTvOcc :: OccName -> Bool
- isVarOcc :: OccName -> Bool
- setOccNameSpace :: NameSpace -> OccName -> OccName
- filterOccSet :: (OccName -> Bool) -> OccSet -> OccSet
- intersectOccSet :: OccSet -> OccSet -> OccSet
- isEmptyOccSet :: OccSet -> Bool
- elemOccSet :: OccName -> OccSet -> Bool
- minusOccSet :: OccSet -> OccSet -> OccSet
- unionManyOccSets :: [OccSet] -> OccSet
- unionOccSets :: OccSet -> OccSet -> OccSet
- extendOccSetList :: OccSet -> [OccName] -> OccSet
- extendOccSet :: OccSet -> OccName -> OccSet
- mkOccSet :: [OccName] -> OccSet
- unitOccSet :: OccName -> OccSet
- emptyOccSet :: OccSet
- pprOccEnv :: (a -> SDoc) -> OccEnv a -> SDoc
- alterOccEnv :: (Maybe elt -> Maybe elt) -> OccEnv elt -> OccName -> OccEnv elt
- filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt
- delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a
- delFromOccEnv :: OccEnv a -> OccName -> OccEnv a
- mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a
- mapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b
- extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b
- extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a
- plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a
- plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a
- occEnvElts :: OccEnv a -> [a]
- foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b
- elemOccEnv :: OccName -> OccEnv a -> Bool
- mkOccEnv :: [(OccName, a)] -> OccEnv a
- lookupOccEnv :: OccEnv a -> OccName -> Maybe a
- extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a
- extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a
- unitOccEnv :: OccName -> a -> OccEnv a
- emptyOccEnv :: OccEnv a
- nameSpacesRelated :: NameSpace -> NameSpace -> Bool
- promoteOccName :: OccName -> Maybe OccName
- demoteOccName :: OccName -> Maybe OccName
- mkClsOccFS :: FastString -> OccName
- mkClsOcc :: String -> OccName
- mkTcOccFS :: FastString -> OccName
- mkTcOcc :: String -> OccName
- mkTyVarOccFS :: FastString -> OccName
- mkTyVarOcc :: String -> OccName
- mkDataOccFS :: FastString -> OccName
- mkDataOcc :: String -> OccName
- mkVarOcc :: String -> OccName
- mkOccNameFS :: NameSpace -> FastString -> OccName
- mkOccName :: NameSpace -> String -> OccName
- pprOccName :: OccName -> SDoc
- pprNameSpaceBrief :: NameSpace -> SDoc
- pprNonVarNameSpace :: NameSpace -> SDoc
- pprNameSpace :: NameSpace -> SDoc
- isValNameSpace :: NameSpace -> Bool
- isVarNameSpace :: NameSpace -> Bool
- isTvNameSpace :: NameSpace -> Bool
- isTcClsNameSpace :: NameSpace -> Bool
- isDataConNameSpace :: NameSpace -> Bool
- tvName :: NameSpace
- srcDataName :: NameSpace
- dataName :: NameSpace
- tcClsName :: NameSpace
- clsName :: NameSpace
- tcName :: NameSpace
- data NameSpace
- data OccEnv a
- type OccSet = UniqSet OccName
- type TidyOccEnv = UniqFM FastString Int
- mkFsEnv :: [(FastString, a)] -> FastStringEnv a
- lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a
- extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a
- emptyFsEnv :: FastStringEnv a
- type FastStringEnv a = UniqFM FastString a
- nameUnique :: Name -> Unique
- setNameUnique :: Name -> Unique -> Name
- nameOccName :: Name -> OccName
- tidyNameOcc :: Name -> OccName -> Name
- data Name
- class NamedThing a where
- getOccName :: a -> OccName
- getName :: a -> Name
- occNameString :: OccName -> String
- mkRecFldSelOcc :: String -> OccName
- mkVarOccFS :: FastString -> OccName
- data OccName
- class HasOccName name where
- module GHC.Types.Var
- isNeverLevPolyId :: Id -> Bool
- transferPolyIdInfo :: Id -> [Var] -> Id -> Id
- zapStableUnfolding :: Id -> Id
- zapIdTailCallInfo :: Id -> Id
- zapIdUsedOnceInfo :: Id -> Id
- zapIdUsageEnvInfo :: Id -> Id
- zapIdUsageInfo :: Id -> Id
- zapIdDemandInfo :: Id -> Id
- zapFragileIdInfo :: Id -> Id
- zapLamIdInfo :: Id -> Id
- updOneShotInfo :: Id -> OneShotInfo -> Id
- setIdOneShotInfo :: Id -> OneShotInfo -> Id
- clearOneShotLambda :: Id -> Id
- setOneShotLambda :: Id -> Id
- isProbablyOneShotLambda :: Id -> Bool
- isStateHackType :: Type -> Bool
- typeOneShot :: Type -> OneShotInfo
- stateHackOneShot :: OneShotInfo
- isOneShotBndr :: Var -> Bool
- idStateHackOneShotInfo :: Id -> OneShotInfo
- idOneShotInfo :: Id -> OneShotInfo
- isConLikeId :: Id -> Bool
- idRuleMatchInfo :: Id -> RuleMatchInfo
- setInlineActivation :: Id -> Activation -> Id
- idInlineActivation :: Id -> Activation
- modifyInlinePragma :: Id -> (InlinePragma -> InlinePragma) -> Id
- setInlinePragma :: Id -> InlinePragma -> Id
- idInlinePragma :: Id -> InlinePragma
- zapIdOccInfo :: Id -> Id
- setIdOccInfo :: Id -> OccInfo -> Id
- idOccInfo :: Id -> OccInfo
- setIdLFInfo :: Id -> LambdaFormInfo -> Id
- idLFInfo_maybe :: Id -> Maybe LambdaFormInfo
- setIdCafInfo :: Id -> CafInfo -> Id
- idCafInfo :: Id -> CafInfo
- setIdSpecialisation :: Id -> RuleInfo -> Id
- idHasRules :: Id -> Bool
- idCoreRules :: Id -> [CoreRule]
- idSpecialisation :: Id -> RuleInfo
- setCaseBndrEvald :: StrictnessMark -> Id -> Id
- setIdDemandInfo :: Id -> Demand -> Id
- idDemandInfo :: Id -> Demand
- setIdUnfolding :: Id -> Unfolding -> Id
- realIdUnfolding :: Id -> Unfolding
- idUnfolding :: Id -> Unfolding
- isStrictId :: Id -> Bool
- zapIdStrictness :: Id -> Id
- setIdCprInfo :: Id -> CprSig -> Id
- idCprInfo :: Id -> CprSig
- setIdStrictness :: Id -> StrictSig -> Id
- idStrictness :: Id -> StrictSig
- isDeadEndId :: Var -> Bool
- idFunRepArity :: Id -> RepArity
- setIdCallArity :: Id -> Arity -> Id
- idCallArity :: Id -> Arity
- setIdArity :: Id -> Arity -> Id
- idArity :: Id -> Arity
- asJoinId_maybe :: Id -> Maybe JoinArity -> Id
- zapJoinId :: Id -> Id
- asJoinId :: Id -> JoinArity -> JoinId
- idJoinArity :: JoinId -> JoinArity
- isDeadBinder :: Id -> Bool
- idIsFrom :: Module -> Id -> Bool
- isImplicitId :: Id -> Bool
- hasNoBinding :: Id -> Bool
- idDataCon :: Id -> DataCon
- isJoinId_maybe :: Var -> Maybe JoinArity
- isJoinId :: Var -> Bool
- isDataConId_maybe :: Id -> Maybe DataCon
- isDataConWrapId_maybe :: Id -> Maybe DataCon
- isDataConWrapId :: Id -> Bool
- isDataConWorkId_maybe :: Id -> Maybe DataCon
- isDataConWorkId :: Id -> Bool
- isFCallId_maybe :: Id -> Maybe ForeignCall
- isFCallId :: Id -> Bool
- isPrimOpId_maybe :: Id -> Maybe PrimOp
- isDFunId :: Id -> Bool
- isPrimOpId :: Id -> Bool
- isClassOpId_maybe :: Id -> Maybe Class
- isClassOpId :: Id -> Bool
- isNaughtyRecordSelector :: Id -> Bool
- isPatSynRecordSelector :: Id -> Bool
- isDataConRecordSelector :: Id -> Bool
- isRecordSelector :: Id -> Bool
- recordSelectorTyCon_maybe :: Id -> Maybe RecSelParent
- recordSelectorTyCon :: Id -> RecSelParent
- mkTemplateLocalsNum :: Int -> [Type] -> [Id]
- mkTemplateLocals :: [Type] -> [Id]
- mkScaledTemplateLocal :: Int -> Scaled Type -> Id
- mkTemplateLocal :: Int -> Type -> Id
- mkWorkerId :: Unique -> Id -> Type -> Id
- mkUserLocalOrCoVar :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id
- mkUserLocal :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id
- mkSysLocalOrCoVarM :: MonadUnique m => FastString -> Mult -> Type -> m Id
- mkSysLocalM :: MonadUnique m => FastString -> Mult -> Type -> m Id
- mkSysLocalOrCoVar :: FastString -> Unique -> Mult -> Type -> Id
- mkSysLocal :: FastString -> Unique -> Mult -> Type -> Id
- mkExportedVanillaId :: Name -> Type -> Id
- mkExportedLocalId :: IdDetails -> Name -> Type -> Id
- mkLocalIdWithInfo :: HasDebugCallStack => Name -> Mult -> Type -> IdInfo -> Id
- mkLocalIdOrCoVar :: Name -> Mult -> Type -> Id
- mkLocalCoVar :: Name -> Type -> CoVar
- mkLocalId :: HasDebugCallStack => Name -> Mult -> Type -> Id
- mkVanillaGlobalWithInfo :: Name -> Type -> IdInfo -> Id
- mkVanillaGlobal :: Name -> Type -> Id
- mkGlobalId :: IdDetails -> Name -> Type -> IdInfo -> Id
- maybeModifyIdInfo :: Maybe IdInfo -> Id -> Id
- modifyIdInfo :: HasDebugCallStack => (IdInfo -> IdInfo) -> Id -> Id
- setIdInfo :: Id -> IdInfo -> Id
- localiseId :: Id -> Id
- setIdType :: Id -> Type -> Id
- setIdUnique :: Id -> Unique -> Id
- setIdName :: Id -> Name -> Id
- scaleVarBy :: Mult -> Var -> Var
- scaleIdBy :: Mult -> Id -> Id
- idScaledType :: Id -> Scaled Type
- idMult :: Id -> Mult
- idType :: Id -> Kind
- idUnique :: Id -> Unique
- isExportedId :: Var -> Bool
- isGlobalId :: Var -> Bool
- isLocalId :: Var -> Bool
- isId :: Var -> Bool
- setIdMult :: Id -> Mult -> Id
- updateIdTypeAndMultM :: Monad m => (Type -> m Type) -> Id -> m Id
- updateIdTypeAndMult :: (Type -> Type) -> Id -> Id
- updateIdTypeButNotMult :: (Type -> Type) -> Id -> Id
- globaliseId :: Id -> Id
- idDetails :: Id -> IdDetails
- idInfo :: HasDebugCallStack => Id -> IdInfo
- type JoinId = Id
- type InVar = Var
- type InId = Id
- type OutVar = Var
- type OutId = Id
- idName :: Id -> Name
- data Var
- type Id = Var
- module GHC.Types.Id.Info
- module GHC.Core.Opt.Monad
- module GHC.Core
- module GHC.Types.Literal
- module GHC.Core.DataCon
- module GHC.Core.Utils
- module GHC.Core.Make
- module GHC.Core.FVs
- substTickish :: Subst -> CoreTickish -> CoreTickish
- substDVarSet :: Subst -> DVarSet -> DVarSet
- substRulesForImportedIds :: Subst -> [CoreRule] -> [CoreRule]
- substRuleInfo :: Subst -> Id -> RuleInfo -> RuleInfo
- substIdOcc :: Subst -> Id -> Id
- substUnfolding :: Subst -> Unfolding -> Unfolding
- substUnfoldingSC :: Subst -> Unfolding -> Unfolding
- substIdInfo :: Subst -> Id -> IdInfo -> Maybe IdInfo
- substIdType :: Subst -> Id -> Id
- substCo :: HasCallStack => Subst -> Coercion -> Coercion
- getTCvSubst :: Subst -> TCvSubst
- substTy :: Subst -> Type -> Type
- cloneRecIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id])
- cloneBndr :: Subst -> Unique -> Var -> (Subst, Var)
- cloneBndrs :: Subst -> UniqSupply -> [Var] -> (Subst, [Var])
- cloneIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id])
- cloneIdBndr :: Subst -> UniqSupply -> Id -> (Subst, Id)
- substRecBndrs :: Subst -> [Id] -> (Subst, [Id])
- substBndrs :: Subst -> [Var] -> (Subst, [Var])
- substBndr :: Subst -> Var -> (Subst, Var)
- deShadowBinds :: CoreProgram -> CoreProgram
- substBind :: HasDebugCallStack => Subst -> CoreBind -> (Subst, CoreBind)
- substBindSC :: HasDebugCallStack => Subst -> CoreBind -> (Subst, CoreBind)
- substExpr :: HasDebugCallStack => Subst -> CoreExpr -> CoreExpr
- substExprSC :: HasDebugCallStack => Subst -> CoreExpr -> CoreExpr
- setInScope :: Subst -> InScopeSet -> Subst
- extendInScopeIds :: Subst -> [Id] -> Subst
- extendInScopeList :: Subst -> [Var] -> Subst
- extendInScope :: Subst -> Var -> Subst
- isInScope :: Var -> Subst -> Bool
- mkOpenSubst :: InScopeSet -> [(Var, CoreArg)] -> Subst
- delBndrs :: Subst -> [Var] -> Subst
- delBndr :: Subst -> Var -> Subst
- lookupTCvSubst :: Subst -> TyVar -> Type
- lookupIdSubst :: HasDebugCallStack => Subst -> Id -> CoreExpr
- extendSubstList :: Subst -> [(Var, CoreArg)] -> Subst
- extendSubstWithVar :: Subst -> Var -> Var -> Subst
- extendSubst :: Subst -> Var -> CoreArg -> Subst
- extendTvSubstList :: Subst -> [(TyVar, Type)] -> Subst
- extendTvSubst :: Subst -> TyVar -> Type -> Subst
- extendIdSubstList :: Subst -> [(Id, CoreExpr)] -> Subst
- extendIdSubst :: Subst -> Id -> CoreExpr -> Subst
- zapSubstEnv :: Subst -> Subst
- substInScope :: Subst -> InScopeSet
- mkSubst :: InScopeSet -> TvSubstEnv -> CvSubstEnv -> IdSubstEnv -> Subst
- mkEmptySubst :: InScopeSet -> Subst
- emptySubst :: Subst
- isEmptySubst :: Subst -> Bool
- data Subst = Subst InScopeSet IdSubstEnv TvSubstEnv CvSubstEnv
- type IdSubstEnv = IdEnv CoreExpr
- extendTCvSubst :: TCvSubst -> TyCoVar -> Type -> TCvSubst
- type TvSubstEnv = TyVarEnv Type
- data InScopeSet
- module GHC.Core.Rules
- module GHC.Types.Annotations
- module GHC.Driver.Session
- module GHC.Driver.Ppr
- module GHC.Unit.State
- module GHC.Unit.Module
- isLinearType :: Type -> Bool
- isOneDataConTy :: Mult -> Bool
- isManyDataConTy :: Mult -> Bool
- scaledSet :: Scaled a -> b -> Scaled b
- mkScaled :: Mult -> a -> Scaled a
- irrelevantMult :: Scaled a -> a
- tymult :: a -> Scaled a
- linear :: a -> Scaled a
- unrestricted :: a -> Scaled a
- tyConAppNeedsKindSig :: Bool -> TyCon -> Int -> Bool
- classifiesTypeWithValues :: Kind -> Bool
- isKindLevPoly :: Kind -> Bool
- splitVisVarsOfTypes :: [Type] -> Pair TyCoVarSet
- splitVisVarsOfType :: Type -> Pair TyCoVarSet
- tyConsOfType :: Type -> UniqSet TyCon
- occCheckExpand :: [Var] -> Type -> Maybe Type
- resultIsLevPoly :: Type -> Bool
- isTypeLevPoly :: Type -> Bool
- tcReturnsConstraintKind :: Kind -> Bool
- tcIsRuntimeTypeKind :: Kind -> Bool
- tcIsBoxedTypeKind :: Kind -> Bool
- tcIsLiftedTypeKind :: Kind -> Bool
- tcIsConstraintKind :: Kind -> Bool
- tcTypeKind :: HasDebugCallStack => Type -> Kind
- typeKind :: HasDebugCallStack => Type -> Kind
- nonDetCmpTc :: TyCon -> TyCon -> Ordering
- nonDetCmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering
- nonDetCmpTypeX :: RnEnv2 -> Type -> Type -> Ordering
- nonDetCmpTypes :: [Type] -> [Type] -> Ordering
- nonDetCmpType :: Type -> Type -> Ordering
- eqVarBndrs :: RnEnv2 -> [Var] -> [Var] -> Maybe RnEnv2
- eqTypes :: [Type] -> [Type] -> Bool
- eqTypeX :: RnEnv2 -> Type -> Type -> Bool
- eqType :: Type -> Type -> Bool
- seqTypes :: [Type] -> ()
- seqType :: Type -> ()
- isValidJoinPointType :: JoinArity -> Type -> Bool
- isPrimitiveType :: Type -> Bool
- isStrictType :: HasDebugCallStack => Type -> Bool
- isDataFamilyAppType :: Type -> Bool
- isAlgType :: Type -> Bool
- isUnboxedSumType :: Type -> Bool
- isUnboxedTupleType :: Type -> Bool
- getRuntimeRep :: HasDebugCallStack => Type -> Type
- getRuntimeRep_maybe :: HasDebugCallStack => Type -> Maybe Type
- dropRuntimeRepArgs :: [Type] -> [Type]
- isRuntimeRepKindedTy :: Type -> Bool
- isBoxedType :: Type -> Bool
- mightBeUnliftedType :: Type -> Bool
- isUnliftedType :: HasDebugCallStack => Type -> Bool
- isLiftedType_maybe :: HasDebugCallStack => Type -> Maybe Bool
- buildSynTyCon :: Name -> [KnotTied TyConBinder] -> Kind -> [Role] -> KnotTied Type -> TyCon
- isCoVarType :: Type -> Bool
- isFamFreeTy :: Type -> Bool
- coAxNthLHS :: forall (br :: BranchFlag). CoAxiom br -> Int -> Type
- mkFamilyTyConApp :: TyCon -> [Type] -> Type
- binderRelevantType_maybe :: TyCoBinder -> Maybe Type
- tyBinderType :: TyBinder -> Type
- tyCoBinderType :: TyCoBinder -> Type
- tyCoBinderVar_maybe :: TyCoBinder -> Maybe TyCoVar
- isAnonTyCoBinder :: TyCoBinder -> Bool
- mkAnonBinder :: AnonArgFlag -> Scaled Type -> TyCoBinder
- isAtomicTy :: Type -> Bool
- isTauTy :: Type -> Bool
- appTyArgFlags :: Type -> [Type] -> [ArgFlag]
- tyConArgFlags :: TyCon -> [Type] -> [ArgFlag]
- partitionInvisibles :: [(a, ArgFlag)] -> ([a], [a])
- filterOutInferredTypes :: TyCon -> [Type] -> [Type]
- filterOutInvisibleTypes :: TyCon -> [Type] -> [Type]
- splitInvisPiTysN :: Int -> Type -> ([TyCoBinder], Type)
- splitInvisPiTys :: Type -> ([TyCoBinder], Type)
- invisibleTyBndrCount :: Type -> Int
