{-# LANGUAGE DerivingStrategies #-}

{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns   #-}

{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}

module GHC.Tc.Validity (
  Rank(..), UserTypeCtxt(..), checkValidType, checkValidMonoType,
  checkValidTheta,
  checkValidInstance, checkValidInstHead, validDerivPred,
  checkTySynRhs,
  checkValidCoAxiom, checkValidCoAxBranch,
  checkValidTyFamEqn, checkValidAssocTyFamDeflt, checkConsistentFamInst,
  arityErr,
  checkTyConTelescope,
  allDistinctTyVars
  ) where

import GHC.Prelude

import GHC.Data.Maybe

-- friends:
import GHC.Tc.Utils.Unify    ( tcSubTypeAmbiguity )
import GHC.Tc.Solver         ( simplifyAmbiguityCheck )
import GHC.Tc.Instance.Class ( matchGlobalInst, ClsInstResult(..), InstanceWhat(..), AssocInstInfo(..) )
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr
import GHC.Tc.Utils.TcType hiding ( sizeType, sizeTypes )
import GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Core.Type
import GHC.Core.Unify ( tcMatchTyX_BM, BindFlag(..) )
import GHC.Core.Coercion
import GHC.Core.Coercion.Axiom
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Rank
import GHC.Tc.Errors.Types
import GHC.Types.Error

-- others:
import GHC.Iface.Type    ( pprIfaceType, pprIfaceTypeApp )
import GHC.CoreToIface   ( toIfaceTyCon, toIfaceTcArgs, toIfaceType )
import GHC.Hs
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Env  ( tcInitTidyEnv, tcInitOpenTidyEnv )
import GHC.Tc.Instance.FunDeps
import GHC.Core.FamInstEnv
   ( isDominatedBy, injectiveBranches, InjectivityCheckResult(..) )
import GHC.Tc.Instance.Family
import GHC.Types.Basic   ( UnboxedTupleOrSum(..), unboxedTupleOrSumExtension )
import GHC.Types.Name
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Var     ( VarBndr(..), mkTyVar )
import GHC.Utils.FV
import GHC.Utils.Error
import GHC.Driver.Session
import GHC.Utils.Misc
import GHC.Data.List.SetOps
import GHC.Types.SrcLoc
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Builtin.Uniques  ( mkAlphaTyVarUnique )
import qualified GHC.LanguageExtensions as LangExt

import Control.Monad
import Data.Foldable
import Data.Function
import Data.List        ( (\\), nub )
import qualified Data.List.NonEmpty as NE

{-
************************************************************************
*                                                                      *
          Checking for ambiguity
*                                                                      *
************************************************************************

Note [The ambiguity check for type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
checkAmbiguity is a check on *user-supplied type signatures*.  It is
*purely* there to report functions that cannot possibly be called.  So for
example we want to reject:
   f :: C a => Int
The idea is there can be no legal calls to 'f' because every call will
give rise to an ambiguous constraint.  We could soundly omit the
ambiguity check on type signatures entirely, at the expense of
delaying ambiguity errors to call sites.  Indeed, the flag
-XAllowAmbiguousTypes switches off the ambiguity check.

What about things like this:
   class D a b | a -> b where ..
   h :: D Int b => Int
The Int may well fix 'b' at the call site, so that signature should
not be rejected.  Moreover, using *visible* fundeps is too
conservative.  Consider
   class X a b where ...
   class D a b | a -> b where ...
   instance D a b => X [a] b where...
   h :: X a b => a -> a
Here h's type looks ambiguous in 'b', but here's a legal call:
   ...(h [True])...
That gives rise to a (X [Bool] beta) constraint, and using the
instance means we need (D Bool beta) and that fixes 'beta' via D's
fundep!

Behind all these special cases there is a simple guiding principle.
Consider

  f :: <type>
  f = ...blah...

  g :: <type>
  g = f

You would think that the definition of g would surely typecheck!
After all f has exactly the same type, and g=f. But in fact f's type
is instantiated and the instantiated constraints are solved against
the originals, so in the case of an ambiguous type it won't work.
Consider our earlier example f :: C a => Int.  Then in g's definition,
we'll instantiate to (C alpha) and try to deduce (C alpha) from (C a),
and fail.

So in fact we use this as our *definition* of ambiguity.  We use a
very similar test for *inferred* types, to ensure that they are
unambiguous. See Note [Impedance matching] in GHC.Tc.Gen.Bind.

This test is very conveniently implemented by calling
    tcSubType <type> <type>
This neatly takes account of the functional dependency stuff above,
and implicit parameter (see Note [Implicit parameters and ambiguity]).
And this is what checkAmbiguity does.

Note [The squishiness of the ambiguity check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What about this?
   g :: C [a] => Int
Is every call to 'g' ambiguous?  After all, we might have
   instance C [a] where ...
at the call site.  So maybe that type is ok!  Indeed even f's
quintessentially ambiguous type might, just possibly be callable:
with -XFlexibleInstances we could have
  instance C a where ...
and now a call could be legal after all!  Well, we'll reject this
unless the instance is available *here*.

But even that's not quite right. Even a function with an utterly-ambiguous
type like f :: Eq a => Int -> Int
is still callable if you are prepared to use visible type application,
thus (f @Bool x).

In short, the ambiguity check is a good-faith attempt to say "you are likely
to have trouble if your function has this type"; it is NOT the case that
"you can't call this function without giving a type error".

See also Note [Ambiguity check and deep subsumption] in GHC.Tc.Utils.Unify.

Note [When to call checkAmbiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We call checkAmbiguity
   (a) on user-specified type signatures
   (b) in checkValidType

Conncerning (b), you might wonder about nested foralls.  What about
    f :: forall b. (forall a. Eq a => b) -> b
The nested forall is ambiguous.  Originally we called checkAmbiguity
in the forall case of check_type, but that had two bad consequences:
  * We got two error messages about (Eq b) in a nested forall like this:
       g :: forall a. Eq a => forall b. Eq b => a -> a
  * If we try to check for ambiguity of a nested forall like
    (forall a. Eq a => b), the implication constraint doesn't bind
    all the skolems, which results in "No skolem info" in error
    messages (see #10432).

To avoid this, we call checkAmbiguity once, at the top, in checkValidType.
(I'm still a bit worried about unbound skolems when the type mentions
in-scope type variables.)

In fact, because of the co/contra-variance implemented in tcSubType,
this *does* catch function f above. too.

Concerning (a) the ambiguity check is only used for *user* types, not
for types coming from interface files.  The latter can legitimately
have ambiguous types. Example

   class S a where s :: a -> (Int,Int)
   instance S Char where s _ = (1,1)
   f:: S a => [a] -> Int -> (Int,Int)
   f (_::[a]) x = (a*x,b)
        where (a,b) = s (undefined::a)

Here the worker for f gets the type
        fw :: forall a. S a => Int -> (# Int, Int #)


Note [Implicit parameters and ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only a *class* predicate can give rise to ambiguity
An *implicit parameter* cannot.  For example:
        foo :: (?x :: [a]) => Int
        foo = length ?x
is fine.  The call site will supply a particular 'x'

Furthermore, the type variables fixed by an implicit parameter
propagate to the others.  E.g.
        foo :: (Show a, ?x::[a]) => Int
        foo = show (?x++?x)
The type of foo looks ambiguous.  But it isn't, because at a call site
we might have
        let ?x = 5::Int in foo
and all is well.  In effect, implicit parameters are, well, parameters,
so we can take their type variables into account as part of the
"tau-tvs" stuff.  This is done in the function 'GHC.Tc.Instance.FunDeps.grow'.
-}

checkAmbiguity :: UserTypeCtxt -> Type -> TcM ()
checkAmbiguity :: UserTypeCtxt -> Type -> TcM ()
checkAmbiguity UserTypeCtxt
ctxt Type
ty
  | UserTypeCtxt -> Bool
wantAmbiguityCheck UserTypeCtxt
ctxt
  = do { String -> SDoc -> TcM ()
traceTc String
"Ambiguity check for" (forall a. Outputable a => a -> SDoc
ppr Type
ty)
         -- Solve the constraints eagerly because an ambiguous type
         -- can cause a cascade of further errors.  Since the free
         -- tyvars are skolemised, we can safely use tcSimplifyTop
       ; Bool
allow_ambiguous <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.AllowAmbiguousTypes
       ; (HsWrapper
_wrap, WantedConstraints
wanted) <- forall a. SDoc -> TcM a -> TcM a
addErrCtxt (Bool -> SDoc
mk_msg Bool
allow_ambiguous) forall a b. (a -> b) -> a -> b
$
                            forall a. TcM a -> TcM (a, WantedConstraints)
captureConstraints forall a b. (a -> b) -> a -> b
$
                            UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tcSubTypeAmbiguity UserTypeCtxt
ctxt Type
ty Type
ty
                            -- See Note [Ambiguity check and deep subsumption]
                            -- in GHC.Tc.Utils.Unify
       ; Type -> WantedConstraints -> TcM ()
simplifyAmbiguityCheck Type
ty WantedConstraints
wanted

       ; String -> SDoc -> TcM ()
traceTc String
"Done ambiguity check for" (forall a. Outputable a => a -> SDoc
ppr Type
ty) }

  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()
 where
   mk_msg :: Bool -> SDoc
mk_msg Bool
allow_ambiguous
     = [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"In the ambiguity check for" SDoc -> SDoc -> SDoc
<+> SDoc
what
            , Bool -> SDoc -> SDoc
ppUnless Bool
allow_ambiguous SDoc
ambig_msg ]
   ambig_msg :: SDoc
ambig_msg = String -> SDoc
text String
"To defer the ambiguity check to use sites, enable AllowAmbiguousTypes"
   what :: SDoc
what | Just Name
n <- UserTypeCtxt -> Maybe Name
isSigMaybe UserTypeCtxt
ctxt = SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Name
n)
        | Bool
otherwise                 = UserTypeCtxt -> SDoc
pprUserTypeCtxt UserTypeCtxt
ctxt

wantAmbiguityCheck :: UserTypeCtxt -> Bool
wantAmbiguityCheck :: UserTypeCtxt -> Bool
wantAmbiguityCheck UserTypeCtxt
ctxt
  = case UserTypeCtxt
ctxt of  -- See Note [When we don't check for ambiguity]
      GhciCtxt {}  -> Bool
False
      TySynCtxt {} -> Bool
False
      UserTypeCtxt
TypeAppCtxt  -> Bool
False
      StandaloneKindSigCtxt{} -> Bool
False
      UserTypeCtxt
_            -> Bool
True

-- | Check whether the type signature contains custom type errors,
-- and fail if so.
--
-- Note that some custom type errors are acceptable:
--
--   - in the RHS of a type synonym, e.g. to allow users to define
--     type synonyms for custom type errors with large messages (#20181),
--   - inside a type family application, as a custom type error
--     might evaporate after performing type family reduction (#20241).
checkUserTypeError :: UserTypeCtxt -> Type -> TcM ()
-- Very unsatisfactorily (#11144) we need to tidy the type
-- because it may have come from an /inferred/ signature, not a
-- user-supplied one.  This is really only a half-baked fix;
-- the other errors in checkValidType don't do tidying, and so
-- may give bad error messages when given an inferred type.
checkUserTypeError :: UserTypeCtxt -> Type -> TcM ()
checkUserTypeError UserTypeCtxt
ctxt Type
ty
  | TySynCtxt {} <- UserTypeCtxt
ctxt  -- Do not complain about TypeError on the
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()             -- RHS of type synonyms. See #20181

  | Bool
otherwise
  = Type -> TcM ()
check Type
ty
  where
  check :: Type -> TcM ()
check Type
ty
    | Just Type
msg    <- Type -> Maybe Type
userTypeError_maybe Type
ty      = Type -> TcM ()
fail_with Type
msg
    | Just (TyCoVar
_,Type
t1) <- Type -> Maybe (TyCoVar, Type)
splitForAllTyCoVar_maybe Type
ty = Type -> TcM ()
check Type
t1
    | let (Type
_,[Type]
tys) =  Type -> (Type, [Type])
splitAppTys Type
ty              = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Type -> TcM ()
check [Type]
tys
    -- splitAppTys keeps type family applications saturated.
    -- This means we don't go looking for user type errors
    -- inside type family arguments (see #20241).

  fail_with :: Type -> TcM ()
  fail_with :: Type -> TcM ()
fail_with Type
msg = do { TidyEnv
env0 <- TcM TidyEnv
tcInitTidyEnv
                     ; let (TidyEnv
env1, Type
tidy_msg) = TidyEnv -> Type -> (TidyEnv, Type)
tidyOpenType TidyEnv
env0 Type
msg
                     ; forall a. (TidyEnv, TcRnMessage) -> TcM a
failWithTcM (TidyEnv
env1, Type -> TcRnMessage
TcRnUserTypeError Type
tidy_msg)
                     }


{- Note [When we don't check for ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a few places we do not want to check a user-specified type for ambiguity

* GhciCtxt: Allow ambiguous types in GHCi's :kind command
  E.g.   type family T a :: *  -- T :: forall k. k -> *
  Then :k T should work in GHCi, not complain that
  (T k) is ambiguous!

* TySynCtxt: type T a b = C a b => blah
  It may be that when we /use/ T, we'll give an 'a' or 'b' that somehow
  cure the ambiguity.  So we defer the ambiguity check to the use site.

  There is also an implementation reason (#11608).  In the RHS of
  a type synonym we don't (currently) instantiate 'a' and 'b' with
  TcTyVars before calling checkValidType, so we get assertion failures
  from doing an ambiguity check on a type with TyVars in it.  Fixing this
  would not be hard, but let's wait till there's a reason.

* TypeAppCtxt: visible type application
     f @ty
  No need to check ty for ambiguity

* StandaloneKindSigCtxt: type T :: ksig
  Kinds need a different ambiguity check than types, and the currently
  implemented check is only good for types. See #14419, in particular
  https://gitlab.haskell.org/ghc/ghc/issues/14419#note_160844

************************************************************************
*                                                                      *
          Checking validity of a user-defined type
*                                                                      *
************************************************************************

When dealing with a user-written type, we first translate it from an HsType
to a Type, performing kind checking, and then check various things that should
be true about it.  We don't want to perform these checks at the same time
as the initial translation because (a) they are unnecessary for interface-file
types and (b) when checking a mutually recursive group of type and class decls,
we can't "look" at the tycons/classes yet.  Also, the checks are rather
diverse, and used to really mess up the other code.

One thing we check for is 'rank'.

        Rank 0:         monotypes (no foralls)
        Rank 1:         foralls at the front only, Rank 0 inside
        Rank 2:         foralls at the front, Rank 1 on left of fn arrow,

        basic ::= tyvar | T basic ... basic

        r2  ::= forall tvs. cxt => r2a
        r2a ::= r1 -> r2a | basic
        r1  ::= forall tvs. cxt => r0
        r0  ::= r0 -> r0 | basic

Another thing is to check that type synonyms are saturated.
This might not necessarily show up in kind checking.
        type A i = i
        data T k = MkT (k Int)
        f :: T A        -- BAD!
-}

checkValidType :: UserTypeCtxt -> Type -> TcM ()
-- Checks that a user-written type is valid for the given context
-- Assumes argument is fully zonked
-- Assumes arugment is well-kinded;
--    that is, checkValidType doesn't need to do kind checking
-- Not used for instance decls; checkValidInstance instead
checkValidType :: UserTypeCtxt -> Type -> TcM ()
checkValidType UserTypeCtxt
ctxt Type
ty
  = do { String -> SDoc -> TcM ()
traceTc String
"checkValidType" (forall a. Outputable a => a -> SDoc
ppr Type
ty SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"::" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (HasDebugCallStack => Type -> Type
tcTypeKind Type
ty))
       ; Bool
rankn_flag  <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.RankNTypes
       ; Bool
impred_flag <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.ImpredicativeTypes
       ; let gen_rank :: Rank -> Rank
             gen_rank :: Rank -> Rank
gen_rank Rank
r | Bool
rankn_flag = Rank
ArbitraryRank
                        | Bool
otherwise  = Rank
r

             rank1 :: Rank
rank1 = Rank -> Rank
gen_rank Rank
r1
             rank0 :: Rank
rank0 = Rank -> Rank
gen_rank Rank
MonoTypeRankZero

             r1 :: Rank
r1 = Bool -> Rank -> Rank
LimitedRank Bool
True Rank
MonoTypeRankZero

             rank :: Rank
rank
               = case UserTypeCtxt
ctxt of
                 UserTypeCtxt
DefaultDeclCtxt-> Rank
MustBeMonoType
                 UserTypeCtxt
PatSigCtxt     -> Rank
rank0
                 RuleSigCtxt {} -> Rank
rank1
                 TySynCtxt Name
_    -> Rank
rank0

                 ExprSigCtxt {} -> Rank
rank1
                 UserTypeCtxt
KindSigCtxt    -> Rank
rank1
                 StandaloneKindSigCtxt{} -> Rank
rank1
                 UserTypeCtxt
TypeAppCtxt | Bool
impred_flag -> Rank
ArbitraryRank
                             | Bool
otherwise   -> Rank
MonoTypeTyConArg
                    -- Normally, ImpredicativeTypes is handled in check_arg_type,
                    -- but visible type applications don't go through there.
                    -- So we do this check here.