- splitForAllTyCoVarBinders :: Type -> ([TyCoVarBinder], Type)
- splitPiTys :: Type -> ([TyCoBinder], Type)
- splitPiTy :: Type -> (TyCoBinder, Type)
- splitPiTy_maybe :: Type -> Maybe (TyCoBinder, Type)
- splitForAllCoVar_maybe :: Type -> Maybe (TyCoVar, Type)
- splitForAllTyVar_maybe :: Type -> Maybe (TyCoVar, Type)
- splitForAllTyCoVar_maybe :: Type -> Maybe (TyCoVar, Type)
- dropForAlls :: Type -> Type
- splitForAllTyCoVar :: Type -> (TyCoVar, Type)
- isFunTy :: Type -> Bool
- isPiTy :: Type -> Bool
- isForAllTy_co :: Type -> Bool
- isForAllTy_ty :: Type -> Bool
- isForAllTy :: Type -> Bool
- splitForAllInvisTVBinders :: Type -> ([InvisTVBinder], Type)
- splitForAllReqTVBinders :: Type -> ([ReqTVBinder], Type)
- splitForAllTyCoVars :: Type -> ([TyCoVar], Type)
- mkTyConBindersPreferAnon :: [TyVar] -> TyCoVarSet -> [TyConBinder]
- mkVisForAllTys :: [TyVar] -> Type -> Type
- mkSpecForAllTys :: [TyVar] -> Type -> Type
- mkSpecForAllTy :: TyVar -> Type -> Type
- mkInfForAllTys :: [TyVar] -> Type -> Type
- mkTyCoInvForAllTys :: [TyCoVar] -> Type -> Type
- mkInfForAllTy :: TyVar -> Type -> Type
- mkTyCoInvForAllTy :: TyCoVar -> Type -> Type
- stripCoercionTy :: Type -> Coercion
- isCoercionTy_maybe :: Type -> Maybe Coercion
- mkCoercionTy :: Coercion -> Type
- tyConBindersTyCoBinders :: [TyConBinder] -> [TyCoBinder]
- splitCastTy_maybe :: Type -> Maybe (Type, Coercion)
- newTyConInstRhs :: TyCon -> [Type] -> Type
- splitListTyConApp_maybe :: Type -> Maybe Type
- tcRepSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
- repSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
- tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type])
- splitTyConApp :: Type -> (TyCon, [Type])
- tyConAppArgN :: Int -> Type -> Type
- tyConAppArgs :: Type -> [Type]
- tyConAppArgs_maybe :: Type -> Maybe [Type]
- tyConAppTyCon :: Type -> TyCon
- tyConAppTyConPicky_maybe :: Type -> Maybe TyCon
- applyTysX :: [TyVar] -> Type -> [Type] -> Type
- piResultTys :: HasDebugCallStack => Type -> [Type] -> Type
- funArgTy :: Type -> Type
- funResultTy :: Type -> Type
- splitFunTys :: Type -> ([Scaled Type], Type)
- splitFunTy_maybe :: Type -> Maybe (Mult, Type, Type)
- splitFunTy :: Type -> (Mult, Type, Type)
- pprUserTypeErrorTy :: Type -> SDoc
- userTypeError_maybe :: Type -> Maybe Type
- isLitTy :: Type -> Maybe TyLit
- isCharLitTy :: Type -> Maybe Char
- mkCharLitTy :: Char -> Type
- isStrLitTy :: Type -> Maybe FastString
- mkStrLitTy :: FastString -> Type
- isNumLitTy :: Type -> Maybe Integer
- mkNumLitTy :: Integer -> Type
- repSplitAppTys :: HasDebugCallStack => Type -> (Type, [Type])
- splitAppTys :: Type -> (Type, [Type])
- splitAppTy :: Type -> (Type, Type)
- tcRepSplitAppTy_maybe :: Type -> Maybe (Type, Type)
- repSplitAppTy_maybe :: HasDebugCallStack => Type -> Maybe (Type, Type)
- splitAppTy_maybe :: Type -> Maybe (Type, Type)
- mkAppTys :: Type -> [Type] -> Type
- repGetTyVar_maybe :: Type -> Maybe TyVar
- getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN)
- getTyVar_maybe :: Type -> Maybe TyVar
- isTyVarTy :: Type -> Bool
- getTyVar :: String -> Type -> TyVar
- mapTyCoX :: Monad m => TyCoMapper env m -> (env -> Type -> m Type, env -> [Type] -> m [Type], env -> Coercion -> m Coercion, env -> [Coercion] -> m [Coercion])
- mapTyCo :: Monad m => TyCoMapper () m -> (Type -> m Type, [Type] -> m [Type], Coercion -> m Coercion, [Coercion] -> m [Coercion])
- isMultiplicityVar :: TyVar -> Bool
- isLevityVar :: TyVar -> Bool
- isRuntimeRepVar :: TyVar -> Bool
- isLevityTy :: Type -> Bool
- isUnliftedLevity :: Type -> Bool
- isLiftedLevity :: Type -> Bool
- isUnliftedRuntimeRep :: Type -> Bool
- isLiftedRuntimeRep :: Type -> Bool
- isBoxedRuntimeRep :: Type -> Bool
- isUnliftedTypeKind :: Kind -> Bool
- pickyIsLiftedTypeKind :: Kind -> Bool
- isBoxedTypeKind :: Kind -> Bool
- kindRep_maybe :: HasDebugCallStack => Kind -> Maybe Type
- kindRep :: HasDebugCallStack => Kind -> Type
- expandTypeSynonyms :: Type -> Type
- pattern One :: Mult
- pattern Many :: Mult
- data TyCoMapper env (m :: Type -> Type) = TyCoMapper {}
- funTyCon :: TyCon
- substTyCoBndr :: TCvSubst -> TyCoBinder -> (TCvSubst, TyCoBinder)
- cloneTyVarBndrs :: TCvSubst -> [TyVar] -> UniqSupply -> (TCvSubst, [TyVar])
- cloneTyVarBndr :: TCvSubst -> TyVar -> Unique -> (TCvSubst, TyVar)
- substVarBndrs :: HasCallStack => TCvSubst -> [TyCoVar] -> (TCvSubst, [TyCoVar])
- substVarBndr :: HasCallStack => TCvSubst -> TyCoVar -> (TCvSubst, TyCoVar)
- substTyVarBndrs :: HasCallStack => TCvSubst -> [TyVar] -> (TCvSubst, [TyVar])
- substTyVarBndr :: HasCallStack => TCvSubst -> TyVar -> (TCvSubst, TyVar)
- substCoUnchecked :: TCvSubst -> Coercion -> Coercion
- lookupTyVar :: TCvSubst -> TyVar -> Maybe Type
- substTyVars :: TCvSubst -> [TyVar] -> [Type]
- substTyVar :: TCvSubst -> TyVar -> Type
- substThetaUnchecked :: TCvSubst -> ThetaType -> ThetaType
- substTheta :: HasCallStack => TCvSubst -> ThetaType -> ThetaType
- substScaledTysUnchecked :: TCvSubst -> [Scaled Type] -> [Scaled Type]
- substTysUnchecked :: TCvSubst -> [Type] -> [Type]
- substScaledTys :: HasCallStack => TCvSubst -> [Scaled Type] -> [Scaled Type]
- substTys :: HasCallStack => TCvSubst -> [Type] -> [Type]
- substScaledTyUnchecked :: HasCallStack => TCvSubst -> Scaled Type -> Scaled Type
- substScaledTy :: HasCallStack => TCvSubst -> Scaled Type -> Scaled Type
- substTyUnchecked :: TCvSubst -> Type -> Type
- substTyAddInScope :: TCvSubst -> Type -> Type
- substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type]
- substCoWithUnchecked :: [TyVar] -> [Type] -> Coercion -> Coercion
- substTyWithUnchecked :: [TyVar] -> [Type] -> Type -> Type
- substTyWith :: HasCallStack => [TyVar] -> [Type] -> Type -> Type
- zipCoEnv :: HasDebugCallStack => [CoVar] -> [Coercion] -> CvSubstEnv
- zipTyEnv :: HasDebugCallStack => [TyVar] -> [Type] -> TvSubstEnv
- mkTvSubstPrs :: [(TyVar, Type)] -> TCvSubst
- zipTCvSubst :: HasDebugCallStack => [TyCoVar] -> [Type] -> TCvSubst
- zipTvSubst :: HasDebugCallStack => [TyVar] -> [Type] -> TCvSubst
- unionTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst
- extendTCvSubstList :: TCvSubst -> [Var] -> [Type] -> TCvSubst
- extendTvSubstAndInScope :: TCvSubst -> TyVar -> Type -> TCvSubst
- extendCvSubst :: TCvSubst -> CoVar -> Coercion -> TCvSubst
- extendTvSubstWithClone :: TCvSubst -> TyVar -> TyVar -> TCvSubst
- extendTvSubstBinderAndInScope :: TCvSubst -> TyCoBinder -> Type -> TCvSubst
- extendTCvSubstWithClone :: TCvSubst -> TyCoVar -> TyCoVar -> TCvSubst
- extendTCvSubst :: TCvSubst -> TyCoVar -> Type -> TCvSubst
- extendTCvInScopeSet :: TCvSubst -> VarSet -> TCvSubst
- extendTCvInScopeList :: TCvSubst -> [Var] -> TCvSubst
- extendTCvInScope :: TCvSubst -> Var -> TCvSubst
- zapTCvSubst :: TCvSubst -> TCvSubst
- setTvSubstEnv :: TCvSubst -> TvSubstEnv -> TCvSubst
- notElemTCvSubst :: Var -> TCvSubst -> Bool
- getTCvSubstRangeFVs :: TCvSubst -> VarSet
- getTCvInScope :: TCvSubst -> InScopeSet
- getTvSubstEnv :: TCvSubst -> TvSubstEnv
- mkTCvSubst :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> TCvSubst
- isEmptyTCvSubst :: TCvSubst -> Bool
- mkEmptyTCvSubst :: InScopeSet -> TCvSubst
- emptyTCvSubst :: TCvSubst
- composeTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst
- composeTCvSubstEnv :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv)
- emptyTvSubstEnv :: TvSubstEnv
- data TCvSubst = TCvSubst InScopeSet TvSubstEnv CvSubstEnv
- type TvSubstEnv = TyVarEnv Type
- tidyKind :: TidyEnv -> Kind -> Kind
- tidyOpenKind :: TidyEnv -> Kind -> (TidyEnv, Kind)
- tidyTopType :: Type -> Type
- tidyOpenType :: TidyEnv -> Type -> (TidyEnv, Type)
- tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type])
- tidyType :: TidyEnv -> Type -> Type
- tidyTypes :: TidyEnv -> [Type] -> [Type]
- tidyTyCoVarOcc :: TidyEnv -> TyCoVar -> TyCoVar
- tidyOpenTyCoVar :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar)
- tidyOpenTyCoVars :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar])
- tidyFreeTyCoVars :: TidyEnv -> [TyCoVar] -> TidyEnv
- tidyTyCoVarBinders :: TidyEnv -> [VarBndr TyCoVar vis] -> (TidyEnv, [VarBndr TyCoVar vis])
- tidyTyCoVarBinder :: TidyEnv -> VarBndr TyCoVar vis -> (TidyEnv, VarBndr TyCoVar vis)
- tidyVarBndr :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar)
- tidyVarBndrs :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar])
- tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar]
- tyCoVarsOfTypeWellScoped :: Type -> [TyVar]
- scopedSort :: [TyCoVar] -> [TyCoVar]
- noFreeVarsOfType :: Type -> Bool
- anyFreeVarsOfTypes :: (TyCoVar -> Bool) -> [Type] -> Bool
- anyFreeVarsOfType :: (TyCoVar -> Bool) -> Type -> Bool
- tyCoFVsVarBndr :: Var -> FV -> FV
- tyCoFVsVarBndrs :: [Var] -> FV -> FV
- tyCoFVsBndr :: TyCoVarBinder -> FV -> FV
- tyCoFVsOfType :: Type -> FV
- tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet
- closeOverKindsDSet :: DTyVarSet -> DTyVarSet
- closeOverKindsList :: [TyVar] -> [TyVar]
- closeOverKinds :: TyCoVarSet -> TyCoVarSet
- coVarsOfTypes :: [Type] -> CoVarSet
- coVarsOfType :: Type -> CoVarSet
- tyCoVarsOfTypes :: [Type] -> TyCoVarSet
- tyCoVarsOfType :: Type -> TyCoVarSet
- typeSize :: Type -> Int
- foldTyCo :: Monoid a => TyCoFolder env a -> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a)
- mkPiTys :: [TyCoBinder] -> Type -> Type
- mkPiTy :: TyCoBinder -> Type -> Type
- mkInvisForAllTys :: [InvisTVBinder] -> Type -> Type
- mkForAllTys :: [TyCoVarBinder] -> Type -> Type
- mkInvisFunTysMany :: [Type] -> Type -> Type
- mkVisFunTysMany :: [Type] -> Type -> Type
- mkVisFunTys :: [Scaled Type] -> Type -> Type
- mkInvisFunTyMany :: Type -> Type -> Type
- mkVisFunTyMany :: Type -> Type -> Type
- mkInvisFunTy :: Mult -> Type -> Type -> Type
- mkVisFunTy :: Mult -> Type -> Type -> Type
- mkFunTy :: AnonArgFlag -> Mult -> Type -> Type -> Type
- mkTyVarTys :: [TyVar] -> [Type]
- mkTyVarTy :: TyVar -> Type
- isNamedBinder :: TyCoBinder -> Bool
- isVisibleBinder :: TyCoBinder -> Bool
- isInvisibleBinder :: TyCoBinder -> Bool
- type KindOrType = Type
- type KnotTied ty = ty
- data TyCoFolder env a = TyCoFolder {}
- isConstraintKindCon :: TyCon -> Bool
- isTyVar :: Var -> Bool
- tyVarKind :: TyVar -> Kind
- mkTyVarBinders :: vis -> [TyVar] -> [VarBndr TyVar vis]
- mkTyCoVarBinders :: vis -> [TyCoVar] -> [VarBndr TyCoVar vis]
- mkTyVarBinder :: vis -> TyVar -> VarBndr TyVar vis
- mkTyCoVarBinder :: vis -> TyCoVar -> VarBndr TyCoVar vis
- binderType :: VarBndr TyCoVar argf -> Type
- binderArgFlag :: VarBndr tv argf -> argf
- binderVars :: [VarBndr tv argf] -> [tv]
- binderVar :: VarBndr tv argf -> tv
- tyVarSpecToBinders :: [VarBndr a Specificity] -> [VarBndr a ArgFlag]
- sameVis :: ArgFlag -> ArgFlag -> Bool
- isInvisibleArgFlag :: ArgFlag -> Bool
- isVisibleArgFlag :: ArgFlag -> Bool
- type TyCoVarBinder = VarBndr TyCoVar ArgFlag
- type TyVarBinder = VarBndr TyVar ArgFlag
- liftedTypeKind :: Kind
- unliftedTypeKind :: Kind
- unrestrictedFunTyCon :: TyCon
- isPredTy :: HasDebugCallStack => Type -> Bool
- isCoercionTy :: Type -> Bool
- mkAppTy :: Type -> Type -> Type
- mkCastTy :: Type -> Coercion -> Type
- mkTyConTy :: TyCon -> Type
- mkTyConApp :: TyCon -> [Type] -> Type
- piResultTy :: HasDebugCallStack => Type -> Type -> Type
- coreView :: Type -> Maybe Type
- tcView :: Type -> Maybe Type
- isRuntimeRepTy :: Type -> Bool
- isMultiplicityTy :: Type -> Bool
- isLiftedTypeKind :: Kind -> Bool
- tYPE :: Type -> Type
- splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
- tyConAppTyCon_maybe :: Type -> Maybe TyCon
- partitionInvisibleTypes :: TyCon -> [Type] -> ([Type], [Type])
- mkForAllTy :: TyCoVar -> ArgFlag -> Type -> Type
- data Type
- data TyCoBinder
- data Scaled a
- type Mult = Type
- type PredType = Type
- type Kind = Type
- type ThetaType = [PredType]
- data ArgFlag where
- data AnonArgFlag
- data Var
- data Specificity
- type TyVar = Var
- type TyCoVar = Id
- module GHC.Core.TyCon
- coercionHolesOfCo :: Coercion -> UniqSet CoercionHole
- coercionHolesOfType :: Type -> UniqSet CoercionHole
- hasCoercionHoleCo :: Coercion -> Bool
- hasCoercionHoleTy :: Type -> Bool
- simplifyArgsWorker :: [TyCoBinder] -> Kind -> TyCoVarSet -> [Role] -> [(Type, Coercion)] -> ([Type], [Coercion], MCoercionN)
- buildCoercion :: Type -> Type -> CoercionN
- mkReprPrimEqPred :: Type -> Type -> Type
- mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
- mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
- mkPrimEqPredRole :: Role -> Type -> Type -> PredType
- mkPrimEqPred :: Type -> Type -> Type
- mkHeteroCoercionType :: Role -> Kind -> Kind -> Type -> Type -> Type
- coercionRole :: Coercion -> Role
- coercionKindRole :: Coercion -> (Pair Type, Role)
- coercionKinds :: [Coercion] -> Pair [Type]
- lcInScopeSet :: LiftingContext -> InScopeSet
- lcTCvSubst :: LiftingContext -> TCvSubst
- liftEnvSubstRight :: TCvSubst -> LiftCoEnv -> TCvSubst
- liftEnvSubstLeft :: TCvSubst -> LiftCoEnv -> TCvSubst
- lcSubstRight :: LiftingContext -> TCvSubst
- lcSubstLeft :: LiftingContext -> TCvSubst
- swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv
- substRightCo :: LiftingContext -> Coercion -> Coercion
- substLeftCo :: LiftingContext -> Coercion -> Coercion
- isMappedByLC :: TyCoVar -> LiftingContext -> Bool
- liftCoSubstVarBndrUsing :: (LiftingContext -> Type -> (CoercionN, a)) -> LiftingContext -> TyCoVar -> (LiftingContext, TyCoVar, CoercionN, a)
- liftCoSubstTyVar :: LiftingContext -> Role -> TyVar -> Maybe Coercion
- substForAllCoBndrUsingLC :: Bool -> (Coercion -> Coercion) -> LiftingContext -> TyCoVar -> Coercion -> (LiftingContext, TyCoVar, Coercion)
- zapLiftingContext :: LiftingContext -> LiftingContext
- extendLiftingContextAndInScope :: LiftingContext -> TyCoVar -> Coercion -> LiftingContext
- extendLiftingContext :: LiftingContext -> TyCoVar -> Coercion -> LiftingContext
- mkSubstLiftingContext :: TCvSubst -> LiftingContext
- emptyLiftingContext :: InScopeSet -> LiftingContext
- liftCoSubstWith :: Role -> [TyCoVar] -> [Coercion] -> Type -> Coercion
- liftCoSubstWithEx :: Role -> [TyVar] -> [Coercion] -> [TyCoVar] -> [Type] -> (Type -> Coercion, [Type])
- eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool
- eqCoercion :: Coercion -> Coercion -> Bool
- topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type)
- topNormaliseTypeX :: NormaliseStepper ev -> (ev -> ev -> ev) -> Type -> Maybe (ev, Type)
- unwrapNewTypeStepper :: NormaliseStepper Coercion
- composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev -> NormaliseStepper ev
- mapStepResult :: (ev1 -> ev2) -> NormaliseStepResult ev1 -> NormaliseStepResult ev2
- instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
- mkCoCast :: Coercion -> CoercionR -> Coercion
- mkFunResCo :: Role -> Scaled Type -> Coercion -> Coercion
- mkPiCo :: Role -> Var -> Coercion -> Coercion