                 FunSigCtxt {}  -> Rank
rank1
                 InfSigCtxt {}  -> Rank
rank1 -- Inferred types should obey the
                                         -- same rules as declared ones

                 ConArgCtxt Name
_   -> Rank
rank1 -- We are given the type of the entire
                                         -- constructor, hence rank 1
                 PatSynCtxt Name
_   -> Rank
rank1

                 ForSigCtxt Name
_   -> Rank
rank1
                 UserTypeCtxt
SpecInstCtxt   -> Rank
rank1
                 GhciCtxt {}    -> Rank
ArbitraryRank

                 TyVarBndrKindCtxt Name
_ -> Rank
rank0
                 DataKindCtxt Name
_      -> Rank
rank1
                 TySynKindCtxt Name
_     -> Rank
rank1
                 TyFamResKindCtxt Name
_  -> Rank
rank1

                 UserTypeCtxt
_              -> forall a. String -> a
panic String
"checkValidType"
                                          -- Can't happen; not used for *user* sigs

       ; TidyEnv
env <- [TyCoVar] -> TcM TidyEnv
tcInitOpenTidyEnv (Type -> [TyCoVar]
tyCoVarsOfTypeList Type
ty)
       ; ExpandMode
expand <- TcM ExpandMode
initialExpandMode
       ; let ve :: ValidityEnv
ve = ValidityEnv{ ve_tidy_env :: TidyEnv
ve_tidy_env = TidyEnv
env, ve_ctxt :: UserTypeCtxt
ve_ctxt = UserTypeCtxt
ctxt
                             , ve_rank :: Rank
ve_rank = Rank
rank, ve_expand :: ExpandMode
ve_expand = ExpandMode
expand }

       -- Check the internal validity of the type itself
       -- Fail if bad things happen, else we misleading
       -- (and more complicated) errors in checkAmbiguity
       ; forall r. TcM r -> TcM r
checkNoErrs forall a b. (a -> b) -> a -> b
$
         do { ValidityEnv -> Type -> TcM ()
check_type ValidityEnv
ve Type
ty
            ; UserTypeCtxt -> Type -> TcM ()
checkUserTypeError UserTypeCtxt
ctxt Type
ty
            ; String -> SDoc -> TcM ()
traceTc String
"done ct" (forall a. Outputable a => a -> SDoc
ppr Type
ty) }

       -- Check for ambiguous types.  See Note [When to call checkAmbiguity]
       -- NB: this will happen even for monotypes, but that should be cheap;
       --     and there may be nested foralls for the subtype test to examine
       ; UserTypeCtxt -> Type -> TcM ()
checkAmbiguity UserTypeCtxt
ctxt Type
ty

       ; String -> SDoc -> TcM ()
traceTc String
"checkValidType done" (forall a. Outputable a => a -> SDoc
ppr Type
ty SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"::" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (HasDebugCallStack => Type -> Type
tcTypeKind Type
ty)) }

checkValidMonoType :: Type -> TcM ()
-- Assumes argument is fully zonked
checkValidMonoType :: Type -> TcM ()
checkValidMonoType Type
ty
  = do { TidyEnv
env <- [TyCoVar] -> TcM TidyEnv
tcInitOpenTidyEnv (Type -> [TyCoVar]
tyCoVarsOfTypeList Type
ty)
       ; ExpandMode
expand <- TcM ExpandMode
initialExpandMode
       ; let ve :: ValidityEnv
ve = ValidityEnv{ ve_tidy_env :: TidyEnv
ve_tidy_env = TidyEnv
env, ve_ctxt :: UserTypeCtxt
ve_ctxt = UserTypeCtxt
SigmaCtxt
                             , ve_rank :: Rank
ve_rank = Rank
MustBeMonoType, ve_expand :: ExpandMode
ve_expand = ExpandMode
expand }
       ; ValidityEnv -> Type -> TcM ()
check_type ValidityEnv
ve Type
ty }

checkTySynRhs :: UserTypeCtxt -> TcType -> TcM ()
checkTySynRhs :: UserTypeCtxt -> Type -> TcM ()
checkTySynRhs UserTypeCtxt
ctxt Type
ty
  | Type -> Bool
tcReturnsConstraintKind Type
actual_kind
  = do { Bool
ck <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.ConstraintKinds
       ; if Bool
ck
         then  forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Type -> Bool
tcIsConstraintKind Type
actual_kind)
                    (do { DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
                        ; ExpandMode
expand <- TcM ExpandMode
initialExpandMode
                        ; TidyEnv -> DynFlags -> UserTypeCtxt -> ExpandMode -> Type -> TcM ()
check_pred_ty TidyEnv
emptyTidyEnv DynFlags
dflags UserTypeCtxt
ctxt ExpandMode
expand Type
ty })
         else (TidyEnv, TcRnMessage) -> TcM ()
addErrTcM ( TidyEnv
emptyTidyEnv
                        , Type -> TcRnMessage
TcRnIllegalConstraintSynonymOfKind (TidyEnv -> Type -> Type
tidyType TidyEnv
emptyTidyEnv Type
actual_kind)
                        ) }

  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  where
    actual_kind :: Type
actual_kind = HasDebugCallStack => Type -> Type
tcTypeKind Type
ty

funArgResRank :: Rank -> (Rank, Rank)             -- Function argument and result
funArgResRank :: Rank -> (Rank, Rank)
funArgResRank (LimitedRank Bool
_ Rank
arg_rank) = (Rank
arg_rank, Bool -> Rank -> Rank
LimitedRank (Rank -> Bool
forAllAllowed Rank
arg_rank) Rank
arg_rank)
funArgResRank Rank
other_rank               = (Rank
other_rank, Rank
other_rank)

forAllAllowed :: Rank -> Bool
forAllAllowed :: Rank -> Bool
forAllAllowed Rank
ArbitraryRank             = Bool
True
forAllAllowed (LimitedRank Bool
forall_ok Rank
_) = Bool
forall_ok
forAllAllowed Rank
_                         = Bool
False

-- | Indicates whether a 'UserTypeCtxt' represents type-level contexts,
-- kind-level contexts, or both.
data TypeOrKindCtxt
  = OnlyTypeCtxt
    -- ^ A 'UserTypeCtxt' that only represents type-level positions.
  | OnlyKindCtxt
    -- ^ A 'UserTypeCtxt' that only represents kind-level positions.
  | BothTypeAndKindCtxt
    -- ^ A 'UserTypeCtxt' that can represent both type- and kind-level positions.
  deriving TypeOrKindCtxt -> TypeOrKindCtxt -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: TypeOrKindCtxt -> TypeOrKindCtxt -> Bool
$c/= :: TypeOrKindCtxt -> TypeOrKindCtxt -> Bool
== :: TypeOrKindCtxt -> TypeOrKindCtxt -> Bool
$c== :: TypeOrKindCtxt -> TypeOrKindCtxt -> Bool
Eq

instance Outputable TypeOrKindCtxt where
  ppr :: TypeOrKindCtxt -> SDoc
ppr TypeOrKindCtxt
ctxt = String -> SDoc
text forall a b. (a -> b) -> a -> b
$ case TypeOrKindCtxt
ctxt of
    TypeOrKindCtxt
OnlyTypeCtxt        -> String
"OnlyTypeCtxt"
    TypeOrKindCtxt
OnlyKindCtxt        -> String
"OnlyKindCtxt"
    TypeOrKindCtxt
BothTypeAndKindCtxt -> String
"BothTypeAndKindCtxt"

-- | Determine whether a 'UserTypeCtxt' can represent type-level contexts,
-- kind-level contexts, or both.
typeOrKindCtxt :: UserTypeCtxt -> TypeOrKindCtxt
typeOrKindCtxt :: UserTypeCtxt -> TypeOrKindCtxt
typeOrKindCtxt (FunSigCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (InfSigCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (ExprSigCtxt {})     = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (TypeAppCtxt {})     = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (PatSynCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (PatSigCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (RuleSigCtxt {})     = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (ForSigCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (DefaultDeclCtxt {}) = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (InstDeclCtxt {})    = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (SpecInstCtxt {})    = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (GenSigCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (ClassSCCtxt {})     = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (SigmaCtxt {})       = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (DataTyCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (DerivClauseCtxt {}) = TypeOrKindCtxt
OnlyTypeCtxt
typeOrKindCtxt (ConArgCtxt {})      = TypeOrKindCtxt
OnlyTypeCtxt
  -- Although data constructors can be promoted with DataKinds, we always
  -- validity-check them as though they are the types of terms. We may need
  -- to revisit this decision if we ever allow visible dependent quantification
  -- in the types of data constructors.

typeOrKindCtxt (KindSigCtxt {})           = TypeOrKindCtxt
OnlyKindCtxt
typeOrKindCtxt (StandaloneKindSigCtxt {}) = TypeOrKindCtxt
OnlyKindCtxt
typeOrKindCtxt (TyVarBndrKindCtxt {})     = TypeOrKindCtxt
OnlyKindCtxt
typeOrKindCtxt (DataKindCtxt {})          = TypeOrKindCtxt
OnlyKindCtxt
typeOrKindCtxt (TySynKindCtxt {})         = TypeOrKindCtxt
OnlyKindCtxt
typeOrKindCtxt (TyFamResKindCtxt {})      = TypeOrKindCtxt
OnlyKindCtxt

typeOrKindCtxt (TySynCtxt {}) = TypeOrKindCtxt
BothTypeAndKindCtxt
  -- Type synonyms can have types and kinds on their RHSs
typeOrKindCtxt (GhciCtxt {})  = TypeOrKindCtxt
BothTypeAndKindCtxt
  -- GHCi's :kind command accepts both types and kinds

-- | Returns 'True' if the supplied 'UserTypeCtxt' is unambiguously not the
-- context for a kind of a type.
-- If the 'UserTypeCtxt' can refer to both types and kinds, this function
-- conservatively returns 'True'.
--
-- An example of something that is unambiguously the kind of a type is the
-- @Show a => a -> a@ in @type Foo :: Show a => a -> a@. On the other hand, the
-- same type in @foo :: Show a => a -> a@ is unambiguously the type of a term,
-- not the kind of a type, so it is permitted.
typeLevelUserTypeCtxt :: UserTypeCtxt -> Bool
typeLevelUserTypeCtxt :: UserTypeCtxt -> Bool
typeLevelUserTypeCtxt UserTypeCtxt
ctxt = case UserTypeCtxt -> TypeOrKindCtxt
typeOrKindCtxt UserTypeCtxt
ctxt of
  TypeOrKindCtxt
OnlyTypeCtxt        -> Bool
True
  TypeOrKindCtxt
OnlyKindCtxt        -> Bool
False
  TypeOrKindCtxt
BothTypeAndKindCtxt -> Bool
True

-- | Returns 'True' if the supplied 'UserTypeCtxt' is unambiguously not the
-- context for a kind of a type, where the arbitrary use of constraints is
-- currently disallowed.
-- (See @Note [Constraints in kinds]@ in "GHC.Core.TyCo.Rep".)
allConstraintsAllowed :: UserTypeCtxt -> Bool
allConstraintsAllowed :: UserTypeCtxt -> Bool
allConstraintsAllowed = UserTypeCtxt -> Bool
typeLevelUserTypeCtxt

-- | Returns 'True' if the supplied 'UserTypeCtxt' is unambiguously not the
-- context for a kind of a type, where all function arrows currently
-- must be unrestricted.
linearityAllowed :: UserTypeCtxt -> Bool
linearityAllowed :: UserTypeCtxt -> Bool
linearityAllowed = UserTypeCtxt -> Bool
typeLevelUserTypeCtxt

-- | Returns 'True' if the supplied 'UserTypeCtxt' is unambiguously not the
-- context for the type of a term, where visible, dependent quantification is
-- currently disallowed. If the 'UserTypeCtxt' can refer to both types and
-- kinds, this function conservatively returns 'True'.
--
-- An example of something that is unambiguously the type of a term is the
-- @forall a -> a -> a@ in @foo :: forall a -> a -> a@. On the other hand, the
-- same type in @type family Foo :: forall a -> a -> a@ is unambiguously the
-- kind of a type, not the type of a term, so it is permitted.
--
-- For more examples, see
-- @testsuite/tests/dependent/should_compile/T16326_Compile*.hs@ (for places
-- where VDQ is permitted) and
-- @testsuite/tests/dependent/should_fail/T16326_Fail*.hs@ (for places where
-- VDQ is disallowed).
vdqAllowed :: UserTypeCtxt -> Bool
vdqAllowed :: UserTypeCtxt -> Bool
vdqAllowed UserTypeCtxt
ctxt = case UserTypeCtxt -> TypeOrKindCtxt
typeOrKindCtxt UserTypeCtxt
ctxt of
  TypeOrKindCtxt
OnlyTypeCtxt        -> Bool
False
  TypeOrKindCtxt
OnlyKindCtxt        -> Bool
True
  TypeOrKindCtxt
BothTypeAndKindCtxt -> Bool
True

{-
Note [Correctness and performance of type synonym validity checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the type A arg1 arg2, where A is a type synonym. How should we check
this type for validity? We have three distinct choices, corresponding to the
three constructors of ExpandMode:

1. Expand the application of A, and check the resulting type (`Expand`).
2. Don't expand the application of A. Only check the arguments (`NoExpand`).
3. Check the arguments *and* check the expanded type (`Both`).

It's tempting to think that we could always just pick choice (3), but this
results in serious performance issues when checking a type like in the
signature for `f` below:

  type S = ...
  f :: S (S (S (S (S (S ....(S Int)...))))

When checking the type of `f`, we'll check the outer `S` application with and
without expansion, and in *each* of those checks, we'll check the next `S`
application with and without expansion... the result is exponential blowup! So
clearly we don't want to use `Both` 100% of the time.

On the other hand, neither is it correct to use exclusively `Expand` or
exclusively `NoExpand` 100% of the time:

* If one always expands, then one can miss erroneous programs like the one in
  the `tcfail129` test case:

    type Foo a = String -> Maybe a
    type Bar m = m Int
    blah = undefined :: Bar Foo

  If we expand `Bar Foo` immediately, we'll miss the fact that the `Foo` type
  synonyms is unsaturated.
* If one never expands and only checks the arguments, then one can miss
  erroneous programs like the one in #16059:

    type Foo b = Eq b => b
    f :: forall b (a :: Foo b). Int

  The kind of `a` contains a constraint, which is illegal, but this will only
  be caught if `Foo b` is expanded.

Therefore, it's impossible to have these validity checks be simultaneously
correct and performant if one sticks exclusively to a single `ExpandMode`. In
that case, the solution is to vary the `ExpandMode`s! In more detail:

1. When we start validity checking, we start with `Expand` if
   LiberalTypeSynonyms is enabled (see Note [Liberal type synonyms] for why we
   do this), and we start with `Both` otherwise. The `initialExpandMode`
   function is responsible for this.
2. When expanding an application of a type synonym (in `check_syn_tc_app`), we
   determine which things to check based on the current `ExpandMode` argument.
   Importantly, if the current mode is `Both`, then we check the arguments in
   `NoExpand` mode and check the expanded type in `Both` mode.

   Switching to `NoExpand` when checking the arguments is vital to avoid
   exponential blowup. One consequence of this choice is that if you have
   the following type synonym in one module (with RankNTypes enabled):

     {-# LANGUAGE RankNTypes #-}
     module A where
     type A = forall a. a

   And you define the following in a separate module *without* RankNTypes
   enabled:

     module B where

     import A

     type Const a b = a
     f :: Const Int A -> Int

   Then `f` will be accepted, even though `A` (which is technically a rank-n
   type) appears in its type. We view this as an acceptable compromise, since
   `A` never appears in the type of `f` post-expansion. If `A` _did_ appear in
   a type post-expansion, such as in the following variant:

     g :: Const A A -> Int

   Then that would be rejected unless RankNTypes were enabled.
-}

-- | When validity-checking an application of a type synonym, should we
-- check the arguments, check the expanded type, or both?
-- See Note [Correctness and performance of type synonym validity checking]
data ExpandMode
  = Expand   -- ^ Only check the expanded type.
  | NoExpand -- ^ Only check the arguments.
  | Both     -- ^ Check both the arguments and the expanded type.

instance Outputable ExpandMode where
  ppr :: ExpandMode -> SDoc
ppr ExpandMode
e = String -> SDoc
text forall a b. (a -> b) -> a -> b
$ case ExpandMode
e of
                   ExpandMode
Expand   -> String
"Expand"
                   ExpandMode
NoExpand -> String
"NoExpand"
                   ExpandMode
Both     -> String
"Both"

-- | If @LiberalTypeSynonyms@ is enabled, we start in 'Expand' mode for the
-- reasons explained in @Note [Liberal type synonyms]@. Otherwise, we start
-- in 'Both' mode.
initialExpandMode :: TcM ExpandMode
initialExpandMode :: TcM ExpandMode
initialExpandMode = do
  Bool
liberal_flag <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.LiberalTypeSynonyms
  forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ if Bool
liberal_flag then ExpandMode
Expand else ExpandMode
Both