- mkPiCos :: Role -> [Var] -> Coercion -> Coercion
- mkFamilyTyConAppCo :: TyCon -> [CoercionN] -> CoercionN
- castCoercionKind :: Coercion -> CoercionN -> CoercionN -> Coercion
- castCoercionKind1 :: Coercion -> Role -> Type -> Type -> CoercionN -> Coercion
- castCoercionKind2 :: Coercion -> Role -> Type -> Type -> CoercionN -> CoercionN -> Coercion
- promoteCoercion :: Coercion -> CoercionN
- ltRole :: Role -> Role -> Bool
- nthRole :: Role -> TyCon -> Int -> Role
- tyConRolesRepresentational :: TyCon -> [Role]
- tyConRolesX :: Role -> TyCon -> [Role]
- setNominalRole_maybe :: Role -> Coercion -> Maybe Coercion
- downgradeRole :: Role -> Role -> Coercion -> Coercion
- mkCoherenceRightCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
- mkCoherenceLeftCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
- mkGReflLeftCo :: Role -> Type -> CoercionN -> Coercion
- mkGReflRightCo :: Role -> Type -> CoercionN -> Coercion
- nthCoRole :: Int -> Coercion -> Role
- mkNthCoFunCo :: Int -> CoercionN -> Coercion -> Coercion -> Coercion
- mkHoleCo :: CoercionHole -> Coercion
- mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
- mkAxInstLHS :: forall (br :: BranchFlag). CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
- mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
- mkAxInstRHS :: forall (br :: BranchFlag). CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
- mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion
- mkAxInstCo :: forall (br :: BranchFlag). Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Coercion
- isCoVar_maybe :: Coercion -> Maybe CoVar
- mkCoVarCos :: [CoVar] -> [Coercion]
- mkHomoForAllCos :: [TyCoVar] -> Coercion -> Coercion
- mkForAllCos :: [(TyCoVar, CoercionN)] -> Coercion -> Coercion
- mkAppCos :: Coercion -> [Coercion] -> Coercion
- mkRepReflCo :: Type -> Coercion
- isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role)
- isReflCo_maybe :: Coercion -> Maybe (Type, Role)
- isGReflCo_maybe :: Coercion -> Maybe (Type, Role)
- isReflCoVar_maybe :: Var -> Maybe Coercion
- coVarKind :: CoVar -> Type
- coVarTypes :: HasDebugCallStack => CoVar -> Pair Type
- splitForAllCo_co_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
- splitForAllCo_ty_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
- splitForAllCo_maybe :: Coercion -> Maybe (TyCoVar, Coercion, Coercion)
- splitFunCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
- splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
- multToCo :: Mult -> Coercion
- splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion])
- getCoVar_maybe :: Coercion -> Maybe CoVar
- decomposeFunCo :: HasDebugCallStack => Role -> Coercion -> (CoercionN, Coercion, Coercion)
- decomposeCo :: Arity -> Coercion -> [Role] -> [Coercion]
- isReflMCo :: MCoercion -> Bool
- mkCoherenceRightMCo :: Role -> Type -> MCoercionN -> Coercion -> Coercion
- mkGReflRightMCo :: Role -> Type -> MCoercionN -> Coercion
- mkGReflLeftMCo :: Role -> Type -> MCoercionN -> Coercion
- mkFunResMCo :: Scaled Type -> MCoercionR -> MCoercionR
- mkPiMCos :: [Var] -> MCoercion -> MCoercion
- mkHomoForAllMCo :: TyCoVar -> MCoercion -> MCoercion
- mkCastTyMCo :: Type -> MCoercion -> Type
- mkSymMCo :: MCoercion -> MCoercion
- mkTransMCoR :: Coercion -> MCoercion -> MCoercion
- mkTransMCoL :: MCoercion -> Coercion -> MCoercion
- mkTransMCo :: MCoercion -> MCoercion -> MCoercion
- isGReflMCo :: MCoercion -> Bool
- checkReflexiveMCo :: MCoercion -> MCoercion
- coToMCo :: Coercion -> MCoercion
- tidyCoAxBndrsForUser :: TidyEnv -> [Var] -> (TidyEnv, [Var])
- pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
- pprCoAxBranchLHS :: TyCon -> CoAxBranch -> SDoc
- pprCoAxBranchUser :: TyCon -> CoAxBranch -> SDoc
- pprCoAxiom :: forall (br :: BranchFlag). CoAxiom br -> SDoc
- etaExpandCoAxBranch :: CoAxBranch -> ([TyVar], [Type], Type)
- setCoVarName :: CoVar -> Name -> CoVar
- setCoVarUnique :: CoVar -> Unique -> CoVar
- coVarName :: CoVar -> Name
- type NormaliseStepper ev = RecTcChecker -> TyCon -> [Type] -> NormaliseStepResult ev
- data NormaliseStepResult ev
- = NS_Done
- | NS_Abort
- | NS_Step RecTcChecker Type ev
- type LiftCoEnv = VarEnv Coercion
- type HoleSet = UniqSet CoercionHole
- pprParendCo :: Coercion -> SDoc
- substCoVarBndr :: HasCallStack => TCvSubst -> CoVar -> (TCvSubst, CoVar)
- lookupCoVar :: TCvSubst -> Var -> Maybe Coercion
- substCoVars :: TCvSubst -> [CoVar] -> [Coercion]
- substCoVar :: TCvSubst -> CoVar -> Coercion
- substCos :: HasCallStack => TCvSubst -> [Coercion] -> [Coercion]
- substCoWith :: HasCallStack => [TyVar] -> [Type] -> Coercion -> Coercion
- extendTvSubstAndInScope :: TCvSubst -> TyVar -> Type -> TCvSubst
- getCvSubstEnv :: TCvSubst -> CvSubstEnv
- emptyCvSubstEnv :: CvSubstEnv
- type CvSubstEnv = CoVarEnv Coercion
- tidyCos :: TidyEnv -> [Coercion] -> [Coercion]
- tidyCo :: TidyEnv -> Coercion -> Coercion
- anyFreeVarsOfCo :: (TyCoVar -> Bool) -> Coercion -> Bool
- tyCoFVsOfCos :: [Coercion] -> FV
- tyCoFVsOfCo :: Coercion -> FV
- tyCoVarsOfCoDSet :: Coercion -> DTyCoVarSet
- coVarsOfCo :: Coercion -> CoVarSet
- tyCoVarsOfCos :: [Coercion] -> TyCoVarSet
- tyCoVarsOfCo :: Coercion -> TyCoVarSet
- coercionSize :: Coercion -> Int
- setCoHoleCoVar :: CoercionHole -> CoVar -> CoercionHole
- coHoleCoVar :: CoercionHole -> CoVar
- type CoercionR = Coercion
- type CoercionP = Coercion
- type MCoercionR = MCoercion
- data CoercionHole = CoercionHole {}
- mkReflCo :: Role -> Type -> Coercion
- mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
- mkAppCo :: Coercion -> Coercion -> Coercion
- mkForAllCo :: TyCoVar -> CoercionN -> Coercion -> Coercion
- mkFunCo :: Role -> CoercionN -> Coercion -> Coercion -> Coercion
- mkCoVarCo :: CoVar -> Coercion
- mkAxiomInstCo :: CoAxiom Branched -> BranchIndex -> [Coercion] -> Coercion
- mkPhantomCo :: Coercion -> Type -> Type -> Coercion
- mkUnivCo :: UnivCoProvenance -> Role -> Type -> Type -> Coercion
- mkSymCo :: Coercion -> Coercion
- mkTransCo :: Coercion -> Coercion -> Coercion
- mkNthCo :: HasDebugCallStack => Role -> Int -> Coercion -> Coercion
- mkLRCo :: LeftOrRight -> Coercion -> Coercion
- mkInstCo :: Coercion -> Coercion -> Coercion
- mkGReflCo :: Role -> Type -> MCoercionN -> Coercion
- mkNomReflCo :: Type -> Coercion
- mkKindCo :: Coercion -> Coercion
- mkSubCo :: HasDebugCallStack => Coercion -> Coercion
- mkProofIrrelCo :: Role -> Coercion -> Coercion -> Coercion -> Coercion
- mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion
- isGReflCo :: Coercion -> Bool
- isReflCo :: Coercion -> Bool
- isReflexiveCo :: Coercion -> Bool
- decomposePiCos :: HasDebugCallStack => CoercionN -> Pair Type -> [Type] -> ([CoercionN], CoercionN)
- coVarKindsTypesRole :: HasDebugCallStack => CoVar -> (Kind, Kind, Type, Type, Role)
- coVarRole :: CoVar -> Role
- mkCoercionType :: Role -> Type -> Type -> Type
- liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion
- seqCo :: Coercion -> ()
- coercionKind :: Coercion -> Pair Type
- coercionLKind :: Coercion -> Type
- coercionRKind :: Coercion -> Type
- coercionType :: Coercion -> Type
- data LiftingContext = LC TCvSubst LiftCoEnv
- data Role
- isCoVar :: Var -> Bool
- mkCoVar :: Name -> Type -> CoVar
- type CoVar = Id
- pickLR :: LeftOrRight -> (a, a) -> a
- data LeftOrRight
- pprCo :: Coercion -> SDoc
- data Coercion
- data UnivCoProvenance
- data MCoercion
- type CoercionN = Coercion
- type MCoercionN = MCoercion
- data Var
- type TyCoVar = Id
- module GHC.Builtin.Types
- module GHC.Driver.Env
- module GHC.Types.Basic
- module GHC.Types.Var.Set
- module GHC.Types.Var.Env
- module GHC.Types.Name.Set
- module GHC.Types.Name.Env
- data Unique
- class Uniquable a where
- module GHC.Types.Unique.Set
- module GHC.Types.Unique.FM
- module GHC.Data.FiniteMap
- module GHC.Utils.Misc
- module GHC.Serialized
- module GHC.Types.SrcLoc
- module GHC.Utils.Outputable
- module GHC.Utils.Panic
- module GHC.Types.Unique.Supply
- module GHC.Data.FastString
- module GHC.Tc.Errors.Hole.FitTypes
- module GHC.Unit.Module.ModGuts
- module GHC.Unit.Module.ModSummary
- module GHC.Unit.Module.ModIface
- module GHC.Types.Meta
- module GHC.Types.SourceError
- thNameToGhcName :: Name -> CoreM (Maybe Name)
Documentation
module GHC.Driver.Plugins
module GHC.Types.Name.Reader
tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName) #
avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv #
delTidyOccEnvList :: TidyOccEnv -> [FastString] -> TidyOccEnv #
initTidyOccEnv :: [OccName] -> TidyOccEnv #
mkMethodOcc :: OccName -> OccName #
Derive a name for the representation type constructor of a
data
/newtype
instance.
mkSuperDictAuxOcc :: Int -> OccName -> OccName #
mkDataConWorkerOcc :: OccName -> OccName #
mkTyConRepOcc :: OccName -> OccName #
mkDataCOcc :: OccName -> OccName #
mkDataTOcc :: OccName -> OccName #
mkMaxTagOcc :: OccName -> OccName #
mkTag2ConOcc :: OccName -> OccName #
mkCon2TagOcc :: OccName -> OccName #
mkEqPredCoOcc :: OccName -> OccName #
mkInstTyCoOcc :: OccName -> OccName #
mkNewTyCoOcc :: OccName -> OccName #
mkClassDataConOcc :: OccName -> OccName #
mkRepEqOcc :: OccName -> OccName #
mkForeignExportOcc :: OccName -> OccName #
mkClassOpAuxOcc :: OccName -> OccName #
mkDefaultMethodOcc :: OccName -> OccName #
mkBuilderOcc :: OccName -> OccName #
mkMatcherOcc :: OccName -> OccName #
mkWorkerOcc :: OccName -> OccName #
mkDataConWrapperOcc :: OccName -> OccName #
isTypeableBindOcc :: OccName -> Bool #
Is an OccName
one of a Typeable TyCon
or Module
binding?
This is needed as these bindings are renamed differently.
See Note [Grand plan for Typeable] in GHC.Tc.Instance.Typeable.
isDefaultMethodOcc :: OccName -> Bool #
isDerivedOccName :: OccName -> Bool #
Test for definitions internally generated by GHC. This predicate is used to suppress printing of internal definitions in some debug prints
startsWithUnderscore :: OccName -> Bool #
Haskell 98 encourages compilers to suppress warnings about unused
names in a pattern if they start with _
: this implements that test
parenSymOcc :: OccName -> SDoc -> SDoc #
Wrap parens around an operator
Test if the OccName
is that for any operator (whether
it is a data constructor or variable or whatever)
isDataSymOcc :: OccName -> Bool #
Test if the OccName
is a data constructor that starts with
a symbol (e.g. :
, or []
)
Value OccNames
s are those that are either in
the variable or data constructor namespaces
setOccNameSpace :: NameSpace -> OccName -> OccName #
intersectOccSet :: OccSet -> OccSet -> OccSet #
isEmptyOccSet :: OccSet -> Bool #
elemOccSet :: OccName -> OccSet -> Bool #
minusOccSet :: OccSet -> OccSet -> OccSet #
unionManyOccSets :: [OccSet] -> OccSet #
unionOccSets :: OccSet -> OccSet -> OccSet #
extendOccSetList :: OccSet -> [OccName] -> OccSet #
extendOccSet :: OccSet -> OccName -> OccSet #
unitOccSet :: OccName -> OccSet #
emptyOccSet :: OccSet #
filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt #
delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a #
delFromOccEnv :: OccEnv a -> OccName -> OccEnv a #
mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a #
extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b #
extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a #
plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a #
plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a #
occEnvElts :: OccEnv a -> [a] #
foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b #
elemOccEnv :: OccName -> OccEnv a -> Bool #
lookupOccEnv :: OccEnv a -> OccName -> Maybe a #
extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a #
extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a #
unitOccEnv :: OccName -> a -> OccEnv a #
emptyOccEnv :: OccEnv a #
nameSpacesRelated :: NameSpace -> NameSpace -> Bool #
promoteOccName :: OccName -> Maybe OccName #
demoteOccName :: OccName -> Maybe OccName #
mkClsOccFS :: FastString -> OccName #
mkTcOccFS :: FastString -> OccName #
mkTyVarOccFS :: FastString -> OccName #
mkTyVarOcc :: String -> OccName #
mkDataOccFS :: FastString -> OccName #
mkOccNameFS :: NameSpace -> FastString -> OccName #
pprOccName :: OccName -> SDoc #
pprNameSpaceBrief :: NameSpace -> SDoc #
pprNonVarNameSpace :: NameSpace -> SDoc #
pprNameSpace :: NameSpace -> SDoc #
isValNameSpace :: NameSpace -> Bool #
isVarNameSpace :: NameSpace -> Bool #
isTvNameSpace :: NameSpace -> Bool #
isTcClsNameSpace :: NameSpace -> Bool #
isDataConNameSpace :: NameSpace -> Bool #
Instances
Data a => Data (OccEnv a) | |
Defined in GHC.Types.Name.Occurrence gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccEnv a -> c (OccEnv a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (OccEnv a) # toConstr :: OccEnv a -> Constr # dataTypeOf :: OccEnv a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (OccEnv a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (OccEnv a)) # gmapT :: (forall b. Data b => b -> b) -> OccEnv a -> OccEnv a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r # gmapQ :: (forall d. Data d => d -> u) -> OccEnv a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccEnv a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) # | |
Outputable a => Outputable (OccEnv a) | |
Defined in GHC.Types.Name.Occurrence |
type TidyOccEnv = UniqFM FastString Int #
mkFsEnv :: [(FastString, a)] -> FastStringEnv a #
lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a #
extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a #
emptyFsEnv :: FastStringEnv a #
type FastStringEnv a = UniqFM FastString a #
A non-deterministic set of FastStrings. See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM for explanation why it's not deterministic and why it matters. Use DFastStringEnv if the set eventually gets converted into a list or folded over in a way where the order changes the generated code.
occNameString :: OccName -> String #
mkRecFldSelOcc :: String -> OccName #
mkVarOccFS :: FastString -> OccName #
Occurrence Name
In this context that means: "classified (i.e. as a type name, value name, etc) but not qualified and not yet resolved"
Instances
Data OccName | |
Defined in GHC.Types.Name.Occurrence gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
NFData OccName | |
Defined in GHC.Types.Name.Occurrence | |
HasOccName OccName | |
Defined in GHC.Types.Name.Occurrence | |
Uniquable OccName | |
Defined in GHC.Types.Name.Occurrence | |
Binary OccName | |
Outputable OccName | |
Defined in GHC.Types.Name.Occurrence | |
OutputableBndr OccName | |
Defined in GHC.Types.Name.Occurrence pprBndr :: BindingSite -> OccName -> SDoc # pprPrefixOcc :: OccName -> SDoc # pprInfixOcc :: OccName -> SDoc # bndrIsJoin_maybe :: OccName -> Maybe Int # | |
Eq OccName | |
Ord OccName | |
class HasOccName name where #
Other names in the compiler add additional information to an OccName. This class provides a consistent way to access the underlying OccName.