-- | Information about a type being validity-checked.
data ValidityEnv = ValidityEnv
  { ValidityEnv -> TidyEnv
ve_tidy_env :: TidyEnv
  , ValidityEnv -> UserTypeCtxt
ve_ctxt     :: UserTypeCtxt
  , ValidityEnv -> Rank
ve_rank     :: Rank
  , ValidityEnv -> ExpandMode
ve_expand   :: ExpandMode }

instance Outputable ValidityEnv where
  ppr :: ValidityEnv -> SDoc
ppr (ValidityEnv{ ve_tidy_env :: ValidityEnv -> TidyEnv
ve_tidy_env = TidyEnv
env, ve_ctxt :: ValidityEnv -> UserTypeCtxt
ve_ctxt = UserTypeCtxt
ctxt
                  , ve_rank :: ValidityEnv -> Rank
ve_rank = Rank
rank, ve_expand :: ValidityEnv -> ExpandMode
ve_expand = ExpandMode
expand }) =
    SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"ValidityEnv")
       Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ve_tidy_env" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr TidyEnv
env
               , String -> SDoc
text String
"ve_ctxt"     SDoc -> SDoc -> SDoc
<+> UserTypeCtxt -> SDoc
pprUserTypeCtxt UserTypeCtxt
ctxt
               , String -> SDoc
text String
"ve_rank"     SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Rank
rank
               , String -> SDoc
text String
"ve_expand"   SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr ExpandMode
expand ])

----------------------------------------
check_type :: ValidityEnv -> Type -> TcM ()
-- The args say what the *type context* requires, independent
-- of *flag* settings.  You test the flag settings at usage sites.
--
-- Rank is allowed rank for function args
-- Rank 0 means no for-alls anywhere

check_type :: ValidityEnv -> Type -> TcM ()
check_type ValidityEnv
_ (TyVarTy TyCoVar
_)
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()

check_type ValidityEnv
ve (AppTy Type
ty1 Type
ty2)
  = do  { ValidityEnv -> Type -> TcM ()
check_type ValidityEnv
ve Type
ty1
        ; Bool -> ValidityEnv -> Type -> TcM ()
check_arg_type Bool
False ValidityEnv
ve Type
ty2 }

check_type ValidityEnv
ve ty :: Type
ty@(TyConApp TyCon
tc [Type]
tys)
  | TyCon -> Bool
isTypeSynonymTyCon TyCon
tc Bool -> Bool -> Bool
|| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc
  = ValidityEnv -> Type -> TyCon -> [Type] -> TcM ()
check_syn_tc_app ValidityEnv
ve Type
ty TyCon
tc [Type]
tys

  -- Check for unboxed tuples and unboxed sums: these
  -- require the corresponding extension to be enabled.
  | TyCon -> Bool
isUnboxedTupleTyCon TyCon
tc
  = UnboxedTupleOrSum -> ValidityEnv -> Type -> [Type] -> TcM ()
check_ubx_tuple_or_sum UnboxedTupleOrSum
UnboxedTupleType ValidityEnv
ve Type
ty [Type]
tys
  | TyCon -> Bool
isUnboxedSumTyCon TyCon
tc
  = UnboxedTupleOrSum -> ValidityEnv -> Type -> [Type] -> TcM ()
check_ubx_tuple_or_sum UnboxedTupleOrSum
UnboxedSumType   ValidityEnv
ve Type
ty [Type]
tys

  | Bool
otherwise
  = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Bool -> ValidityEnv -> Type -> TcM ()
check_arg_type Bool
False ValidityEnv
ve) [Type]
tys

check_type ValidityEnv
_ (LitTy {}) = forall (m :: * -> *) a. Monad m => a -> m a
return ()

check_type ValidityEnv
ve (CastTy Type
ty KindCoercion
_) = ValidityEnv -> Type -> TcM ()
check_type ValidityEnv
ve Type
ty

-- Check for rank-n types, such as (forall x. x -> x) or (Show x => x).
--
-- Critically, this case must come *after* the case for TyConApp.
-- See Note [Liberal type synonyms].
check_type ve :: ValidityEnv
ve@(ValidityEnv{ ve_tidy_env :: ValidityEnv -> TidyEnv
ve_tidy_env = TidyEnv
env, ve_ctxt :: ValidityEnv -> UserTypeCtxt
ve_ctxt = UserTypeCtxt
ctxt
                          , ve_rank :: ValidityEnv -> Rank
ve_rank = Rank
rank, ve_expand :: ValidityEnv -> ExpandMode
ve_expand = ExpandMode
expand }) Type
ty
  | Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyVarBinder]
tvbs Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
theta)
  = do  { String -> SDoc -> TcM ()
traceTc String
"check_type" (forall a. Outputable a => a -> SDoc
ppr Type
ty SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Rank
rank)
        ; Bool -> (TidyEnv, TcRnMessage) -> TcM ()
checkTcM (Rank -> Bool
forAllAllowed Rank
rank) (TidyEnv
env, Rank -> Type -> TcRnMessage
TcRnForAllRankErr Rank
rank (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
ty))
                -- Reject e.g. (Maybe (?x::Int => Int)),
                -- with a decent error message

        ; ValidityEnv -> [Type] -> Type -> TcM ()
checkConstraintsOK ValidityEnv
ve [Type]
theta Type
ty
                -- Reject forall (a :: Eq b => b). blah
                -- In a kind signature we don't allow constraints

        ; Bool -> (TidyEnv, TcRnMessage) -> TcM ()
checkTcM (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (ArgFlag -> Bool
isInvisibleArgFlag forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall tv argf. VarBndr tv argf -> argf
binderArgFlag) [TyVarBinder]
tvbs
                         Bool -> Bool -> Bool
|| UserTypeCtxt -> Bool
vdqAllowed UserTypeCtxt
ctxt)
                   (TidyEnv
env, Type -> TcRnMessage
TcRnVDQInTermType (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
ty))
                -- Reject visible, dependent quantification in the type of a
                -- term (e.g., `f :: forall a -> a -> Maybe a`)

        ; TidyEnv -> UserTypeCtxt -> ExpandMode -> [Type] -> TcM ()
check_valid_theta TidyEnv
env' UserTypeCtxt
SigmaCtxt ExpandMode
expand [Type]
theta
                -- Allow     type T = ?x::Int => Int -> Int
                -- but not   type T = ?x::Int

        ; ValidityEnv -> Type -> TcM ()
check_type (ValidityEnv
ve{ve_tidy_env :: TidyEnv
ve_tidy_env = TidyEnv
env'}) Type
tau
                -- Allow foralls to right of arrow

        }
  where
    ([TyVarBinder]
tvbs, Type
phi)   = Type -> ([TyVarBinder], Type)
tcSplitForAllTyVarBinders Type
ty
    ([Type]
theta, Type
tau)  = Type -> ([Type], Type)
tcSplitPhiTy Type
phi
    (TidyEnv
env', [TyVarBinder]
_)     = forall vis.
TidyEnv
-> [VarBndr TyCoVar vis] -> (TidyEnv, [VarBndr TyCoVar vis])
tidyTyCoVarBinders TidyEnv
env [TyVarBinder]
tvbs

check_type (ve :: ValidityEnv
ve@ValidityEnv{ ve_tidy_env :: ValidityEnv -> TidyEnv
ve_tidy_env = TidyEnv
env, ve_ctxt :: ValidityEnv -> UserTypeCtxt
ve_ctxt = UserTypeCtxt
ctxt
                          , ve_rank :: ValidityEnv -> Rank
ve_rank = Rank
rank })
           ty :: Type
ty@(FunTy AnonArgFlag
_ Type
mult Type
arg_ty Type
res_ty)
  = do  { Bool -> (TidyEnv, TcRnMessage) -> TcM ()
failIfTcM (Bool -> Bool
not (UserTypeCtxt -> Bool
linearityAllowed UserTypeCtxt
ctxt) Bool -> Bool -> Bool
&& Bool -> Bool
not (Type -> Bool
isManyDataConTy Type
mult))
                     (TidyEnv
env, Type -> TcRnMessage
TcRnLinearFuncInKind (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
ty))
        ; ValidityEnv -> Type -> TcM ()
check_type (ValidityEnv
ve{ve_rank :: Rank
ve_rank = Rank
arg_rank}) Type
arg_ty
        ; ValidityEnv -> Type -> TcM ()
check_type (ValidityEnv
ve{ve_rank :: Rank
ve_rank = Rank
res_rank}) Type
res_ty }
  where
    (Rank
arg_rank, Rank
res_rank) = Rank -> (Rank, Rank)
funArgResRank Rank
rank

check_type ValidityEnv
_ Type
ty = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"check_type" (forall a. Outputable a => a -> SDoc
ppr Type
ty)