Instances
HasOccName IfaceClassOp | |
Defined in GHC.Iface.Syntax occName :: IfaceClassOp -> OccName # | |
HasOccName IfaceConDecl | |
Defined in GHC.Iface.Syntax occName :: IfaceConDecl -> OccName # | |
HasOccName IfaceDecl | |
Defined in GHC.Iface.Syntax | |
HasOccName HoleFitCandidate | |
Defined in GHC.Tc.Errors.Hole.FitTypes occName :: HoleFitCandidate -> OccName # | |
HasOccName TcBinder | |
Defined in GHC.Tc.Types | |
HasOccName GreName | |
Defined in GHC.Types.Avail | |
HasOccName FieldLabel | |
Defined in GHC.Types.FieldLabel occName :: FieldLabel -> OccName # | |
HasOccName Name | |
Defined in GHC.Types.Name | |
HasOccName OccName | |
Defined in GHC.Types.Name.Occurrence | |
HasOccName GlobalRdrElt | |
Defined in GHC.Types.Name.Reader occName :: GlobalRdrElt -> OccName # | |
HasOccName RdrName | |
Defined in GHC.Types.Name.Reader | |
HasOccName Var | |
Defined in GHC.Types.Var | |
HasOccName name => HasOccName (IEWrappedName name) | |
Defined in GHC.Hs.ImpExp occName :: IEWrappedName name -> OccName # |
pprPrefixName :: NamedThing a => a -> SDoc #
pprInfixName :: (Outputable a, NamedThing a) => a -> SDoc #
getOccFS :: NamedThing a => a -> FastString #
getOccString :: NamedThing a => a -> String #
getSrcSpan :: NamedThing a => a -> SrcSpan #
getSrcLoc :: NamedThing a => a -> SrcLoc #
nameStableString :: Name -> String #
Get a string representation of a Name
that's unique and stable
across recompilations. Used for deterministic generation of binds for
derived instances.
eg. "$aeson_70dylHtv1FFGeai1IoxcQr$Data.Aeson.Types.Internal$String"
pprNameDefnLoc :: Name -> SDoc #
pprDefinedAt :: Name -> SDoc #
pprNameUnqualified :: Name -> SDoc #
Print the string of Name unqualifiedly directly.
stableNameCmp :: Name -> Name -> Ordering #
Compare Names lexicographically This only works for Names that originate in the source code or have been tidied.
localiseName :: Name -> Name #
Make the Name
into an internal name, regardless of what it was to begin with
setNameLoc :: Name -> SrcSpan -> Name #
mkFCallName :: Unique -> String -> Name #
Make a name for a foreign call
mkSysTvName :: Unique -> FastString -> Name #
mkSystemVarName :: Unique -> FastString -> Name #
mkSystemName :: Unique -> OccName -> Name #
Create a name brought into being by the compiler
mkWiredInName :: Module -> OccName -> Unique -> TyThing -> BuiltInSyntax -> Name #
Create a name which is actually defined by the compiler itself
mkExternalName :: Unique -> Module -> OccName -> SrcSpan -> Name #
Create a name which definitely originates in the given module
mkClonedInternalName :: Unique -> Name -> Name #
isSystemName :: Name -> Bool #
isDataConName :: Name -> Bool #
isTyConName :: Name -> Bool #
isTyVarName :: Name -> Bool #
nameIsFromExternalPackage :: HomeUnit -> Name -> Bool #
Returns True if the Name comes from some other package: neither this package nor the interactive package.
nameIsHomePackageImport :: Module -> Name -> Bool #
nameIsHomePackage :: Module -> Name -> Bool #
nameIsLocalOrFrom :: Module -> Name -> Bool #
Returns True if the name is
(a) Internal
(b) External but from the specified module
(c) External but from the interactive
package
The key idea is that False means: the entity is defined in some other module you can find the details (type, fixity, instances) in some interface file those details will be stored in the EPT or HPT
True means: the entity is defined in this module or earlier in the GHCi session you can find details (type, fixity, instances) in the TcGblEnv or TcLclEnv
The isInteractiveModule part is because successive interactions of a GHCi session
each give rise to a fresh module (Ghci1, Ghci2, etc), but they all come
from the magic interactive
package; and all the details are kept in the
TcLclEnv, TcGblEnv, NOT in the HPT or EPT.
See Note [The interactive package] in GHC.Runtime.Context
nameModule_maybe :: Name -> Maybe Module #
nameModule :: HasDebugCallStack => Name -> Module #
isDynLinkName :: Platform -> Module -> Name -> Bool #
Will the Name
come from a dynamically linked package?
isHoleName :: Name -> Bool #
isInternalName :: Name -> Bool #
isExternalName :: Name -> Bool #
isBuiltInSyntax :: Name -> Bool #
isWiredIn :: NamedThing thing => thing -> Bool #
isWiredInName :: Name -> Bool #
nameSrcSpan :: Name -> SrcSpan #
nameSrcLoc :: Name -> SrcLoc #
nameNameSpace :: Name -> NameSpace #
data BuiltInSyntax #
BuiltInSyntax is for things like (:)
, []
and tuples,
which have special syntactic forms. They aren't in scope
as such.
tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName) #
avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv #
delTidyOccEnvList :: TidyOccEnv -> [FastString] -> TidyOccEnv #
initTidyOccEnv :: [OccName] -> TidyOccEnv #
mkMethodOcc :: OccName -> OccName #
Derive a name for the representation type constructor of a
data
/newtype
instance.
mkSuperDictAuxOcc :: Int -> OccName -> OccName #
mkDataConWorkerOcc :: OccName -> OccName #
mkTyConRepOcc :: OccName -> OccName #
mkDataCOcc :: OccName -> OccName #
mkDataTOcc :: OccName -> OccName #
mkMaxTagOcc :: OccName -> OccName #
mkTag2ConOcc :: OccName -> OccName #
mkCon2TagOcc :: OccName -> OccName #
mkEqPredCoOcc :: OccName -> OccName #
mkInstTyCoOcc :: OccName -> OccName #
mkNewTyCoOcc :: OccName -> OccName #
mkClassDataConOcc :: OccName -> OccName #
mkRepEqOcc :: OccName -> OccName #
mkForeignExportOcc :: OccName -> OccName #
mkClassOpAuxOcc :: OccName -> OccName #
mkDefaultMethodOcc :: OccName -> OccName #
mkBuilderOcc :: OccName -> OccName #
mkMatcherOcc :: OccName -> OccName #
mkWorkerOcc :: OccName -> OccName #
mkDataConWrapperOcc :: OccName -> OccName #
isTypeableBindOcc :: OccName -> Bool #
Is an OccName
one of a Typeable TyCon
or Module
binding?
This is needed as these bindings are renamed differently.
See Note [Grand plan for Typeable] in GHC.Tc.Instance.Typeable.
isDefaultMethodOcc :: OccName -> Bool #
isDerivedOccName :: OccName -> Bool #
Test for definitions internally generated by GHC. This predicate is used to suppress printing of internal definitions in some debug prints
startsWithUnderscore :: OccName -> Bool #
Haskell 98 encourages compilers to suppress warnings about unused
names in a pattern if they start with _
: this implements that test
parenSymOcc :: OccName -> SDoc -> SDoc #
Wrap parens around an operator
Test if the OccName
is that for any operator (whether
it is a data constructor or variable or whatever)
isDataSymOcc :: OccName -> Bool #
Test if the OccName
is a data constructor that starts with
a symbol (e.g. :
, or []
)
Value OccNames
s are those that are either in
the variable or data constructor namespaces
setOccNameSpace :: NameSpace -> OccName -> OccName #
intersectOccSet :: OccSet -> OccSet -> OccSet #
isEmptyOccSet :: OccSet -> Bool #
elemOccSet :: OccName -> OccSet -> Bool #
minusOccSet :: OccSet -> OccSet -> OccSet #
unionManyOccSets :: [OccSet] -> OccSet #
unionOccSets :: OccSet -> OccSet -> OccSet #
extendOccSetList :: OccSet -> [OccName] -> OccSet #
extendOccSet :: OccSet -> OccName -> OccSet #
unitOccSet :: OccName -> OccSet #
emptyOccSet :: OccSet #
filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt #
delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a #
delFromOccEnv :: OccEnv a -> OccName -> OccEnv a #
mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a #
extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b #
extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a #
plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a #
plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a #
occEnvElts :: OccEnv a -> [a] #
foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b #
elemOccEnv :: OccName -> OccEnv a -> Bool #
lookupOccEnv :: OccEnv a -> OccName -> Maybe a #
extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a #
extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a #
unitOccEnv :: OccName -> a -> OccEnv a #
emptyOccEnv :: OccEnv a #
nameSpacesRelated :: NameSpace -> NameSpace -> Bool #
promoteOccName :: OccName -> Maybe OccName #
demoteOccName :: OccName -> Maybe OccName #
mkClsOccFS :: FastString -> OccName #
mkTcOccFS :: FastString -> OccName #
mkTyVarOccFS :: FastString -> OccName #
mkTyVarOcc :: String -> OccName #
mkDataOccFS :: FastString -> OccName #
mkOccNameFS :: NameSpace -> FastString -> OccName #
pprOccName :: OccName -> SDoc #
pprNameSpaceBrief :: NameSpace -> SDoc #
pprNonVarNameSpace :: NameSpace -> SDoc #
pprNameSpace :: NameSpace -> SDoc #
isValNameSpace :: NameSpace -> Bool #
isVarNameSpace :: NameSpace -> Bool #
isTvNameSpace :: NameSpace -> Bool #
isTcClsNameSpace :: NameSpace -> Bool #
isDataConNameSpace :: NameSpace -> Bool #
Instances
Data a => Data (OccEnv a) | |
Defined in GHC.Types.Name.Occurrence gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccEnv a -> c (OccEnv a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (OccEnv a) # toConstr :: OccEnv a -> Constr # dataTypeOf :: OccEnv a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (OccEnv a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (OccEnv a)) # gmapT :: (forall b. Data b => b -> b) -> OccEnv a -> OccEnv a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r # gmapQ :: (forall d. Data d => d -> u) -> OccEnv a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccEnv a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) # | |
Outputable a => Outputable (OccEnv a) | |
Defined in GHC.Types.Name.Occurrence |
type TidyOccEnv = UniqFM FastString Int #
mkFsEnv :: [(FastString, a)] -> FastStringEnv a #
lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a #
extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a #
emptyFsEnv :: FastStringEnv a #
type FastStringEnv a = UniqFM FastString a #
A non-deterministic set of FastStrings. See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM for explanation why it's not deterministic and why it matters. Use DFastStringEnv if the set eventually gets converted into a list or folded over in a way where the order changes the generated code.
nameUnique :: Name -> Unique #
setNameUnique :: Name -> Unique -> Name #
nameOccName :: Name -> OccName #
tidyNameOcc :: Name -> OccName -> Name #
A unique, unambiguous name for something, containing information about where that thing originated.
Instances
Data Name | |
Defined in GHC.Types.Name gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
NFData Name | |
Defined in GHC.Types.Name | |
NamedThing Name | |
Defined in GHC.Types.Name | |
HasOccName Name | |
Defined in GHC.Types.Name | |
Uniquable Name | |
Defined in GHC.Types.Name | |
Binary Name | Assumes that the |
Outputable Name | |
Defined in GHC.Types.Name | |
OutputableBndr Name | |
Defined in GHC.Types.Name pprBndr :: BindingSite -> Name -> SDoc # pprPrefixOcc :: Name -> SDoc # pprInfixOcc :: Name -> SDoc # bndrIsJoin_maybe :: Name -> Maybe Int # | |
Eq Name | |
Ord Name | Caution: This instance is implemented via See |
type Anno Name | |
Defined in GHC.Hs.Extension | |
type Anno (LocatedN Name) | |
Defined in GHC.Hs.Binds | |
type Anno [LocatedN Name] | |
Defined in GHC.Hs.Binds |
class NamedThing a where #
A class allowing convenient access to the Name
of various datatypes
Instances
occNameString :: OccName -> String #
mkRecFldSelOcc :: String -> OccName #
mkVarOccFS :: FastString -> OccName #
Occurrence Name
In this context that means: "classified (i.e. as a type name, value name, etc) but not qualified and not yet resolved"
Instances
Data OccName | |
Defined in GHC.Types.Name.Occurrence gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
NFData OccName | |
Defined in GHC.Types.Name.Occurrence | |
HasOccName OccName | |
Defined in GHC.Types.Name.Occurrence | |
Uniquable OccName | |
Defined in GHC.Types.Name.Occurrence | |
Binary OccName | |
Outputable OccName | |
Defined in GHC.Types.Name.Occurrence | |
OutputableBndr OccName | |
Defined in GHC.Types.Name.Occurrence pprBndr :: BindingSite -> OccName -> SDoc # pprPrefixOcc :: OccName -> SDoc # pprInfixOcc :: OccName -> SDoc # bndrIsJoin_maybe :: OccName -> Maybe Int # | |
Eq OccName | |
Ord OccName | |
class HasOccName name where #
Other names in the compiler add additional information to an OccName. This class provides a consistent way to access the underlying OccName.
Instances
HasOccName IfaceClassOp | |
Defined in GHC.Iface.Syntax occName :: IfaceClassOp -> OccName # | |
HasOccName IfaceConDecl | |
Defined in GHC.Iface.Syntax occName :: IfaceConDecl -> OccName # | |
HasOccName IfaceDecl | |
Defined in GHC.Iface.Syntax | |
HasOccName HoleFitCandidate | |
Defined in GHC.Tc.Errors.Hole.FitTypes occName :: HoleFitCandidate -> OccName # | |
HasOccName TcBinder | |
Defined in GHC.Tc.Types | |
HasOccName GreName | |
Defined in GHC.Types.Avail | |
HasOccName FieldLabel | |
Defined in GHC.Types.FieldLabel occName :: FieldLabel -> OccName # | |
HasOccName Name | |
Defined in GHC.Types.Name | |
HasOccName OccName | |
Defined in GHC.Types.Name.Occurrence | |
HasOccName GlobalRdrElt | |
Defined in GHC.Types.Name.Reader occName :: GlobalRdrElt -> OccName # | |
HasOccName RdrName | |
Defined in GHC.Types.Name.Reader | |
HasOccName Var | |
Defined in GHC.Types.Var | |
HasOccName name => HasOccName (IEWrappedName name) | |
Defined in GHC.Hs.ImpExp occName :: IEWrappedName name -> OccName # |
module GHC.Types.Var
isNeverLevPolyId :: Id -> Bool #
zapStableUnfolding :: Id -> Id #
zapIdTailCallInfo :: Id -> Id #
zapIdUsedOnceInfo :: Id -> Id #
zapIdUsageEnvInfo :: Id -> Id #
zapIdUsageInfo :: Id -> Id #
zapIdDemandInfo :: Id -> Id #
zapFragileIdInfo :: Id -> Id #
zapLamIdInfo :: Id -> Id #
updOneShotInfo :: Id -> OneShotInfo -> Id #
setIdOneShotInfo :: Id -> OneShotInfo -> Id infixl 1 #
clearOneShotLambda :: Id -> Id #
setOneShotLambda :: Id -> Id #
isProbablyOneShotLambda :: Id -> Bool #
isStateHackType :: Type -> Bool #
typeOneShot :: Type -> OneShotInfo #
stateHackOneShot :: OneShotInfo #
Should we apply the state hack to values of this Type
?
isOneShotBndr :: Var -> Bool #
Returns whether the lambda associated with the Id
is certainly applied at most once
This one is the "business end", called externally.
It works on type variables as well as Ids, returning True
Its main purpose is to encapsulate the Horrible State Hack
See Note [The state-transformer hack] in GHC.Core.Opt.Arity
idStateHackOneShotInfo :: Id -> OneShotInfo #
Like idOneShotInfo
, but taking the Horrible State Hack in to account
See Note [The state-transformer hack] in GHC.Core.Opt.Arity
idOneShotInfo :: Id -> OneShotInfo #
isConLikeId :: Id -> Bool #
idRuleMatchInfo :: Id -> RuleMatchInfo #
setInlineActivation :: Id -> Activation -> Id infixl 1 #
idInlineActivation :: Id -> Activation #
modifyInlinePragma :: Id -> (InlinePragma -> InlinePragma) -> Id #
setInlinePragma :: Id -> InlinePragma -> Id infixl 1 #
idInlinePragma :: Id -> InlinePragma #
zapIdOccInfo :: Id -> Id #
setIdOccInfo :: Id -> OccInfo -> Id infixl 1 #
setIdLFInfo :: Id -> LambdaFormInfo -> Id #
idLFInfo_maybe :: Id -> Maybe LambdaFormInfo #
setIdCafInfo :: Id -> CafInfo -> Id #
setIdSpecialisation :: Id -> RuleInfo -> Id infixl 1 #
idHasRules :: Id -> Bool #
idCoreRules :: Id -> [CoreRule] #
idSpecialisation :: Id -> RuleInfo #
setCaseBndrEvald :: StrictnessMark -> Id -> Id #
setIdDemandInfo :: Id -> Demand -> Id infixl 1 #
idDemandInfo :: Id -> Demand #
setIdUnfolding :: Id -> Unfolding -> Id infixl 1 #
realIdUnfolding :: Id -> Unfolding #
idUnfolding :: Id -> Unfolding #
isStrictId :: Id -> Bool #
This predicate says whether the Id
has a strict demand placed on it or
has a type such that it can always be evaluated strictly (i.e an
unlifted type, as of GHC 7.6). We need to
check separately whether the Id
has a so-called "strict type" because if
the demand for the given id
hasn't been computed yet but id
has a strict
type, we still want isStrictId id
to be True
.
zapIdStrictness :: Id -> Id #
setIdCprInfo :: Id -> CprSig -> Id infixl 1 #
setIdStrictness :: Id -> StrictSig -> Id infixl 1 #
idStrictness :: Id -> StrictSig #
Accesses the Id'
s strictnessInfo
.
isDeadEndId :: Var -> Bool #
Returns true if an application to n args diverges or throws an exception See Note [Dead ends] in GHC.Types.Demand.
idFunRepArity :: Id -> RepArity #
setIdCallArity :: Id -> Arity -> Id infixl 1 #
idCallArity :: Id -> Arity #
setIdArity :: Id -> Arity -> Id infixl 1 #
idJoinArity :: JoinId -> JoinArity #
isDeadBinder :: Id -> Bool #
isImplicitId :: Id -> Bool #
isImplicitId
tells whether an Id
s info is implied by other
declarations, so we don't need to put its signature in an interface
file, even if it's mentioned in some other interface unfolding.
hasNoBinding :: Id -> Bool #
Returns True
of an Id
which may not have a
binding, even though it is defined in this module.
Get from either the worker or the wrapper Id
to the DataCon
. Currently used only in the desugarer.
INVARIANT: idDataCon (dataConWrapId d) = d
: remember, dataConWrapId
can return either the wrapper or the worker
isJoinId_maybe :: Var -> Maybe JoinArity #
isDataConId_maybe :: Id -> Maybe DataCon #
isDataConWrapId_maybe :: Id -> Maybe DataCon #
isDataConWrapId :: Id -> Bool #
isDataConWorkId_maybe :: Id -> Maybe DataCon #
isDataConWorkId :: Id -> Bool #
isFCallId_maybe :: Id -> Maybe ForeignCall #
isPrimOpId_maybe :: Id -> Maybe PrimOp #
isPrimOpId :: Id -> Bool #
isClassOpId_maybe :: Id -> Maybe Class #
isClassOpId :: Id -> Bool #
isNaughtyRecordSelector :: Id -> Bool #
isPatSynRecordSelector :: Id -> Bool #
isDataConRecordSelector :: Id -> Bool #
isRecordSelector :: Id -> Bool #
recordSelectorTyCon :: Id -> RecSelParent #
mkTemplateLocalsNum :: Int -> [Type] -> [Id] #
Create a template local for a series of type, but start from a specified template local
mkTemplateLocals :: [Type] -> [Id] #
Create a template local for a series of types
mkTemplateLocal :: Int -> Type -> Id #
Create a template local: a family of system local Id
s in bijection with Int
s, typically used in unfoldings
mkWorkerId :: Unique -> Id -> Type -> Id #
Workers get local names. CoreTidy will externalise these if necessary
mkUserLocalOrCoVar :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id #
Like mkUserLocal
, but checks if we have a coercion type
mkUserLocal :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id #
Create a user local Id
. These are local Id
s (see GHC.Types.Var) with a name and location that the user might recognize
mkSysLocalOrCoVarM :: MonadUnique m => FastString -> Mult -> Type -> m Id #
mkSysLocalM :: MonadUnique m => FastString -> Mult -> Type -> m Id #
mkSysLocalOrCoVar :: FastString -> Unique -> Mult -> Type -> Id #
Like mkSysLocal
, but checks to see if we have a covar type
mkSysLocal :: FastString -> Unique -> Mult -> Type -> Id #
mkExportedVanillaId :: Name -> Type -> Id #
mkExportedLocalId :: IdDetails -> Name -> Type -> Id #
Create a local Id
that is marked as exported.
This prevents things attached to it from being removed as dead code.
See Note [Exported LocalIds]
mkLocalIdWithInfo :: HasDebugCallStack => Name -> Mult -> Type -> IdInfo -> Id #
mkLocalIdOrCoVar :: Name -> Mult -> Type -> Id #
Like mkLocalId
, but checks the type to see if it should make a covar
mkLocalCoVar :: Name -> Type -> CoVar #
Make a local CoVar
mkLocalId :: HasDebugCallStack => Name -> Mult -> Type -> Id #
For an explanation of global vs. local Id
s, see GHC.Types.Var
mkGlobalId :: IdDetails -> Name -> Type -> IdInfo -> Id #
For an explanation of global vs. local Id
s, see GHC.Types.Var.Var
modifyIdInfo :: HasDebugCallStack => (IdInfo -> IdInfo) -> Id -> Id #
localiseId :: Id -> Id #
setIdUnique :: Id -> Unique -> Id #
scaleVarBy :: Mult -> Var -> Var #
Like scaleIdBy
, but skips non-Ids. Useful for scaling
a mixed list of ids and tyvars.
idScaledType :: Id -> Scaled Type #
isExportedId :: Var -> Bool #
isExportedIdVar
means "don't throw this away"
isGlobalId :: Var -> Bool #
Is this a value-level (i.e., computationally relevant) Var
entifier?
Satisfies isId = not . isTyVar
.
globaliseId :: Id -> Id #
If it's a local, make it global
idInfo :: HasDebugCallStack => Id -> IdInfo #
Variable
Essentially a typed Name
, that may also contain some additional information
about the Var
and its use sites.
Instances
Data Var | |
Defined in GHC.Types.Var gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var # dataTypeOf :: Var -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) # gmapT :: (forall b. Data b => b -> b) -> Var -> Var # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r # gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var # | |
NamedThing Var | |
Defined in GHC.Types.Var | |
HasOccName Var | |
Defined in GHC.Types.Var | |
Uniquable Var | |
Defined in GHC.Types.Var | |
Outputable Var | |
Defined in GHC.Types.Var | |
Eq Var | |
Ord Var | |
Eq (DeBruijn CoreAlt) Source # | |
Eq (DeBruijn CoreExpr) Source # | |
type Anno Id | |
Defined in GHC.Hs.Extension | |
type Anno (LocatedN Id) | |
Defined in GHC.Hs.Binds | |
type Anno [LocatedN Id] | |
Defined in GHC.Hs.Binds |
module GHC.Types.Id.Info
module GHC.Core.Opt.Monad
module GHC.Core
module GHC.Types.Literal
module GHC.Core.DataCon
module GHC.Core.Utils
module GHC.Core.Make
module GHC.Core.FVs
substTickish :: Subst -> CoreTickish -> CoreTickish #
substDVarSet :: Subst -> DVarSet -> DVarSet #
substRulesForImportedIds :: Subst -> [CoreRule] -> [CoreRule] #
substIdOcc :: Subst -> Id -> Id #
substUnfolding :: Subst -> Unfolding -> Unfolding #
Substitutes for the Id
s within an unfolding
NB: substUnfolding discards any unfolding without
without a Stable source. This is usually what we want,
but it may be a bit unexpected
substUnfoldingSC :: Subst -> Unfolding -> Unfolding #
Substitutes for the Id
s within an unfolding
NB: substUnfolding discards any unfolding without
without a Stable source. This is usually what we want,
but it may be a bit unexpected
substIdType :: Subst -> Id -> Id #
getTCvSubst :: Subst -> TCvSubst #
cloneRecIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id]) #
Clone a mutually recursive group of Id
s
cloneBndrs :: Subst -> UniqSupply -> [Var] -> (Subst, [Var]) #
cloneIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id]) #
Applies cloneIdBndr
to a number of Id
s, accumulating a final
substitution from left to right
cloneIdBndr :: Subst -> UniqSupply -> Id -> (Subst, Id) #
deShadowBinds :: CoreProgram -> CoreProgram #
De-shadowing the program is sometimes a useful pre-pass. It can be done simply by running over the bindings with an empty substitution, because substitution returns a result that has no-shadowing guaranteed.
(Actually, within a single type there might still be shadowing, because
substTy
is a no-op for the empty substitution, but that's probably OK.)
- Aug 09
- This function is not used in GHC at the moment, but seems so short and simple that I'm going to leave it here
substBindSC :: HasDebugCallStack => Subst -> CoreBind -> (Subst, CoreBind) #
substExpr :: HasDebugCallStack => Subst -> CoreExpr -> CoreExpr #
substExpr applies a substitution to an entire CoreExpr
. Remember,
you may only apply the substitution once:
See Note [Substitutions apply only once] in GHC.Core.TyCo.Subst
Do *not* attempt to short-cut in the case of an empty substitution! See Note [Extending the Subst]
substExprSC :: HasDebugCallStack => Subst -> CoreExpr -> CoreExpr #
setInScope :: Subst -> InScopeSet -> Subst #
extendInScopeIds :: Subst -> [Id] -> Subst #
Optimized version of extendInScopeList
that can be used if you are certain
all the things being added are Id
s and hence none are TyVar
s or CoVar
s
extendInScopeList :: Subst -> [Var] -> Subst #
Add the Expr
s to the in-scope set: see also extendInScope
extendInScope :: Subst -> Var -> Subst #
Add the Expr
to the in-scope set: as a side effect,
and remove any existing substitutions for it
mkOpenSubst :: InScopeSet -> [(Var, CoreArg)] -> Subst #
Simultaneously substitute for a bunch of variables No left-right shadowing ie the substitution for (x y. e) a1 a2 so neither x nor y scope over a1 a2
lookupIdSubst :: HasDebugCallStack => Subst -> Id -> CoreExpr #
extendSubstList :: Subst -> [(Var, CoreArg)] -> Subst #
Add a substitution as appropriate to each of the terms being
substituted (whether expressions, types, or coercions). See also
extendSubst
.
extendSubst :: Subst -> Var -> CoreArg -> Subst #
Add a substitution appropriate to the thing being substituted
(whether an expression, type, or coercion). See also
extendIdSubst
, extendTvSubst
, extendCvSubst
extendTvSubstList :: Subst -> [(TyVar, Type)] -> Subst #
Adds multiple TyVar
substitutions to the Subst
: see also extendTvSubst
extendTvSubst :: Subst -> TyVar -> Type -> Subst #
Add a substitution for a TyVar
to the Subst
The TyVar
*must* be a real TyVar, and not a CoVar
You must ensure that the in-scope set is such that
GHC.Core.TyCo.Subst Note [The substitution invariant] holds
after extending the substitution like this.
extendIdSubstList :: Subst -> [(Id, CoreExpr)] -> Subst #
Adds multiple Id
substitutions to the Subst
: see also extendIdSubst
zapSubstEnv :: Subst -> Subst #
substInScope :: Subst -> InScopeSet #
Find the in-scope set: see GHC.Core.TyCo.Subst Note [The substitution invariant]
mkSubst :: InScopeSet -> TvSubstEnv -> CvSubstEnv -> IdSubstEnv -> Subst #
mkEmptySubst :: InScopeSet -> Subst #
emptySubst :: Subst #
isEmptySubst :: Subst -> Bool #
A substitution environment, containing Id
, TyVar
, and CoVar
substitutions.
Some invariants apply to how you use the substitution:
- Note [The substitution invariant] in GHC.Core.TyCo.Subst
- Note [Substitutions apply only once] in GHC.Core.TyCo.Subst
Instances
Outputable Subst | |
Defined in GHC.Core.Subst |
type IdSubstEnv = IdEnv CoreExpr #
An environment for substituting for Id
s
data InScopeSet #
A set of variables that are in scope at some point "Secrets of the Glasgow Haskell Compiler inliner" Section 3.2 provides the motivation for this abstraction.
Instances
Outputable InScopeSet | |
Defined in GHC.Types.Var.Env ppr :: InScopeSet -> SDoc # |
module GHC.Core.Rules
module GHC.Types.Annotations
module GHC.Driver.Session
module GHC.Driver.Ppr
module GHC.Unit.State
module GHC.Unit.Module
isLinearType :: Type -> Bool #
isOneDataConTy :: Mult -> Bool #
isManyDataConTy :: Mult -> Bool #
irrelevantMult :: Scaled a -> a #
unrestricted :: a -> Scaled a #
Scale a payload by Many
:: Bool | Should specified binders count towards injective positions in the kind of the TyCon? (If you're using visible kind applications, then you want True here. |
-> TyCon | |
-> Int | The number of args the |
-> Bool | Does |
Does a TyCon
(that is applied to some number of arguments) need to be
ascribed with an explicit kind signature to resolve ambiguity if rendered as
a source-syntax type?
(See Note [When does a tycon application need an explicit kind signature?]
for a full explanation of what this function checks for.)
classifiesTypeWithValues :: Kind -> Bool #
Does this classify a type allowed to have values? Responds True to things like *, #, TYPE Lifted, TYPE v, Constraint.
True of any sub-kind of OpenTypeKind
isKindLevPoly :: Kind -> Bool #
Tests whether the given kind (which should look like TYPE x
)
is something other than a constructor tree (that is, constructors at every node).
E.g. True of TYPE k, TYPE (F Int)
False of TYPE 'LiftedRep
splitVisVarsOfTypes :: [Type] -> Pair TyCoVarSet #
splitVisVarsOfType :: Type -> Pair TyCoVarSet #
Retrieve the free variables in this type, splitting them based on whether they are used visibly or invisibly. Invisible ones come first.
tyConsOfType :: Type -> UniqSet TyCon #
All type constructors occurring in the type; looking through type synonyms, but not newtypes. When it finds a Class, it returns the class TyCon.
resultIsLevPoly :: Type -> Bool #
Looking past all pi-types, is the end result potentially levity polymorphic? Example: True for (forall r (a :: TYPE r). String -> a) Example: False for (forall r1 r2 (a :: TYPE r1) (b :: TYPE r2). a -> b -> Type)
isTypeLevPoly :: Type -> Bool #
Returns True if a type is levity polymorphic. Should be the same as (isKindLevPoly . typeKind) but much faster. Precondition: The type has kind (TYPE blah)
tcReturnsConstraintKind :: Kind -> Bool #
tcIsRuntimeTypeKind :: Kind -> Bool #
Is this kind equivalent to TYPE r
(for some unknown r)?
This considers Constraint
to be distinct from *
.
tcIsBoxedTypeKind :: Kind -> Bool #
Is this kind equivalent to TYPE (BoxedRep l)
for some l :: Levity
?
This considers Constraint
to be distinct from Type
. For a version that
treats them as the same type, see isLiftedTypeKind
.
tcIsLiftedTypeKind :: Kind -> Bool #
Is this kind equivalent to Type
?
This considers Constraint
to be distinct from Type
. For a version that
treats them as the same type, see isLiftedTypeKind
.
tcIsConstraintKind :: Kind -> Bool #
tcTypeKind :: HasDebugCallStack => Type -> Kind #
typeKind :: HasDebugCallStack => Type -> Kind #
nonDetCmpTc :: TyCon -> TyCon -> Ordering #
Compare two TyCon
s. NB: This should never see Constraint
(as
recognized by Kind.isConstraintKindCon) which is considered a synonym for
Type
in Core.
See Note [Kind Constraint and kind Type] in GHC.Core.Type.
See Note [nonDetCmpType nondeterminism]
nonDetCmpTypes :: [Type] -> [Type] -> Ordering #
nonDetCmpType :: Type -> Type -> Ordering #
eqTypes :: [Type] -> [Type] -> Bool #
Type equality on lists of types, looking through type synonyms but not newtypes.
eqTypeX :: RnEnv2 -> Type -> Type -> Bool #
Compare types with respect to a (presumably) non-empty RnEnv2
.
eqType :: Type -> Type -> Bool #
Type equality on source types. Does not look through newtypes
or
PredType
s, but it does look through type synonyms.
This first checks that the kinds of the types are equal and then
checks whether the types are equal, ignoring casts and coercions.
(The kind check is a recursive call, but since all kinds have type
Type
, there is no need to check the types of kinds.)
See also Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep.
isValidJoinPointType :: JoinArity -> Type -> Bool #
Determine whether a type could be the type of a join point of given total
arity, according to the polymorphism rule. A join point cannot be polymorphic
in its return type, since given
join j a
b x y z = e1 in e2,
the types of e1 and e2 must be the same, and a and b are not in scope for e2.
(See Note [The polymorphism rule of join points] in GHC.Core.) Returns False
also if the type simply doesn't have enough arguments.
Note that we need to know how many arguments (type *and* value) the putative join point takes; for instance, if j :: forall a. a -> Int then j could be a binary join point returning an Int, but it could *not* be a unary join point returning a -> Int.
TODO: See Note [Excess polymorphism and join points]
isPrimitiveType :: Type -> Bool #
Returns true of types that are opaque to Haskell.
isStrictType :: HasDebugCallStack => Type -> Bool #
Computes whether an argument (or let right hand side) should
be computed strictly or lazily, based only on its type.
Currently, it's just isUnliftedType
. Panics on levity-polymorphic types.
isDataFamilyAppType :: Type -> Bool #
Check whether a type is a data family type
See Type for what an algebraic type is. Should only be applied to types, as opposed to e.g. partially saturated type constructors
isUnboxedSumType :: Type -> Bool #
isUnboxedTupleType :: Type -> Bool #
getRuntimeRep :: HasDebugCallStack => Type -> Type #
Extract the RuntimeRep classifier of a type. For instance,
getRuntimeRep_maybe Int = LiftedRep
. Panics if this is not possible.
getRuntimeRep_maybe :: HasDebugCallStack => Type -> Maybe Type #
Extract the RuntimeRep classifier of a type. For instance,
getRuntimeRep_maybe Int = LiftedRep
. Returns Nothing
if this is not
possible.
dropRuntimeRepArgs :: [Type] -> [Type] #
Drops prefix of RuntimeRep constructors in TyConApp
s. Useful for e.g.
dropping 'LiftedRep arguments of unboxed tuple TyCon applications:
dropRuntimeRepArgs [ 'LiftedRep, 'IntRep , String, Int# ] == [String, Int#]
isRuntimeRepKindedTy :: Type -> Bool #
Is this a type of kind RuntimeRep? (e.g. LiftedRep)
isBoxedType :: Type -> Bool #
See Type for what a boxed type is.
Panics on levity polymorphic types; See mightBeUnliftedType
for
a more approximate predicate that behaves better in the presence of
levity polymorphism.
mightBeUnliftedType :: Type -> Bool #
isUnliftedType :: HasDebugCallStack => Type -> Bool #
See Type for what an unlifted type is.
Panics on levity polymorphic types; See mightBeUnliftedType
for
a more approximate predicate that behaves better in the presence of
levity polymorphism.
isLiftedType_maybe :: HasDebugCallStack => Type -> Maybe Bool #
Returns Just True if this type is surely lifted, Just False if it is surely unlifted, Nothing if we can't be sure (i.e., it is levity polymorphic), and panics if the kind does not have the shape TYPE r.
isCoVarType :: Type -> Bool #
Does this type classify a core (unlifted) Coercion? At either role nominal or representational (t1 ~# t2) or (t1 ~R# t2) See Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep
isFamFreeTy :: Type -> Bool #
coAxNthLHS :: forall (br :: BranchFlag). CoAxiom br -> Int -> Type #
Get the type on the LHS of a coercion induced by a type/data family instance.
mkFamilyTyConApp :: TyCon -> [Type] -> Type #
Given a family instance TyCon and its arg types, return the corresponding family type. E.g:
data family T a data instance T (Maybe b) = MkT b
Where the instance tycon is :RTL, so:
mkFamilyTyConApp :RTL Int = T (Maybe Int)
binderRelevantType_maybe :: TyCoBinder -> Maybe Type #
Extract a relevant type, if there is one.
tyBinderType :: TyBinder -> Type #
tyCoBinderType :: TyCoBinder -> Type #
isAnonTyCoBinder :: TyCoBinder -> Bool #
Does this binder bind a variable that is not erased? Returns
True
for anonymous binders.
mkAnonBinder :: AnonArgFlag -> Scaled Type -> TyCoBinder #
Make an anonymous binder
isAtomicTy :: Type -> Bool #
appTyArgFlags :: Type -> [Type] -> [ArgFlag] #
Given a Type
and a list of argument types to which the Type
is
applied, determine each argument's visibility
(Inferred
, Specified
, or Required
).
Most of the time, the arguments will be Required
, but not always. Consider
f :: forall a. a -> Type
. In f Type Bool
, the first argument (Type
) is
Specified
and the second argument (Bool
) is Required
. It is precisely
this sort of higher-rank situation in which appTyArgFlags
comes in handy,
since f Type Bool
would be represented in Core using AppTy
s.
(See also #15792).
tyConArgFlags :: TyCon -> [Type] -> [ArgFlag] #
Given a TyCon
and a list of argument types to which the TyCon
is
applied, determine each argument's visibility
(Inferred
, Specified
, or Required
).
Wrinkle: consider the following scenario:
T :: forall k. k -> k tyConArgFlags T [forall m. m -> m -> m, S, R, Q]
After substituting, we get
T (forall m. m -> m -> m) :: (forall m. m -> m -> m) -> forall n. n -> n -> n
Thus, the first argument is invisible, S
is visible, R
is invisible again,
and Q
is visible.
partitionInvisibles :: [(a, ArgFlag)] -> ([a], [a]) #
Given a list of things paired with their visibilities, partition the things into (invisible things, visible things).
filterOutInferredTypes :: TyCon -> [Type] -> [Type] #
filterOutInvisibleTypes :: TyCon -> [Type] -> [Type] #
splitInvisPiTysN :: Int -> Type -> ([TyCoBinder], Type) #
Same as splitInvisPiTys
, but stop when
- you have found n
TyCoBinder
s,
- or you run out of invisible binders
splitInvisPiTys :: Type -> ([TyCoBinder], Type) #
Like splitPiTys
, but returns only *invisible* binders, including constraints.