----------------------------------------
check_syn_tc_app :: ValidityEnv
                 -> KindOrType -> TyCon -> [KindOrType] -> TcM ()
-- Used for type synonyms and type synonym families,
-- which must be saturated,
-- but not data families, which need not be saturated
check_syn_tc_app :: ValidityEnv -> Type -> TyCon -> [Type] -> TcM ()
check_syn_tc_app (ve :: ValidityEnv
ve@ValidityEnv{ ve_ctxt :: ValidityEnv -> UserTypeCtxt
ve_ctxt = UserTypeCtxt
ctxt, ve_expand :: ValidityEnv -> ExpandMode
ve_expand = ExpandMode
expand })
                 Type
ty TyCon
tc [Type]
tys
  | [Type]
tys forall a. [a] -> Int -> Bool
`lengthAtLeast` Int
tc_arity   -- Saturated
       -- Check that the synonym has enough args
       -- This applies equally to open and closed synonyms
       -- It's OK to have an *over-applied* type synonym
       --      data Tree a b = ...
       --      type Foo a = Tree [a]
       --      f :: Foo a b -> ...
  = case ExpandMode
expand of
      ExpandMode
_ |  TyCon -> Bool
isTypeFamilyTyCon TyCon
tc
        -> ExpandMode -> TcM ()
check_args_only ExpandMode
expand
      -- See Note [Correctness and performance of type synonym validity
      --           checking]
      ExpandMode
Expand   -> ExpandMode -> TcM ()
check_expansion_only ExpandMode
expand
      ExpandMode
NoExpand -> ExpandMode -> TcM ()
check_args_only ExpandMode
expand
      ExpandMode
Both     -> ExpandMode -> TcM ()
check_args_only ExpandMode
NoExpand forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> ExpandMode -> TcM ()
check_expansion_only ExpandMode
Both

  | GhciCtxt Bool
True <- UserTypeCtxt
ctxt  -- Accept outermost under-saturated type synonym or
                           -- type family constructors in GHCi :kind commands.
                           -- See Note [Unsaturated type synonyms in GHCi]
  = ExpandMode -> TcM ()
check_args_only ExpandMode
expand

  | Bool
otherwise
  = forall a. TcRnMessage -> TcM a
failWithTc (TyCon -> [Type] -> TcRnMessage
tyConArityErr TyCon
tc [Type]
tys)
  where
    tc_arity :: Int
tc_arity  = TyCon -> Int
tyConArity TyCon
tc

    check_arg :: ExpandMode -> KindOrType -> TcM ()
    check_arg :: ExpandMode -> Type -> TcM ()
check_arg ExpandMode
expand =
      Bool -> ValidityEnv -> Type -> TcM ()
check_arg_type (TyCon -> Bool
isTypeSynonymTyCon TyCon
tc) (ValidityEnv
ve{ve_expand :: ExpandMode
ve_expand = ExpandMode
expand})

    check_args_only, check_expansion_only :: ExpandMode -> TcM ()
    check_args_only :: ExpandMode -> TcM ()
check_args_only ExpandMode
expand = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (ExpandMode -> Type -> TcM ()
check_arg ExpandMode
expand) [Type]
tys

    check_expansion_only :: ExpandMode -> TcM ()
check_expansion_only ExpandMode
expand
      = forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (TyCon -> Bool
isTypeSynonymTyCon TyCon
tc) (forall a. Outputable a => a -> SDoc
ppr TyCon
tc) forall a b. (a -> b) -> a -> b
$
        case Type -> Maybe Type
tcView Type
ty of
         Just Type
ty' -> let err_ctxt :: SDoc
err_ctxt = String -> SDoc
text String
"In the expansion of type synonym"
                                    SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr TyCon
tc)
                     in forall a. SDoc -> TcM a -> TcM a
addErrCtxt SDoc
err_ctxt forall a b. (a -> b) -> a -> b
$
                        ValidityEnv -> Type -> TcM ()
check_type (ValidityEnv
ve{ve_expand :: ExpandMode
ve_expand = ExpandMode
expand}) Type
ty'
         Maybe Type
Nothing  -> forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"check_syn_tc_app" (forall a. Outputable a => a -> SDoc
ppr Type
ty)

{-
Note [Unsaturated type synonyms in GHCi]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking, GHC disallows unsaturated uses of type synonyms or type
families. For instance, if one defines `type Const a b = a`, then GHC will not
permit using `Const` unless it is applied to (at least) two arguments. There is
an exception to this rule, however: GHCi's :kind command. For instance, it
is quite common to look up the kind of a type constructor like so:

  λ> :kind Const
  Const :: j -> k -> j
  λ> :kind Const Int
  Const Int :: k -> Type

Strictly speaking, the two uses of `Const` above are unsaturated, but this
is an extremely benign (and useful) example of unsaturation, so we allow it
here as a special case.

That being said, we do not allow unsaturation carte blanche in GHCi. Otherwise,
this GHCi interaction would be possible:

  λ> newtype Fix f = MkFix (f (Fix f))
  λ> type Id a = a
  λ> :kind Fix Id
  Fix Id :: Type

This is rather dodgy, so we move to disallow this. We only permit unsaturated
synonyms in GHCi if they are *top-level*—that is, if the synonym is the
outermost type being applied. This allows `Const` and `Const Int` in the
first example, but not `Fix Id` in the second example, as `Id` is not the
outermost type being applied (`Fix` is).

We track this outermost property in the GhciCtxt constructor of UserTypeCtxt.
A field of True in GhciCtxt indicates that we're in an outermost position. Any
time we invoke `check_arg` to check the validity of an argument, we switch the
field to False.
-}

----------------------------------------
check_ubx_tuple_or_sum :: UnboxedTupleOrSum -> ValidityEnv -> KindOrType -> [KindOrType] -> TcM ()
check_ubx_tuple_or_sum :: UnboxedTupleOrSum -> ValidityEnv -> Type -> [Type] -> TcM ()
check_ubx_tuple_or_sum UnboxedTupleOrSum
tup_or_sum (ve :: ValidityEnv
ve@ValidityEnv{ve_tidy_env :: ValidityEnv -> TidyEnv
ve_tidy_env = TidyEnv
env}) Type
ty [Type]
tys
  = do  { Bool
ub_thing_allowed <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM forall a b. (a -> b) -> a -> b
$ UnboxedTupleOrSum -> Extension
unboxedTupleOrSumExtension UnboxedTupleOrSum
tup_or_sum
        ; Bool -> (TidyEnv, TcRnMessage) -> TcM ()
checkTcM Bool
ub_thing_allowed
            (TidyEnv
env, UnboxedTupleOrSum -> Type -> TcRnMessage
TcRnUnboxedTupleOrSumTypeFuncArg UnboxedTupleOrSum
tup_or_sum (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
ty))

        ; Bool
impred <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.ImpredicativeTypes
        ; let rank' :: Rank
rank' = if Bool
impred then Rank
ArbitraryRank else Rank
MonoTypeTyConArg
                -- c.f. check_arg_type
                -- However, args are allowed to be unlifted, or
                -- more unboxed tuples or sums, so can't use check_arg_ty
        ; forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (ValidityEnv -> Type -> TcM ()
check_type (ValidityEnv
ve{ve_rank :: Rank
ve_rank = Rank
rank'})) [Type]
tys }

----------------------------------------
check_arg_type
  :: Bool -- ^ Is this the argument to a type synonym?
  -> ValidityEnv -> KindOrType -> TcM ()
-- The sort of type that can instantiate a type variable,
-- or be the argument of a type constructor.
-- Not an unboxed tuple, but now *can* be a forall (since impredicativity)
-- Other unboxed types are very occasionally allowed as type
-- arguments depending on the kind of the type constructor
--
-- For example, we want to reject things like:
--
--      instance Ord a => Ord (forall s. T s a)
-- and
--      g :: T s (forall b.b)
--
-- NB: unboxed tuples can have polymorphic or unboxed args.
--     This happens in the workers for functions returning
--     product types with polymorphic components.
--     But not in user code.
-- Anyway, they are dealt with by a special case in check_tau_type

check_arg_type :: Bool -> ValidityEnv -> Type -> TcM ()
check_arg_type Bool
_ ValidityEnv
_ (CoercionTy {}) = forall (m :: * -> *) a. Monad m => a -> m a
return ()

check_arg_type Bool
type_syn (ve :: ValidityEnv
ve@ValidityEnv{ve_ctxt :: ValidityEnv -> UserTypeCtxt
ve_ctxt = UserTypeCtxt
ctxt, ve_rank :: ValidityEnv -> Rank
ve_rank = Rank
rank}) Type
ty
  = do  { Bool
impred <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.ImpredicativeTypes
        ; let rank' :: Rank
rank' = case Rank
rank of          -- Predictive => must be monotype
                        -- Rank-n arguments to type synonyms are OK, provided
                        -- that LiberalTypeSynonyms is enabled.
                        Rank
_ | Bool
type_syn       -> Rank
MonoTypeSynArg
                        Rank
MustBeMonoType     -> Rank
MustBeMonoType  -- Monotype, regardless
                        Rank
_other | Bool
impred    -> Rank
ArbitraryRank
                               | Bool
otherwise -> Rank
MonoTypeTyConArg
                        -- Make sure that MustBeMonoType is propagated,
                        -- so that we don't suggest -XImpredicativeTypes in
                        --    (Ord (forall a.a)) => a -> a
                        -- and so that if it Must be a monotype, we check that it is!
              ctxt' :: UserTypeCtxt
              ctxt' :: UserTypeCtxt
ctxt'
                | GhciCtxt Bool
_ <- UserTypeCtxt
ctxt = Bool -> UserTypeCtxt
GhciCtxt Bool
False
                    -- When checking an argument, set the field of GhciCtxt to
                    -- False to indicate that we are no longer in an outermost
                    -- position (and thus unsaturated synonyms are no longer
                    -- allowed).
                    -- See Note [Unsaturated type synonyms in GHCi]
                | Bool
otherwise          = UserTypeCtxt
ctxt