Stops at the first visible binder.
invisibleTyBndrCount :: Type -> Int #
splitForAllTyCoVarBinders :: Type -> ([TyCoVarBinder], Type) #
Like splitPiTys
but split off only named binders
and returns TyCoVarBinder
s rather than TyCoBinder
s
splitPiTys :: Type -> ([TyCoBinder], Type) #
Split off all TyCoBinders to a type, splitting both proper foralls and functions
splitPiTy :: Type -> (TyCoBinder, Type) #
Takes a forall type apart, or panics
splitPiTy_maybe :: Type -> Maybe (TyCoBinder, Type) #
Attempts to take a forall type apart; works with proper foralls and functions
splitForAllCoVar_maybe :: Type -> Maybe (TyCoVar, Type) #
Like splitForAllTyCoVar_maybe
, but only returns Just if it is a covar binder.
splitForAllTyVar_maybe :: Type -> Maybe (TyCoVar, Type) #
Like splitForAllTyCoVar_maybe
, but only returns Just if it is a tyvar binder.
splitForAllTyCoVar_maybe :: Type -> Maybe (TyCoVar, Type) #
Attempts to take a forall type apart, but only if it's a proper forall, with a named binder
dropForAlls :: Type -> Type #
Drops all ForAllTys
splitForAllTyCoVar :: Type -> (TyCoVar, Type) #
Take a forall type apart, or panics if that is not possible.
isForAllTy_co :: Type -> Bool #
Like isForAllTy
, but returns True only if it is a covar binder
isForAllTy_ty :: Type -> Bool #
Like isForAllTy
, but returns True only if it is a tyvar binder
isForAllTy :: Type -> Bool #
Checks whether this is a proper forall (with a named binder)
splitForAllInvisTVBinders :: Type -> ([InvisTVBinder], Type) #
Like splitForAllTyCoVars
, but only splits ForAllTy
s with Invisible
type
variable binders. Furthermore, each returned tyvar is annotated with its
Specificity
.
splitForAllReqTVBinders :: Type -> ([ReqTVBinder], Type) #
Like splitForAllTyCoVars
, but only splits ForAllTy
s with Required
type
variable binders. Furthermore, each returned tyvar is annotated with ()
.
splitForAllTyCoVars :: Type -> ([TyCoVar], Type) #
Take a ForAllTy apart, returning the list of tycovars and the result type. This always succeeds, even if it returns only an empty list. Note that the result type returned may have free variables that were bound by a forall.
:: [TyVar] | binders |
-> TyCoVarSet | free variables of result |
-> [TyConBinder] |
Given a list of type-level vars and the free vars of a result kind, makes TyCoBinders, preferring anonymous binders if the variable is, in fact, not dependent. e.g. mkTyConBindersPreferAnon (k:*),(b:k),(c:k) We want (k:*) Named, (b:k) Anon, (c:k) Anon
All non-coercion binders are visible.
mkVisForAllTys :: [TyVar] -> Type -> Type #
Like mkForAllTys, but assumes all variables are dependent and visible
mkSpecForAllTys :: [TyVar] -> Type -> Type #
Like mkForAllTys
, but assumes all variables are dependent and
Specified
, a common case
mkSpecForAllTy :: TyVar -> Type -> Type #
Like mkForAllTy
, but assumes the variable is dependent and Specified
,
a common case
mkInfForAllTys :: [TyVar] -> Type -> Type #
Like mkTyCoInvForAllTys
, but tvs should be a list of tyvar
mkTyCoInvForAllTys :: [TyCoVar] -> Type -> Type #
Like mkForAllTys
, but assumes all variables are dependent and
Inferred
, a common case
mkInfForAllTy :: TyVar -> Type -> Type #
Like mkTyCoInvForAllTy
, but tv should be a tyvar
stripCoercionTy :: Type -> Coercion #
isCoercionTy_maybe :: Type -> Maybe Coercion #
mkCoercionTy :: Coercion -> Type #
tyConBindersTyCoBinders :: [TyConBinder] -> [TyCoBinder] #
newTyConInstRhs :: TyCon -> [Type] -> Type #
Unwrap one layer
of newtype on a type constructor and its
arguments, using an eta-reduced version of the newtype
if possible.
This requires tys to have at least newTyConInstArity tycon
elements.
splitListTyConApp_maybe :: Type -> Maybe Type #
Attempts to tease a list type apart and gives the type of the elements if successful (looks through type synonyms)
tcRepSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) #
Like tcSplitTyConApp_maybe
, but doesn't look through synonyms. This
assumes the synonyms have already been dealt with.
Moreover, for a FunTy, it only succeeds if the argument types have enough info to extract the runtime-rep arguments that the funTyCon requires. This will usually be true; but may be temporarily false during canonicalization: see Note [Decomposing FunTy] in GHC.Tc.Solver.Canonical and Note [The Purely Kinded Type Invariant (PKTI)] in GHC.Tc.Gen.HsType, Wrinkle around FunTy
repSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) #
Like splitTyConApp_maybe
, but doesn't look through synonyms. This
assumes the synonyms have already been dealt with.
tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type]) #
Split a type constructor application into its type constructor and
applied types. Note that this may fail in the case of a FunTy
with an
argument of unknown kind FunTy
(e.g. FunTy (a :: k) Int
. since the kind
of a
isn't of the form TYPE rep
). Consequently, you may need to zonk your
type before using this function.
This does *not* split types headed with (=>), as that's not a TyCon in the type-checker.
If you only need the TyCon
, consider using tcTyConAppTyCon_maybe
.
splitTyConApp :: Type -> (TyCon, [Type]) #
Attempts to tease a type apart into a type constructor and the application
of a number of arguments to that constructor. Panics if that is not possible.
See also splitTyConApp_maybe
tyConAppArgN :: Int -> Type -> Type #
tyConAppArgs :: Type -> [Type] #
tyConAppArgs_maybe :: Type -> Maybe [Type] #
The same as snd . splitTyConApp
tyConAppTyCon :: Type -> TyCon #
tyConAppTyConPicky_maybe :: Type -> Maybe TyCon #
Retrieve the tycon heading this type, if there is one. Does not look through synonyms.
piResultTys :: HasDebugCallStack => Type -> [Type] -> Type #
(piResultTys f_ty [ty1, .., tyn]) gives the type of (f ty1 .. tyn)
where f :: f_ty
piResultTys
is interesting because:
1. f_ty
may have more for-alls than there are args
2. Less obviously, it may have fewer for-alls
For case 2. think of:
piResultTys (forall a.a) [forall b.b, Int]
This really can happen, but only (I think) in situations involving
undefined. For example:
undefined :: forall a. a
Term: undefined (forall b. b->b)
Int
This term should have type (Int -> Int), but notice that
there are more type args than foralls in undefined
s type.
Just like piResultTys
but for a single argument
Try not to iterate piResultTy
, because it's inefficient to substitute
one variable at a time; instead use 'piResultTys"
Extract the function argument type and panic if that is not possible
funResultTy :: Type -> Type #
Extract the function result type and panic if that is not possible
splitFunTy_maybe :: Type -> Maybe (Mult, Type, Type) #
Attempts to extract the multiplicity, argument and result types from a type
splitFunTy :: Type -> (Mult, Type, Type) #
Attempts to extract the multiplicity, argument and result types from a type,
and panics if that is not possible. See also splitFunTy_maybe
pprUserTypeErrorTy :: Type -> SDoc #
Render a type corresponding to a user type error into a SDoc.
userTypeError_maybe :: Type -> Maybe Type #
Is this type a custom user error? If so, give us the kind and the error message.
isCharLitTy :: Type -> Maybe Char #
Is this a char literal? We also look through type synonyms.
mkCharLitTy :: Char -> Type #
isStrLitTy :: Type -> Maybe FastString #
Is this a symbol literal. We also look through type synonyms.
mkStrLitTy :: FastString -> Type #
isNumLitTy :: Type -> Maybe Integer #
Is this a numeric literal. We also look through type synonyms.
mkNumLitTy :: Integer -> Type #
repSplitAppTys :: HasDebugCallStack => Type -> (Type, [Type]) #
Like splitAppTys
, but doesn't look through type synonyms
splitAppTys :: Type -> (Type, [Type]) #
Recursively splits a type as far as is possible, leaving a residual type being applied to and the type arguments applied to it. Never fails, even if that means returning an empty list of type applications.
splitAppTy :: Type -> (Type, Type) #
Attempts to take a type application apart, as in splitAppTy_maybe
,
and panics if this is not possible
tcRepSplitAppTy_maybe :: Type -> Maybe (Type, Type) #
Does the AppTy split as in tcSplitAppTy_maybe
, but assumes that
any coreView stuff is already done. Refuses to look through (c => t)
repSplitAppTy_maybe :: HasDebugCallStack => Type -> Maybe (Type, Type) #
Does the AppTy split as in splitAppTy_maybe
, but assumes that
any Core view stuff is already done
splitAppTy_maybe :: Type -> Maybe (Type, Type) #
Attempt to take a type application apart, whether it is a function, type constructor, or plain type application. Note that type family applications are NEVER unsaturated by this!
repGetTyVar_maybe :: Type -> Maybe TyVar #
Attempts to obtain the type variable underlying a Type
, without
any expansion
getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN) #
If the type is a tyvar, possibly under a cast, returns it, along with the coercion. Thus, the co is :: kind tv ~N kind ty
getTyVar :: String -> Type -> TyVar #
Attempts to obtain the type variable underlying a Type
, and panics with the
given message if this is not a type variable type. See also getTyVar_maybe
mapTyCoX :: Monad m => TyCoMapper env m -> (env -> Type -> m Type, env -> [Type] -> m [Type], env -> Coercion -> m Coercion, env -> [Coercion] -> m [Coercion]) #
mapTyCo :: Monad m => TyCoMapper () m -> (Type -> m Type, [Type] -> m [Type], Coercion -> m Coercion, [Coercion] -> m [Coercion]) #
isMultiplicityVar :: TyVar -> Bool #
Is a tyvar of type Multiplicity
?
isLevityVar :: TyVar -> Bool #
Is a tyvar of type Levity
?
isRuntimeRepVar :: TyVar -> Bool #
Is a tyvar of type RuntimeRep
?
isLevityTy :: Type -> Bool #
Is this the type Levity
?
isUnliftedLevity :: Type -> Bool #
isLiftedLevity :: Type -> Bool #
isUnliftedRuntimeRep :: Type -> Bool #
isLiftedRuntimeRep :: Type -> Bool #
isBoxedRuntimeRep :: Type -> Bool #
See isBoxedRuntimeRep_maybe
.
isUnliftedTypeKind :: Kind -> Bool #
Returns True if the kind classifies unlifted types (like 'Int#') and False otherwise. Note that this returns False for levity-polymorphic kinds, which may be specialized to a kind that classifies unlifted types.
pickyIsLiftedTypeKind :: Kind -> Bool #
isBoxedTypeKind :: Kind -> Bool #
Returns True if the kind classifies types which are allocated on the GC'd heap and False otherwise. Note that this returns False for levity-polymorphic kinds, which may be specialized to a kind that classifies AddrRep or even unboxed kinds.
kindRep_maybe :: HasDebugCallStack => Kind -> Maybe Type #
Given a kind (TYPE rr), extract its RuntimeRep classifier rr.
For example, kindRep_maybe * = Just LiftedRep
Returns Nothing
if the kind is not of form (TYPE rr)
Treats * and Constraint as the same
kindRep :: HasDebugCallStack => Kind -> Type #
Extract the RuntimeRep classifier of a type from its kind. For example,
kindRep * = LiftedRep
; Panics if this is not possible.
Treats * and Constraint as the same
expandTypeSynonyms :: Type -> Type #
Expand out all type synonyms. Actually, it'd suffice to expand out just the ones that discard type variables (e.g. type Funny a = Int) But we don't know which those are currently, so we just expand all.
expandTypeSynonyms
only expands out type synonyms mentioned in the type,
not in the kinds of any TyCon or TyVar mentioned in the type.
Keep this synchronized with synonymTyConsOfType
data TyCoMapper env (m :: Type -> Type) #
This describes how a "map" operation over a type/coercion should behave
TyCoMapper | |
|
The FUN
type constructor.
FUN :: forall (m :: Multiplicity) -> forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}. TYPE rep1 -> TYPE rep2 -> *
The runtime representations quantification is left inferred. This
means they cannot be specified with -XTypeApplications
.
This is a deliberate choice to allow future extensions to the function arrow. To allow visible application a type synonym can be defined:
type Arr :: forall (rep1 :: RuntimeRep) (rep2 :: RuntimeRep). TYPE rep1 -> TYPE rep2 -> Type type Arr = FUN 'Many
substTyCoBndr :: TCvSubst -> TyCoBinder -> (TCvSubst, TyCoBinder) #
cloneTyVarBndrs :: TCvSubst -> [TyVar] -> UniqSupply -> (TCvSubst, [TyVar]) #
substVarBndrs :: HasCallStack => TCvSubst -> [TyCoVar] -> (TCvSubst, [TyCoVar]) #
substVarBndr :: HasCallStack => TCvSubst -> TyCoVar -> (TCvSubst, TyCoVar) #
substTyVarBndrs :: HasCallStack => TCvSubst -> [TyVar] -> (TCvSubst, [TyVar]) #
substTyVarBndr :: HasCallStack => TCvSubst -> TyVar -> (TCvSubst, TyVar) #
substCoUnchecked :: TCvSubst -> Coercion -> Coercion #
Substitute within a Coercion
disabling sanity checks.
The problems that the sanity checks in substCo catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substCoUnchecked to
substCo and remove this function. Please don't use in new code.
substTyVars :: TCvSubst -> [TyVar] -> [Type] #
substTyVar :: TCvSubst -> TyVar -> Type #
substThetaUnchecked :: TCvSubst -> ThetaType -> ThetaType #
Substitute within a ThetaType
disabling the sanity checks.
The problems that the sanity checks in substTys catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substThetaUnchecked to
substTheta and remove this function. Please don't use in new code.
substTheta :: HasCallStack => TCvSubst -> ThetaType -> ThetaType #
Substitute within a ThetaType
The substitution has to satisfy the invariants described in
Note [The substitution invariant].
substTysUnchecked :: TCvSubst -> [Type] -> [Type] #
Substitute within several Type
s disabling the sanity checks.
The problems that the sanity checks in substTys catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substTysUnchecked to
substTys and remove this function. Please don't use in new code.
substScaledTys :: HasCallStack => TCvSubst -> [Scaled Type] -> [Scaled Type] #
substTys :: HasCallStack => TCvSubst -> [Type] -> [Type] #
Substitute within several Type
s
The substitution has to satisfy the invariants described in
Note [The substitution invariant].
substScaledTyUnchecked :: HasCallStack => TCvSubst -> Scaled Type -> Scaled Type #
substScaledTy :: HasCallStack => TCvSubst -> Scaled Type -> Scaled Type #
substTyUnchecked :: TCvSubst -> Type -> Type #
Substitute within a Type
disabling the sanity checks.
The problems that the sanity checks in substTy catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substTyUnchecked to
substTy and remove this function. Please don't use in new code.
substTyAddInScope :: TCvSubst -> Type -> Type #
Substitute within a Type
after adding the free variables of the type
to the in-scope set. This is useful for the case when the free variables
aren't already in the in-scope set or easily available.
See also Note [The substitution invariant].
substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type] #
Type substitution, see zipTvSubst
substCoWithUnchecked :: [TyVar] -> [Type] -> Coercion -> Coercion #
Coercion substitution, see zipTvSubst
. Disables sanity checks.
The problems that the sanity checks in substCo catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substCoUnchecked to
substCo and remove this function. Please don't use in new code.
substTyWithUnchecked :: [TyVar] -> [Type] -> Type -> Type #
Type substitution, see zipTvSubst
. Disables sanity checks.
The problems that the sanity checks in substTy catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substTyUnchecked to
substTy and remove this function. Please don't use in new code.
substTyWith :: HasCallStack => [TyVar] -> [Type] -> Type -> Type #
Type substitution, see zipTvSubst
zipCoEnv :: HasDebugCallStack => [CoVar] -> [Coercion] -> CvSubstEnv #
zipTyEnv :: HasDebugCallStack => [TyVar] -> [Type] -> TvSubstEnv #
mkTvSubstPrs :: [(TyVar, Type)] -> TCvSubst #
Generates the in-scope set for the TCvSubst
from the types in the
incoming environment. No CoVars, please!
zipTCvSubst :: HasDebugCallStack => [TyCoVar] -> [Type] -> TCvSubst #
zipTvSubst :: HasDebugCallStack => [TyVar] -> [Type] -> TCvSubst #
Generates the in-scope set for the TCvSubst
from the types in the incoming
environment. No CoVars, please!
unionTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst #
extendTvSubstBinderAndInScope :: TCvSubst -> TyCoBinder -> Type -> TCvSubst #
extendTCvInScopeSet :: TCvSubst -> VarSet -> TCvSubst #
extendTCvInScopeList :: TCvSubst -> [Var] -> TCvSubst #
extendTCvInScope :: TCvSubst -> Var -> TCvSubst #
zapTCvSubst :: TCvSubst -> TCvSubst #
setTvSubstEnv :: TCvSubst -> TvSubstEnv -> TCvSubst #
notElemTCvSubst :: Var -> TCvSubst -> Bool #
getTCvSubstRangeFVs :: TCvSubst -> VarSet #
Returns the free variables of the types in the range of a substitution as a non-deterministic set.
getTCvInScope :: TCvSubst -> InScopeSet #
getTvSubstEnv :: TCvSubst -> TvSubstEnv #
mkTCvSubst :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> TCvSubst #
isEmptyTCvSubst :: TCvSubst -> Bool #
mkEmptyTCvSubst :: InScopeSet -> TCvSubst #
composeTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst #
Composes two substitutions, applying the second one provided first, like in function composition.
composeTCvSubstEnv :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) #
(compose env1 env2)(x)
is env1(env2(x))
; i.e. apply env2
then env1
.
It assumes that both are idempotent.
Typically, env1
is the refinement to a base substitution env2
Type & coercion substitution
The following invariants must hold of a TCvSubst
:
- The in-scope set is needed only to guide the generation of fresh uniques
- In particular, the kind of the type variables in the in-scope set is not relevant
- The substitution is only applied ONCE! This is because in general such application will not reach a fixed point.
Instances
Outputable TCvSubst | |
Defined in GHC.Core.TyCo.Subst |
tidyTopType :: Type -> Type #
Calls tidyType
on a top-level type (i.e. with an empty tidying environment)
tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type]) #
Grabs the free type variables, tidies them
and then uses tidyType
to work over the type itself
tidyTypes :: TidyEnv -> [Type] -> [Type] #
Tidy a list of Types
See Note [Strictness in tidyType and friends]
tidyTyCoVarOcc :: TidyEnv -> TyCoVar -> TyCoVar #
tidyOpenTyCoVar :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar) #
Treat a new TyCoVar
as a binder, and give it a fresh tidy name
using the environment if one has not already been allocated. See
also tidyVarBndr
tidyFreeTyCoVars :: TidyEnv -> [TyCoVar] -> TidyEnv #
Add the free TyVar
s to the env in tidy form,
so that we can tidy the type they are free in
tidyVarBndrs :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar]) #
This tidies up a type for printing in an error message, or in an interface file.
It doesn't change the uniques at all, just the print names.
tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar] #
Get the free vars of types in scoped order
tyCoVarsOfTypeWellScoped :: Type -> [TyVar] #
Get the free vars of a type in scoped order
scopedSort :: [TyCoVar] -> [TyCoVar] #
Do a topological sort on a list of tyvars, so that binders occur before occurrences E.g. given [ a::k, k::*, b::k ] it'll return a well-scoped list [ k::*, a::k, b::k ]
This is a deterministic sorting operation (that is, doesn't depend on Uniques).
It is also meant to be stable: that is, variables should not be reordered unnecessarily. This is specified in Note [ScopedSort] See also Note [Ordering of implicit variables] in GHC.Rename.HsType
noFreeVarsOfType :: Type -> Bool #
tyCoFVsVarBndr :: Var -> FV -> FV #
tyCoFVsVarBndrs :: [Var] -> FV -> FV #
tyCoFVsBndr :: TyCoVarBinder -> FV -> FV #
tyCoFVsOfType :: Type -> FV #
The worker for tyCoFVsOfType
and tyCoFVsOfTypeList
.
The previous implementation used unionVarSet
which is O(n+m) and can
make the function quadratic.
It's exported, so that it can be composed with
other functions that compute free variables.
See Note [FV naming conventions] in GHC.Utils.FV.
Eta-expanded because that makes it run faster (apparently) See Note [FV eta expansion] in GHC.Utils.FV for explanation.
tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet #
tyCoFVsOfType
that returns free variables of a type in a deterministic
set. For explanation of why using VarSet
is not deterministic see
Note [Deterministic FV] in GHC.Utils.FV.
closeOverKindsDSet :: DTyVarSet -> DTyVarSet #
Add the kind variables free in the kinds of the tyvars in the given set. Returns a deterministic set.
closeOverKindsList :: [TyVar] -> [TyVar] #
Add the kind variables free in the kinds of the tyvars in the given set. Returns a deterministically ordered list.
closeOverKinds :: TyCoVarSet -> TyCoVarSet #
coVarsOfTypes :: [Type] -> CoVarSet #
coVarsOfType :: Type -> CoVarSet #
tyCoVarsOfTypes :: [Type] -> TyCoVarSet #
tyCoVarsOfType :: Type -> TyCoVarSet #
foldTyCo :: Monoid a => TyCoFolder env a -> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a) #
mkPiTys :: [TyCoBinder] -> Type -> Type #
mkPiTy :: TyCoBinder -> Type -> Type #
mkInvisForAllTys :: [InvisTVBinder] -> Type -> Type #
Wraps foralls over the type using the provided InvisTVBinder
s from left to right
mkForAllTys :: [TyCoVarBinder] -> Type -> Type #
Wraps foralls over the type using the provided TyCoVar
s from left to right
mkInvisFunTysMany :: [Type] -> Type -> Type #
mkVisFunTysMany :: [Type] -> Type -> Type #
mkInvisFunTyMany :: Type -> Type -> Type infixr 3 #
mkVisFunTyMany :: Type -> Type -> Type infixr 3 #
Special, common, case: Arrow type with mult Many
mkTyVarTys :: [TyVar] -> [Type] #
isNamedBinder :: TyCoBinder -> Bool #
isVisibleBinder :: TyCoBinder -> Bool #
Does this binder bind a visible argument?
isInvisibleBinder :: TyCoBinder -> Bool #
Does this binder bind an invisible argument?
type KindOrType = Type #
The key representation of types within the compiler
A type labeled KnotTied
might have knot-tied tycons in it. See
Note [Type checking recursive type and class declarations] in
GHC.Tc.TyCl
data TyCoFolder env a #
TyCoFolder | |
|
isConstraintKindCon :: TyCon -> Bool #
Returns True
for the TyCon
of the Constraint
kind.
Is this a type-level (i.e., computationally irrelevant, thus erasable)
variable? Satisfies isTyVar = not . isId
.
mkTyVarBinders :: vis -> [TyVar] -> [VarBndr TyVar vis] #
Make many named binders Input vars should be type variables
mkTyCoVarBinders :: vis -> [TyCoVar] -> [VarBndr TyCoVar vis] #
Make many named binders
mkTyVarBinder :: vis -> TyVar -> VarBndr TyVar vis #
Make a named binder
var
should be a type variable
mkTyCoVarBinder :: vis -> TyCoVar -> VarBndr TyCoVar vis #
Make a named binder
binderType :: VarBndr TyCoVar argf -> Type #
binderArgFlag :: VarBndr tv argf -> argf #
binderVars :: [VarBndr tv argf] -> [tv] #
tyVarSpecToBinders :: [VarBndr a Specificity] -> [VarBndr a ArgFlag] #
isInvisibleArgFlag :: ArgFlag -> Bool #
Does this ArgFlag
classify an argument that is not written in Haskell?
isVisibleArgFlag :: ArgFlag -> Bool #
Does this ArgFlag
classify an argument that is written in Haskell?
type TyCoVarBinder = VarBndr TyCoVar ArgFlag #
Variable Binder
A TyCoVarBinder
is the binder of a ForAllTy
It's convenient to define this synonym here rather its natural
home in GHC.Core.TyCo.Rep, because it's used in GHC.Core.DataCon.hs-boot
A TyVarBinder
is a binder with only TyVar
type TyVarBinder = VarBndr TyVar ArgFlag #
liftedTypeKind :: Kind #
isPredTy :: HasDebugCallStack => Type -> Bool #
isCoercionTy :: Type -> Bool #
mkCastTy :: Type -> Coercion -> Type #
Make a CastTy
. The Coercion must be nominal. Checks the
Coercion for reflexivity, dropping it if it's reflexive.
See Note [Respecting definitional equality] in GHC.Core.TyCo.Rep
Create the plain type constructor type which has been applied to no type arguments at all.
mkTyConApp :: TyCon -> [Type] -> Type #
piResultTy :: HasDebugCallStack => Type -> Type -> Type #
coreView :: Type -> Maybe Type #
This function strips off the top layer only of a type synonym
application (if any) its underlying representation type.
Returns Nothing
if there is nothing to look through.
This function considers Constraint
to be a synonym of Type
.
By being non-recursive and inlined, this case analysis gets efficiently joined onto the case analysis that the caller is already doing
isRuntimeRepTy :: Type -> Bool #
Is this the type RuntimeRep
?
isMultiplicityTy :: Type -> Bool #
Is this the type Multiplicity
?
isLiftedTypeKind :: Kind -> Bool #
This version considers Constraint to be the same as *. Returns True if the argument is equivalent to Type/Constraint and False otherwise. See Note [Kind Constraint and kind Type]
Given a RuntimeRep
, applies TYPE
to it.
See Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim.
splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) #
Attempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor
tyConAppTyCon_maybe :: Type -> Maybe TyCon #
The same as fst . splitTyConApp
mkForAllTy :: TyCoVar -> ArgFlag -> Type -> Type #
Like mkTyCoForAllTy
, but does not check the occurrence of the binder
See Note [Unused coercion variable in ForAllTy]
Instances
Data Type | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Outputable Type | |
Defined in GHC.Core.TyCo.Rep | |
Eq (DeBruijn Type) | |
data TyCoBinder #
A TyCoBinder
represents an argument to a function. TyCoBinders can be
dependent (Named
) or nondependent (Anon
). They may also be visible or
not. See Note [TyCoBinders]
Instances
Data TyCoBinder | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyCoBinder -> c TyCoBinder # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyCoBinder # toConstr :: TyCoBinder -> Constr # dataTypeOf :: TyCoBinder -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyCoBinder) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyCoBinder) # gmapT :: (forall b. Data b => b -> b) -> TyCoBinder -> TyCoBinder # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyCoBinder -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyCoBinder -> r # gmapQ :: (forall d. Data d => d -> u) -> TyCoBinder -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyCoBinder -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyCoBinder -> m TyCoBinder # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyCoBinder -> m TyCoBinder # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyCoBinder -> m TyCoBinder # | |
Outputable TyCoBinder | |
Defined in GHC.Core.TyCo.Rep ppr :: TyCoBinder -> SDoc # |
A shorthand for data with an attached Mult
element (the multiplicity).
Instances
Data a => Data (Scaled a) | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Scaled a -> c (Scaled a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Scaled a) # toConstr :: Scaled a -> Constr # dataTypeOf :: Scaled a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Scaled a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Scaled a)) # gmapT :: (forall b. Data b => b -> b) -> Scaled a -> Scaled a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Scaled a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Scaled a -> r # gmapQ :: (forall d. Data d => d -> u) -> Scaled a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Scaled a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Scaled a -> m (Scaled a) # | |
Outputable a => Outputable (Scaled a) | |
Defined in GHC.Core.TyCo.Rep |
Mult is a type alias for Type.
Mult must contain Type because multiplicity variables are mere type variables (of kind Multiplicity) in Haskell. So the simplest implementation is to make Mult be Type.
Multiplicities can be formed with: - One: GHC.Types.One (= oneDataCon) - Many: GHC.Types.Many (= manyDataCon) - Multiplication: GHC.Types.MultMul (= multMulTyCon)
So that Mult feels a bit more structured, we provide pattern synonyms and smart constructors for these.
A type of the form p
of constraint kind represents a value whose type is
the Haskell predicate p
, where a predicate is what occurs before
the =>
in a Haskell type.
We use PredType
as documentation to mark those types that we guarantee to
have this kind.
It can be expanded into its representation, but:
- The type checker must treat it as opaque
- The rest of the compiler treats it as transparent
Consider these examples:
f :: (Eq a) => a -> Int g :: (?x :: Int -> Int) => a -> Int h :: (r\l) => {r} => {l::Int | r}
Here the Eq a
and ?x :: Int -> Int
and rl
are all called "predicates"
Argument Flag
Is something required to appear in source Haskell (Required
),
permitted by request (Specified
) (visible type application), or
prohibited entirely from appearing in source Haskell (Inferred
)?
See Note [VarBndrs, TyCoVarBinders, TyConBinders, and visibility] in GHC.Core.TyCo.Rep
Instances
Data ArgFlag | |
Defined in GHC.Types.Var gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ArgFlag -> c ArgFlag # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ArgFlag # toConstr :: ArgFlag -> Constr # dataTypeOf :: ArgFlag -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ArgFlag) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ArgFlag) # gmapT :: (forall b. Data b => b -> b) -> ArgFlag -> ArgFlag # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ArgFlag -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ArgFlag -> r # gmapQ :: (forall d. Data d => d -> u) -> ArgFlag -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ArgFlag -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag # | |
Binary ArgFlag | |
Outputable ArgFlag | |
Defined in GHC.Types.Var | |
Eq ArgFlag | |
Ord ArgFlag | |
Outputable tv => Outputable (VarBndr tv ArgFlag) | |
data AnonArgFlag #
The non-dependent version of ArgFlag
.
See Note [AnonArgFlag]
Appears here partly so that it's together with its friends ArgFlag
and ForallVisFlag, but also because it is used in IfaceType, rather
early in the compilation chain
VisArg | Used for |
InvisArg | Used for |
Instances
Variable
Essentially a typed Name
, that may also contain some additional information
about the Var
and its use sites.
Instances
Data Var | |
Defined in GHC.Types.Var gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var # dataTypeOf :: Var -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) # gmapT :: (forall b. Data b => b -> b) -> Var -> Var # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r # gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var # | |
NamedThing Var | |
Defined in GHC.Types.Var | |
HasOccName Var | |
Defined in GHC.Types.Var | |
Uniquable Var | |
Defined in GHC.Types.Var | |
Outputable Var | |
Defined in GHC.Types.Var | |
Eq Var | |
Ord Var | |
Eq (DeBruijn CoreAlt) Source # | |
Eq (DeBruijn CoreExpr) Source # | |
type Anno Id | |
Defined in GHC.Hs.Extension | |
type Anno (LocatedN Id) | |
Defined in GHC.Hs.Binds | |
type Anno [LocatedN Id] | |
Defined in GHC.Hs.Binds |
data Specificity #
Whether an Invisible
argument may appear in source Haskell.
InferredSpec | the argument may not appear in source Haskell, it is only inferred. |
SpecifiedSpec | the argument may appear in source Haskell, but isn't required. |
Instances
module GHC.Core.TyCon
coercionHolesOfType :: Type -> UniqSet CoercionHole #
Extract out all the coercion holes from a given type
hasCoercionHoleCo :: Coercion -> Bool #
Is there a coercion hole in this coercion?
hasCoercionHoleTy :: Type -> Bool #
Is there a coercion hole in this type?
simplifyArgsWorker :: [TyCoBinder] -> Kind -> TyCoVarSet -> [Role] -> [(Type, Coercion)] -> ([Type], [Coercion], MCoercionN) #
buildCoercion :: Type -> Type -> CoercionN #
Assuming that two types are the same, ignoring coercions, find a nominal coercion between the types. This is useful when optimizing transitivity over coercion applications, where splitting two AppCos might yield different kinds. See Note [EtaAppCo] in GHC.Core.Coercion.Opt.
mkReprPrimEqPred :: Type -> Type -> Type #
mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type #
Creates a primitive representational type equality predicate with explicit kinds
mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type #
Creates a primitive type equality predicate with explicit kinds
mkPrimEqPredRole :: Role -> Type -> Type -> PredType #
Makes a lifted equality predicate at the given role
mkPrimEqPred :: Type -> Type -> Type #
Creates a primitive type equality predicate. Invariant: the types are not Coercions
coercionRole :: Coercion -> Role #
Retrieve the role from a coercion.
coercionKinds :: [Coercion] -> Pair [Type] #
Apply coercionKind
to multiple Coercion
s
lcInScopeSet :: LiftingContext -> InScopeSet #
Get the InScopeSet
from a LiftingContext
lcTCvSubst :: LiftingContext -> TCvSubst #
Extract the underlying substitution from the LiftingContext
liftEnvSubstRight :: TCvSubst -> LiftCoEnv -> TCvSubst #
liftEnvSubstLeft :: TCvSubst -> LiftCoEnv -> TCvSubst #
lcSubstRight :: LiftingContext -> TCvSubst #
lcSubstLeft :: LiftingContext -> TCvSubst #
swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv #
Apply "sym" to all coercions in a LiftCoEnv
substRightCo :: LiftingContext -> Coercion -> Coercion #
substLeftCo :: LiftingContext -> Coercion -> Coercion #
isMappedByLC :: TyCoVar -> LiftingContext -> Bool #
Is a var in the domain of a lifting context?
liftCoSubstVarBndrUsing :: (LiftingContext -> Type -> (CoercionN, a)) -> LiftingContext -> TyCoVar -> (LiftingContext, TyCoVar, CoercionN, a) #
liftCoSubstTyVar :: LiftingContext -> Role -> TyVar -> Maybe Coercion #
substForAllCoBndrUsingLC :: Bool -> (Coercion -> Coercion) -> LiftingContext -> TyCoVar -> Coercion -> (LiftingContext, TyCoVar, Coercion) #
Like substForAllCoBndr
, but works on a lifting context
zapLiftingContext :: LiftingContext -> LiftingContext #
Erase the environments in a lifting context
extendLiftingContextAndInScope #
:: LiftingContext | Original LC |
-> TyCoVar | new variable to map... |
-> Coercion | to this coercion |
-> LiftingContext |
Extend a lifting context with a new mapping, and extend the in-scope set
:: LiftingContext | original LC |
-> TyCoVar | new variable to map... |
-> Coercion | ...to this lifted version |
-> LiftingContext |
Extend a lifting context with a new mapping.
liftCoSubstWithEx :: Role -> [TyVar] -> [Coercion] -> [TyCoVar] -> [Type] -> (Type -> Coercion, [Type]) #
eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool #
Compare two Coercion
s, with respect to an RnEnv2
eqCoercion :: Coercion -> Coercion -> Bool #
Syntactic equality of coercions
topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type) #
Sometimes we want to look through a newtype
and get its associated coercion.
This function strips off newtype
layers enough to reveal something that isn't
a newtype
. Specifically, here's the invariant:
topNormaliseNewType_maybe rec_nts ty = Just (co, ty')
then (a) co : ty ~ ty'
.
(b) ty' is not a newtype.
The function returns Nothing
for non-newtypes
,
or unsaturated applications
This function does *not* look through type families, because it has no access to the type family environment. If you do have that at hand, consider to use topNormaliseType_maybe, which should be a drop-in replacement for topNormaliseNewType_maybe If topNormliseNewType_maybe ty = Just (co, ty'), then co : ty ~R ty'
topNormaliseTypeX :: NormaliseStepper ev -> (ev -> ev -> ev) -> Type -> Maybe (ev, Type) #
A general function for normalising the top-level of a type. It continues
to use the provided NormaliseStepper
until that function fails, and then
this function returns. The roles of the coercions produced by the
NormaliseStepper
must all be the same, which is the role returned from
the call to topNormaliseTypeX
.
Typically ev is Coercion.
If topNormaliseTypeX step plus ty = Just (ev, ty')
then ty ~ev1~ t1 ~ev2~ t2 ... ~evn~ ty'
and ev = ev1 plus
ev2 plus
... plus
evn
If it returns Nothing then no newtype unwrapping could happen
unwrapNewTypeStepper :: NormaliseStepper Coercion #
A NormaliseStepper
that unwraps newtypes, careful not to fall into
a loop. If it would fall into a loop, it produces NS_Abort
.
composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev -> NormaliseStepper ev #
Try one stepper and then try the next, if the first doesn't make progress. So if it returns NS_Done, it means that both steppers are satisfied
mapStepResult :: (ev1 -> ev2) -> NormaliseStepResult ev1 -> NormaliseStepResult ev2 #
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion) #
If co :: T ts ~ rep_ty
then:
instNewTyCon_maybe T ts = Just (rep_ty, co)
Checks for a newtype, and for being saturated
mkPiCo :: Role -> Var -> Coercion -> Coercion #
Make a forall Coercion
, where both types related by the coercion
are quantified over the same variable.
mkFamilyTyConAppCo :: TyCon -> [CoercionN] -> CoercionN #
Given a family instance TyCon
and its arg Coercion
s, return the
corresponding family Coercion
. E.g:
data family T a data instance T (Maybe b) = MkT b
Where the instance TyCon
is :RTL, so:
mkFamilyTyConAppCo :RTL (co :: a ~# Int) = T (Maybe a) ~# T (Maybe Int)
cf. mkFamilyTyConApp
castCoercionKind :: Coercion -> CoercionN -> CoercionN -> Coercion #
Creates a new coercion with both of its types casted by different casts
castCoercionKind g h1 h2
, where g :: t1 ~r t2
,
has type (t1 |> h1) ~r (t2 |> h2)
.
h1
and h2
must be nominal.
It calls coercionKindRole
, so it's quite inefficient (which I
stands for)
Use castCoercionKind2
instead if t1
, t2
, and r
are known beforehand.
castCoercionKind1 :: Coercion -> Role -> Type -> Type -> CoercionN -> Coercion #
castCoercionKind1 g r t1 t2 h
= coercionKind g r t1 t2 h h
That is, it's a specialised form of castCoercionKind, where the two
kind coercions are identical
castCoercionKind1 g r t1 t2 h
, where g :: t1 ~r t2
,
has type (t1 |> h) ~r (t2 |> h)
.
h
must be nominal.