        ; ValidityEnv -> Type -> TcM ()
check_type (ValidityEnv
ve{ve_ctxt :: UserTypeCtxt
ve_ctxt = UserTypeCtxt
ctxt', ve_rank :: Rank
ve_rank = Rank
rank'}) Type
ty }

----------------------------------------
checkConstraintsOK :: ValidityEnv -> ThetaType -> Type -> TcM ()
checkConstraintsOK :: ValidityEnv -> [Type] -> Type -> TcM ()
checkConstraintsOK ValidityEnv
ve [Type]
theta Type
ty
  | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
theta                         = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  | UserTypeCtxt -> Bool
allConstraintsAllowed (ValidityEnv -> UserTypeCtxt
ve_ctxt ValidityEnv
ve) = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  | Bool
otherwise
  = -- We are in a kind, where we allow only equality predicates
    -- See Note [Constraints in kinds] in GHC.Core.TyCo.Rep, and #16263
    Bool -> (TidyEnv, TcRnMessage) -> TcM ()
checkTcM (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Type -> Bool
isEqPred [Type]
theta) (TidyEnv
env, Type -> TcRnMessage
TcRnConstraintInKind (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
ty))
  where env :: TidyEnv
env = ValidityEnv -> TidyEnv
ve_tidy_env ValidityEnv
ve

{-
Note [Liberal type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If -XLiberalTypeSynonyms is on, expand closed type synonyms *before*
doing validity checking.  This allows us to instantiate a synonym defn
with a for-all type, or with a partially-applied type synonym.
        e.g.   type T a b = a
               type S m   = m ()
               f :: S (T Int)
Here, T is partially applied, so it's illegal in H98.  But if you
expand S first, then T we get just
               f :: Int
which is fine.

IMPORTANT: suppose T is a type synonym.  Then we must do validity
checking on an application (T ty1 ty2)

        *either* before expansion (i.e. check ty1, ty2)
        *or* after expansion (i.e. expand T ty1 ty2, and then check)
        BUT NOT BOTH

If we do both, we get exponential behaviour!!

  data TIACons1 i r c = c i ::: r c
  type TIACons2 t x = TIACons1 t (TIACons1 t x)
  type TIACons3 t x = TIACons2 t (TIACons1 t x)
  type TIACons4 t x = TIACons2 t (TIACons2 t x)
  type TIACons7 t x = TIACons4 t (TIACons3 t x)

The order in which you do validity checking is also somewhat delicate. Consider
the `check_type` function, which drives the validity checking for unsaturated
uses of type synonyms. There is a special case for rank-n types, such as
(forall x. x -> x) or (Show x => x), since those require at least one language
extension to use. It used to be the case that this case came before every other
case, but this can lead to bugs. Imagine you have this scenario (from #15954):

  type A a = Int
  type B (a :: Type -> Type) = forall x. x -> x
  type C = B A

If the rank-n case came first, then in the process of checking for `forall`s
or contexts, we would expand away `B A` to `forall x. x -> x`. This is because
the functions that split apart `forall`s/contexts
(tcSplitForAllTyVarBinders/tcSplitPhiTy) expand type synonyms! If `B A` is expanded
away to `forall x. x -> x` before the actually validity checks occur, we will
have completely obfuscated the fact that we had an unsaturated application of
the `A` type synonym.

We have since learned from our mistakes and now put this rank-n case /after/
the case for TyConApp, which ensures that an unsaturated `A` TyConApp will be
caught properly. But be careful! We can't make the rank-n case /last/ either,
as the FunTy case must came after the rank-n case. Otherwise, something like
(Eq a => Int) would be treated as a function type (FunTy), which just
wouldn't do.

************************************************************************
*                                                                      *
\subsection{Checking a theta or source type}
*                                                                      *
************************************************************************

Note [Implicit parameters in instance decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Implicit parameters _only_ allowed in type signatures; not in instance
decls, superclasses etc. The reason for not allowing implicit params in
instances is a bit subtle.  If we allowed
  instance (?x::Int, Eq a) => Foo [a] where ...
then when we saw
     (e :: (?x::Int) => t)
it would be unclear how to discharge all the potential uses of the ?x
in e.  For example, a constraint Foo [Int] might come out of e, and
applying the instance decl would show up two uses of ?x.  #8912.
-}

checkValidTheta :: UserTypeCtxt -> ThetaType -> TcM ()
-- Assumes argument is fully zonked
checkValidTheta :: UserTypeCtxt -> [Type] -> TcM ()
checkValidTheta UserTypeCtxt
ctxt [Type]
theta
  = forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM (UserTypeCtxt -> [Type] -> TidyEnv -> TcM (TidyEnv, SDoc)
checkThetaCtxt UserTypeCtxt
ctxt [Type]
theta) forall a b. (a -> b) -> a -> b
$
    do { TidyEnv
env <- [TyCoVar] -> TcM TidyEnv
tcInitOpenTidyEnv ([Type] -> [TyCoVar]
tyCoVarsOfTypesList [Type]
theta)
       ; ExpandMode
expand <- TcM ExpandMode
initialExpandMode
       ; TidyEnv -> UserTypeCtxt -> ExpandMode -> [Type] -> TcM ()
check_valid_theta TidyEnv
env UserTypeCtxt
ctxt ExpandMode
expand [Type]
theta }

-------------------------
check_valid_theta :: TidyEnv -> UserTypeCtxt -> ExpandMode
                  -> [PredType] -> TcM ()
check_valid_theta :: TidyEnv -> UserTypeCtxt -> ExpandMode -> [Type] -> TcM ()
check_valid_theta TidyEnv
_ UserTypeCtxt
_ ExpandMode
_ []
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()
check_valid_theta TidyEnv
env UserTypeCtxt
ctxt ExpandMode
expand [Type]
theta
  = do { DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; String -> SDoc -> TcM ()
traceTc String
"check_valid_theta" (forall a. Outputable a => a -> SDoc
ppr [Type]
theta)
       ; forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (TidyEnv -> DynFlags -> UserTypeCtxt -> ExpandMode -> Type -> TcM ()
check_pred_ty TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt ExpandMode
expand) [Type]
theta }

-------------------------
{- Note [Validity checking for constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We look through constraint synonyms so that we can see the underlying
constraint(s).  For example
   type Foo = ?x::Int
   instance Foo => C T
We should reject the instance because it has an implicit parameter in
the context.

But we record, in 'under_syn', whether we have looked under a synonym
to avoid requiring language extensions at the use site.  Main example
(#9838):

   {-# LANGUAGE ConstraintKinds #-}
   module A where
      type EqShow a = (Eq a, Show a)

   module B where
      import A
      foo :: EqShow a => a -> String

We don't want to require ConstraintKinds in module B.
-}

check_pred_ty :: TidyEnv -> DynFlags -> UserTypeCtxt -> ExpandMode
              -> PredType -> TcM ()
-- Check the validity of a predicate in a signature
-- See Note [Validity checking for constraints]
check_pred_ty :: TidyEnv -> DynFlags -> UserTypeCtxt -> ExpandMode -> Type -> TcM ()
check_pred_ty TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt ExpandMode
expand Type
pred
  = do { ValidityEnv -> Type -> TcM ()
check_type ValidityEnv
ve Type
pred
       ; Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> Type -> TcM ()
check_pred_help Bool
False TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred }
  where
    rank :: Rank
rank | Extension -> DynFlags -> Bool
xopt Extension
LangExt.QuantifiedConstraints DynFlags
dflags
         = Rank
ArbitraryRank
         | Bool
otherwise
         = Rank
MonoTypeConstraint

    ve :: ValidityEnv
    ve :: ValidityEnv
ve = ValidityEnv{ ve_tidy_env :: TidyEnv
ve_tidy_env = TidyEnv
env
                    , ve_ctxt :: UserTypeCtxt
ve_ctxt     = UserTypeCtxt
SigmaCtxt
                    , ve_rank :: Rank
ve_rank     = Rank
rank
                    , ve_expand :: ExpandMode
ve_expand   = ExpandMode
expand }