See Note [castCoercionKind1]
castCoercionKind2 :: Coercion -> Role -> Type -> Type -> CoercionN -> CoercionN -> Coercion #
Creates a new coercion with both of its types casted by different casts
castCoercionKind2 g r t1 t2 h1 h2
, where g :: t1 ~r t2
,
has type (t1 |> h1) ~r (t2 |> h2)
.
h1
and h2
must be nominal.
promoteCoercion :: Coercion -> CoercionN #
like mkKindCo, but aggressively & recursively optimizes to avoid using a KindCo constructor. The output role is nominal.
tyConRolesRepresentational :: TyCon -> [Role] #
tyConRolesX :: Role -> TyCon -> [Role] #
setNominalRole_maybe :: Role -> Coercion -> Maybe Coercion #
Converts a coercion to be nominal, if possible. See Note [Role twiddling functions]
downgradeRole :: Role -> Role -> Coercion -> Coercion #
Like downgradeRole_maybe
, but panics if the change isn't a downgrade.
See Note [Role twiddling functions]
mkCoherenceRightCo :: Role -> Type -> CoercionN -> Coercion -> Coercion #
Given ty :: k1
, co :: k1 ~ k2
, co2:: ty' ~r ty
,
produces @co' :: ty' ~r (ty |> co)
It is not only a utility function, but it saves allocation when co
is a GRefl coercion.
mkCoherenceLeftCo :: Role -> Type -> CoercionN -> Coercion -> Coercion #
Given ty :: k1
, co :: k1 ~ k2
, co2:: ty ~r ty'
,
produces @co' :: (ty |> co) ~r ty'
It is not only a utility function, but it saves allocation when co
is a GRefl coercion.
mkGReflLeftCo :: Role -> Type -> CoercionN -> Coercion #
Given ty :: k1
, co :: k1 ~ k2
,
produces co' :: (ty |> co) ~r ty
mkGReflRightCo :: Role -> Type -> CoercionN -> Coercion #
Given ty :: k1
, co :: k1 ~ k2
,
produces co' :: ty ~r (ty |> co)
nthCoRole :: Int -> Coercion -> Role #
If you're about to call mkNthCo r n co
, then r
should be
whatever nthCoRole n co
returns.
:: Int | "n" |
-> CoercionN | multiplicity coercion |
-> Coercion | argument coercion |
-> Coercion | result coercion |
-> Coercion | nth coercion from a FunCo See Note [Function coercions] If FunCo _ mult arg_co res_co :: (s1:TYPE sk1 :mult-> s2:TYPE sk2) ~ (t1:TYPE tk1 :mult-> t2:TYPE tk2) Then we want to behave as if co was TyConAppCo mult argk_co resk_co arg_co res_co where argk_co :: sk1 ~ tk1 = mkNthCo 0 (mkKindCo arg_co) resk_co :: sk2 ~ tk2 = mkNthCo 0 (mkKindCo res_co) i.e. mkRuntimeRepCo |
Extract the nth field of a FunCo
mkHoleCo :: CoercionHole -> Coercion #
Make a coercion from a coercion hole
mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type #
Instantiate the left-hand side of an unbranched axiom
mkAxInstLHS :: forall (br :: BranchFlag). CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type #
Return the left-hand type of the axiom, when the axiom is instantiated at the types given.
mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type #
mkAxInstRHS :: forall (br :: BranchFlag). CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type #
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion #
mkAxInstCo :: forall (br :: BranchFlag). Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Coercion #
isCoVar_maybe :: Coercion -> Maybe CoVar #
Extract a covar, if possible. This check is dirty. Be ashamed of yourself. (It's dirty because it cares about the structure of a coercion, which is morally reprehensible.)
mkCoVarCos :: [CoVar] -> [Coercion] #
mkHomoForAllCos :: [TyCoVar] -> Coercion -> Coercion #
Make a Coercion quantified over a type/coercion variable; the variable has the same type in both sides of the coercion
mkRepReflCo :: Type -> Coercion #
Make a representational reflexive coercion
isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role) #
Extracts the coerced type from a reflexive coercion. This potentially walks over the entire coercion, so avoid doing this in a loop.
isReflCo_maybe :: Coercion -> Maybe (Type, Role) #
Returns the type coerced if this coercion is reflexive. Guaranteed
to work very quickly. Sometimes a coercion can be reflexive, but not
obviously so. c.f. isReflexiveCo_maybe
isGReflCo_maybe :: Coercion -> Maybe (Type, Role) #
Returns the type coerced if this coercion is a generalized reflexive coercion. Guaranteed to work very quickly.
isReflCoVar_maybe :: Var -> Maybe Coercion #
coVarTypes :: HasDebugCallStack => CoVar -> Pair Type #
splitForAllCo_co_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion) #
Like splitForAllCo_maybe
, but only returns Just for covar binder
splitForAllCo_ty_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion) #
Like splitForAllCo_maybe
, but only returns Just for tyvar binder
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion) #
Attempt to take a coercion application apart.
splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion]) #
Attempts to tease a coercion apart into a type constructor and the application of a number of coercion arguments to that constructor
getCoVar_maybe :: Coercion -> Maybe CoVar #
Attempts to obtain the type variable underlying a Coercion
decomposeFunCo :: HasDebugCallStack => Role -> Coercion -> (CoercionN, Coercion, Coercion) #
mkCoherenceRightMCo :: Role -> Type -> MCoercionN -> Coercion -> Coercion #
Like mkCoherenceRightCo
, but with an MCoercion
mkGReflRightMCo :: Role -> Type -> MCoercionN -> Coercion #
mkGReflLeftMCo :: Role -> Type -> MCoercionN -> Coercion #
mkFunResMCo :: Scaled Type -> MCoercionR -> MCoercionR #
mkHomoForAllMCo :: TyCoVar -> MCoercion -> MCoercion #
mkTransMCoR :: Coercion -> MCoercion -> MCoercion #
mkTransMCoL :: MCoercion -> Coercion -> MCoercion #
mkTransMCo :: MCoercion -> MCoercion -> MCoercion #
Compose two MCoercions via transitivity
isGReflMCo :: MCoercion -> Bool #
Tests if this MCoercion is obviously generalized reflexive Guaranteed to work very quickly.
checkReflexiveMCo :: MCoercion -> MCoercion #
pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc #
pprCoAxBranchLHS :: TyCon -> CoAxBranch -> SDoc #
pprCoAxBranchUser :: TyCon -> CoAxBranch -> SDoc #
pprCoAxiom :: forall (br :: BranchFlag). CoAxiom br -> SDoc #
etaExpandCoAxBranch :: CoAxBranch -> ([TyVar], [Type], Type) #
setCoVarName :: CoVar -> Name -> CoVar #
setCoVarUnique :: CoVar -> Unique -> CoVar #
type NormaliseStepper ev = RecTcChecker -> TyCon -> [Type] -> NormaliseStepResult ev #
A function to check if we can reduce a type by one step. Used
with topNormaliseTypeX
.
data NormaliseStepResult ev #
The result of stepping in a normalisation function.
See topNormaliseTypeX
.
NS_Done | Nothing more to do |
NS_Abort | Utter failure. The outer function should fail too. |
NS_Step RecTcChecker Type ev | We stepped, yielding new bits; ^ ev is evidence; Usually a co :: old type ~ new type |
Instances
Outputable ev => Outputable (NormaliseStepResult ev) | |
Defined in GHC.Core.Coercion ppr :: NormaliseStepResult ev -> SDoc # |
type HoleSet = UniqSet CoercionHole #
A set of CoercionHole
s
pprParendCo :: Coercion -> SDoc #
substCoVarBndr :: HasCallStack => TCvSubst -> CoVar -> (TCvSubst, CoVar) #
substCoVars :: TCvSubst -> [CoVar] -> [Coercion] #
substCoVar :: TCvSubst -> CoVar -> Coercion #
substCos :: HasCallStack => TCvSubst -> [Coercion] -> [Coercion] #
Substitute within several Coercion
s
The substitution has to satisfy the invariants described in
Note [The substitution invariant].
substCoWith :: HasCallStack => [TyVar] -> [Type] -> Coercion -> Coercion #
Coercion substitution, see zipTvSubst
getCvSubstEnv :: TCvSubst -> CvSubstEnv #
tidyCo :: TidyEnv -> Coercion -> Coercion #
Tidy a Coercion
See Note [Strictness in tidyType and friends]
tyCoFVsOfCos :: [Coercion] -> FV #
tyCoFVsOfCo :: Coercion -> FV #
tyCoVarsOfCoDSet :: Coercion -> DTyCoVarSet #
Get a deterministic set of the vars free in a coercion
coVarsOfCo :: Coercion -> CoVarSet #
tyCoVarsOfCos :: [Coercion] -> TyCoVarSet #
tyCoVarsOfCo :: Coercion -> TyCoVarSet #
coercionSize :: Coercion -> Int #
setCoHoleCoVar :: CoercionHole -> CoVar -> CoercionHole #
coHoleCoVar :: CoercionHole -> CoVar #
type MCoercionR = MCoercion #
data CoercionHole #
A coercion to be filled in by the type-checker. See Note [Coercion holes]
Instances
Data CoercionHole | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CoercionHole -> c CoercionHole # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CoercionHole # toConstr :: CoercionHole -> Constr # dataTypeOf :: CoercionHole -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CoercionHole) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CoercionHole) # gmapT :: (forall b. Data b => b -> b) -> CoercionHole -> CoercionHole # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r # gmapQ :: (forall d. Data d => d -> u) -> CoercionHole -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CoercionHole -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole # | |
Uniquable CoercionHole | |
Defined in GHC.Core.TyCo.Rep getUnique :: CoercionHole -> Unique # | |
Outputable CoercionHole | |
Defined in GHC.Core.TyCo.Rep ppr :: CoercionHole -> SDoc # |
mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion #
Apply a type constructor to a list of coercions. It is the caller's responsibility to get the roles correct on argument coercions.
mkForAllCo :: TyCoVar -> CoercionN -> Coercion -> Coercion #
Make a Coercion from a tycovar, a kind coercion, and a body coercion. The kind of the tycovar should be the left-hand kind of the kind coercion. See Note [Unused coercion variable in ForAllCo]
mkAxiomInstCo :: CoAxiom Branched -> BranchIndex -> [Coercion] -> Coercion #
mkPhantomCo :: Coercion -> Type -> Type -> Coercion #
Make a phantom coercion between two types. The coercion passed in must be a nominal coercion between the kinds of the types.
:: UnivCoProvenance | |
-> Role | role of the built coercion, "r" |
-> Type | t1 :: k1 |
-> Type | t2 :: k2 |
-> Coercion | :: t1 ~r t2 |
Make a universal coercion between two arbitrary types.
mkSymCo :: Coercion -> Coercion #
Create a symmetric version of the given Coercion
that asserts
equality between the same types but in the other "direction", so
a kind of t1 ~ t2
becomes the kind t2 ~ t1
.
mkLRCo :: LeftOrRight -> Coercion -> Coercion #
mkNomReflCo :: Type -> Coercion #
Make a nominal reflexive coercion
mkSubCo :: HasDebugCallStack => Coercion -> Coercion #
:: Role | role of the created coercion, "r" |
-> Coercion | :: phi1 ~N phi2 |
-> Coercion | g1 :: phi1 |
-> Coercion | g2 :: phi2 |
-> Coercion | :: g1 ~r g2 |
Make a "coercion between coercions".
mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion #
isGReflCo :: Coercion -> Bool #
Tests if this coercion is obviously a generalized reflexive coercion. Guaranteed to work very quickly.
isReflCo :: Coercion -> Bool #
Tests if this coercion is obviously reflexive. Guaranteed to work
very quickly. Sometimes a coercion can be reflexive, but not obviously
so. c.f. isReflexiveCo
isReflexiveCo :: Coercion -> Bool #
Slowly checks if the coercion is reflexive. Don't call this in a loop, as it walks over the entire coercion.
decomposePiCos :: HasDebugCallStack => CoercionN -> Pair Type -> [Type] -> ([CoercionN], CoercionN) #
coVarKindsTypesRole :: HasDebugCallStack => CoVar -> (Kind, Kind, Type, Type, Role) #
mkCoercionType :: Role -> Type -> Type -> Type #
Makes a coercion type from two types: the types whose equality
is proven by the relevant Coercion
liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion #
liftCoSubst role lc ty
produces a coercion (at role role
)
that coerces between lc_left(ty)
and lc_right(ty)
, where
lc_left
is a substitution mapping type variables to the left-hand
types of the mapped coercions in lc
, and similar for lc_right
.
coercionKind :: Coercion -> Pair Type #
If it is the case that
c :: (t1 ~ t2)
i.e. the kind of c
relates t1
and t2
, then coercionKind c = Pair t1 t2
.
coercionLKind :: Coercion -> Type #
coercionRKind :: Coercion -> Type #
coercionType :: Coercion -> Type #
data LiftingContext #
Instances
Outputable LiftingContext | |
Defined in GHC.Core.Coercion ppr :: LiftingContext -> SDoc # |
Instances
Data Role | |
Defined in GHC.Core.Coercion.Axiom gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Binary Role | |
Outputable Role | |
Defined in GHC.Core.Coercion.Axiom | |
Eq Role | |
Ord Role | |
type Anno (Maybe Role) | |
Defined in GHC.Hs.Decls | |
type Anno (Maybe Role) | |
Defined in GHC.Hs.Decls |
Is this a coercion variable?
Satisfies
.isId
v ==> isCoVar
v == not (isNonCoVarId
v)
pickLR :: LeftOrRight -> (a, a) -> a #
data LeftOrRight #
Instances
Data LeftOrRight | |
Defined in GHC.Types.Basic gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LeftOrRight -> c LeftOrRight # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LeftOrRight # toConstr :: LeftOrRight -> Constr # dataTypeOf :: LeftOrRight -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LeftOrRight) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LeftOrRight) # gmapT :: (forall b. Data b => b -> b) -> LeftOrRight -> LeftOrRight # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r # gmapQ :: (forall d. Data d => d -> u) -> LeftOrRight -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LeftOrRight -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight # | |
Binary LeftOrRight | |
Defined in GHC.Types.Basic put_ :: BinHandle -> LeftOrRight -> IO () # put :: BinHandle -> LeftOrRight -> IO (Bin LeftOrRight) # get :: BinHandle -> IO LeftOrRight # | |
Outputable LeftOrRight | |
Defined in GHC.Types.Basic ppr :: LeftOrRight -> SDoc # | |
Eq LeftOrRight | |
Defined in GHC.Types.Basic (==) :: LeftOrRight -> LeftOrRight -> Bool # (/=) :: LeftOrRight -> LeftOrRight -> Bool # |
A Coercion
is concrete evidence of the equality/convertibility
of two types.
Instances
Data Coercion | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Coercion -> c Coercion # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Coercion # toConstr :: Coercion -> Constr # dataTypeOf :: Coercion -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Coercion) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Coercion) # gmapT :: (forall b. Data b => b -> b) -> Coercion -> Coercion # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion # | |
Outputable Coercion | |
Defined in GHC.Core.TyCo.Rep | |
Eq (DeBruijn Coercion) | |
data UnivCoProvenance #
For simplicity, we have just one UnivCo that represents a coercion from
some type to some other type, with (in general) no restrictions on the
type. The UnivCoProvenance specifies more exactly what the coercion really
is and why a program should (or shouldn't!) trust the coercion.
It is reasonable to consider each constructor of UnivCoProvenance
as a totally independent coercion form; their only commonality is
that they don't tell you what types they coercion between. (That info
is in the UnivCo
constructor of Coercion
.
Instances
Data UnivCoProvenance | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnivCoProvenance -> c UnivCoProvenance # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnivCoProvenance # toConstr :: UnivCoProvenance -> Constr # dataTypeOf :: UnivCoProvenance -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnivCoProvenance) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnivCoProvenance) # gmapT :: (forall b. Data b => b -> b) -> UnivCoProvenance -> UnivCoProvenance # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnivCoProvenance -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnivCoProvenance -> r # gmapQ :: (forall d. Data d => d -> u) -> UnivCoProvenance -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnivCoProvenance -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance # | |
Outputable UnivCoProvenance | |
Defined in GHC.Core.TyCo.Rep ppr :: UnivCoProvenance -> SDoc # |
A semantically more meaningful type to represent what may or may not be a
useful Coercion
.
Instances
Data MCoercion | |
Defined in GHC.Core.TyCo.Rep gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MCoercion -> c MCoercion # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MCoercion # toConstr :: MCoercion -> Constr # dataTypeOf :: MCoercion -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c MCoercion) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MCoercion) # gmapT :: (forall b. Data b => b -> b) -> MCoercion -> MCoercion # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MCoercion -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MCoercion -> r # gmapQ :: (forall d. Data d => d -> u) -> MCoercion -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MCoercion -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MCoercion -> m MCoercion # | |
Outputable MCoercion | |
Defined in GHC.Core.TyCo.Rep |
type MCoercionN = MCoercion #
Variable
Essentially a typed Name
, that may also contain some additional information
about the Var
and its use sites.
Instances
Data Var | |
Defined in GHC.Types.Var gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var # dataTypeOf :: Var -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) # gmapT :: (forall b. Data b => b -> b) -> Var -> Var # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r # gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var # | |
NamedThing Var | |
Defined in GHC.Types.Var | |
HasOccName Var | |
Defined in GHC.Types.Var | |
Uniquable Var | |
Defined in GHC.Types.Var | |
Outputable Var | |
Defined in GHC.Types.Var | |
Eq Var | |
Ord Var | |
Eq (DeBruijn CoreAlt) Source # | |
Eq (DeBruijn CoreExpr) Source # | |
type Anno Id | |
Defined in GHC.Hs.Extension | |
type Anno (LocatedN Id) | |
Defined in GHC.Hs.Binds | |
type Anno [LocatedN Id] | |
Defined in GHC.Hs.Binds |
module GHC.Builtin.Types
module GHC.Driver.Env
module GHC.Types.Basic
module GHC.Types.Var.Set
module GHC.Types.Var.Env
module GHC.Types.Name.Set
module GHC.Types.Name.Env
Unique identifier.
The type of unique identifiers that are used in many places in GHC
for fast ordering and equality tests. You should generate these with
the functions from the UniqSupply
module
These are sometimes also referred to as "keys" in comments in GHC.
Instances
Show Unique | |
Uniquable Unique | |
Defined in GHC.Types.Unique | |
Outputable Unique | |
Defined in GHC.Types.Unique | |
Eq Unique | |
Class of things that we can obtain a Unique
from
Instances
module GHC.Types.Unique.Set
module GHC.Types.Unique.FM
module GHC.Data.FiniteMap
module GHC.Utils.Misc
module GHC.Serialized
module GHC.Types.SrcLoc
module GHC.Utils.Outputable
module GHC.Utils.Panic
module GHC.Types.Unique.Supply
module GHC.Data.FastString
module GHC.Tc.Errors.Hole.FitTypes
module GHC.Unit.Module.ModGuts
module GHC.Unit.Module.ModSummary
module GHC.Unit.Module.ModIface
module GHC.Types.Meta
module GHC.Types.SourceError
Getting Name
s
thNameToGhcName :: Name -> CoreM (Maybe Name) Source #
Attempt to convert a Template Haskell name to one that GHC can
understand. Original TH names such as those you get when you use
the 'foo
syntax will be translated to their equivalent GHC name
exactly. Qualified or unqualified TH names will be dynamically bound
to names in the module being compiled, if possible. Exact TH names
will be bound to the name they represent, exactly.