check_pred_help :: Bool    -- True <=> under a type synonym
                -> TidyEnv
                -> DynFlags -> UserTypeCtxt
                -> PredType -> TcM ()
check_pred_help :: Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> Type -> TcM ()
check_pred_help Bool
under_syn TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred
  | Just Type
pred' <- Type -> Maybe Type
tcView Type
pred  -- Switch on under_syn when going under a
                                 -- synonym (#9838, yuk)
  = Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> Type -> TcM ()
check_pred_help Bool
True TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred'

  | Bool
otherwise  -- A bit like classifyPredType, but not the same
               -- E.g. we treat (~) like (~#); and we look inside tuples
  = case Type -> Pred
classifyPredType Type
pred of
      ClassPred Class
cls [Type]
tys
        | Class -> Bool
isCTupleClass Class
cls   -> Bool
-> TidyEnv -> DynFlags -> UserTypeCtxt -> Type -> [Type] -> TcM ()
check_tuple_pred Bool
under_syn TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred [Type]
tys
        | Bool
otherwise           -> TidyEnv
-> DynFlags -> UserTypeCtxt -> Type -> Class -> [Type] -> TcM ()
check_class_pred TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred Class
cls [Type]
tys

      EqPred EqRel
_ Type
_ Type
_      -> forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"check_pred_help" (forall a. Outputable a => a -> SDoc
ppr Type
pred)
              -- EqPreds, such as (t1 ~ #t2) or (t1 ~R# t2), don't even have kind Constraint
              -- and should never appear before the '=>' of a type.  Thus
              --     f :: (a ~# b) => blah
              -- is wrong.  For user written signatures, it'll be rejected by kind-checking
              -- well before we get to validity checking.  For inferred types we are careful
              -- to box such constraints in GHC.Tc.Utils.TcType.pickQuantifiablePreds, as described
              -- in Note [Lift equality constraints when quantifying] in GHC.Tc.Solver

      ForAllPred [TyCoVar]
_ [Type]
theta Type
head -> TidyEnv
-> DynFlags -> UserTypeCtxt -> Type -> [Type] -> Type -> TcM ()
check_quant_pred TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred [Type]
theta Type
head
      Pred
_                       -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

check_quant_pred :: TidyEnv -> DynFlags -> UserTypeCtxt
                 -> PredType -> ThetaType -> PredType -> TcM ()
check_quant_pred :: TidyEnv
-> DynFlags -> UserTypeCtxt -> Type -> [Type] -> Type -> TcM ()
check_quant_pred TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred [Type]
theta Type
head_pred
  = forall a. SDoc -> TcM a -> TcM a
addErrCtxt (String -> SDoc
text String
"In the quantified constraint" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Type
pred)) forall a b. (a -> b) -> a -> b
$
    do { -- Check the instance head
         case Type -> Pred
classifyPredType Type
head_pred of
                                 -- SigmaCtxt tells checkValidInstHead that
                                 -- this is the head of a quantified constraint
            ClassPred Class
cls [Type]
tys -> do { UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead UserTypeCtxt
SigmaCtxt Class
cls [Type]
tys
                                    ; Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> Type -> TcM ()
check_pred_help Bool
False TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
head_pred }
                               -- need check_pred_help to do extra pred-only validity
                               -- checks, such as for (~). Otherwise, we get #17563
                               -- NB: checks for the context are covered by the check_type
                               -- in check_pred_ty
            IrredPred {}      | Type -> Bool
hasTyVarHead Type
head_pred
                              -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
            Pred
_                 -> forall a. (TidyEnv, TcRnMessage) -> TcM a
failWithTcM (TidyEnv
env, Type -> TcRnMessage
TcRnBadQuantPredHead (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
pred))

         -- Check for termination
       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Extension -> DynFlags -> Bool
xopt Extension
LangExt.UndecidableInstances DynFlags
dflags) forall a b. (a -> b) -> a -> b
$
         [Type] -> Type -> TcM ()
checkInstTermination [Type]
theta Type
head_pred
    }

check_tuple_pred :: Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> [PredType] -> TcM ()
check_tuple_pred :: Bool
-> TidyEnv -> DynFlags -> UserTypeCtxt -> Type -> [Type] -> TcM ()
check_tuple_pred Bool
under_syn TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred [Type]
ts
  = do { -- See Note [ConstraintKinds in predicates]
         Bool -> (TidyEnv, TcRnMessage) -> TcM ()
checkTcM (Bool
under_syn Bool -> Bool -> Bool
|| Extension -> DynFlags -> Bool
xopt Extension
LangExt.ConstraintKinds DynFlags
dflags)
                  (TidyEnv
env, Type -> TcRnMessage
TcRnIllegalTupleConstraint (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
pred))
       ; forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> Type -> TcM ()
check_pred_help Bool
under_syn TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt) [Type]
ts }
    -- This case will not normally be executed because without
    -- -XConstraintKinds tuple types are only kind-checked as *

{- Note [ConstraintKinds in predicates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Don't check for -XConstraintKinds under a type synonym, because that
was done at the type synonym definition site; see #9838
e.g.   module A where
          type C a = (Eq a, Ix a)   -- Needs -XConstraintKinds
       module B where
          import A
          f :: C a => a -> a        -- Does *not* need -XConstraintKinds
-}

-------------------------
check_class_pred :: TidyEnv -> DynFlags -> UserTypeCtxt
                 -> PredType -> Class -> [TcType] -> TcM ()
check_class_pred :: TidyEnv
-> DynFlags -> UserTypeCtxt -> Type -> Class -> [Type] -> TcM ()
check_class_pred TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Type
pred Class
cls [Type]
tys
  | Class -> Bool
isEqPredClass Class
cls    -- (~) and (~~) are classified as classes,
                         -- but here we want to treat them as equalities
  = -- Equational constraints are valid in all contexts, and
    -- we do not need to check e.g. for FlexibleContexts here, so just do nothing
    -- We used to require TypeFamilies/GADTs for equality constraints,
    -- but not anymore (GHC Proposal #371)
   forall (m :: * -> *) a. Monad m => a -> m a
return ()

  | Class -> Bool
isIPClass Class
cls
  = do { TcM ()
check_arity
       ; Bool -> (TidyEnv, TcRnMessage) -> TcM ()
checkTcM (UserTypeCtxt -> Bool
okIPCtxt UserTypeCtxt
ctxt) (TidyEnv
env, Type -> TcRnMessage
TcRnIllegalImplicitParam (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
pred)) }

  | Bool
otherwise     -- Includes Coercible
  = do { TcM ()
check_arity
       ; TidyEnv -> DynFlags -> UserTypeCtxt -> Class -> [Type] -> TcM ()
checkSimplifiableClassConstraint TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Class
cls [Type]
tys
       ; Bool -> (TidyEnv, TcRnMessage) -> TcM ()
checkTcM Bool
arg_tys_ok (TidyEnv
env, Type -> TcRnMessage
TcRnNonTypeVarArgInConstraint (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
pred)) }
  where
    check_arity :: TcM ()
check_arity = Bool -> TcRnMessage -> TcM ()
checkTc ([Type]
tys forall a. [a] -> Int -> Bool
`lengthIs` Class -> Int
classArity Class
cls)
                          (TyCon -> [Type] -> TcRnMessage
tyConArityErr (Class -> TyCon
classTyCon Class
cls) [Type]
tys)

    -- Check the arguments of a class constraint
    flexible_contexts :: Bool
flexible_contexts = Extension -> DynFlags -> Bool
xopt Extension
LangExt.FlexibleContexts     DynFlags
dflags
    arg_tys_ok :: Bool
arg_tys_ok = case UserTypeCtxt
ctxt of
        UserTypeCtxt
SpecInstCtxt -> Bool
True    -- {-# SPECIALISE instance Eq (T Int) #-} is fine
        InstDeclCtxt {} -> Bool -> Class -> [Type] -> Bool
checkValidClsArgs Bool
flexible_contexts Class
cls [Type]
tys
                                -- Further checks on head and theta
                                -- in checkInstTermination
        UserTypeCtxt
_               -> Bool -> Class -> [Type] -> Bool
checkValidClsArgs Bool
flexible_contexts Class
cls [Type]
tys

checkSimplifiableClassConstraint :: TidyEnv -> DynFlags -> UserTypeCtxt
                                 -> Class -> [TcType] -> TcM ()
-- See Note [Simplifiable given constraints]
checkSimplifiableClassConstraint :: TidyEnv -> DynFlags -> UserTypeCtxt -> Class -> [Type] -> TcM ()
checkSimplifiableClassConstraint TidyEnv
env DynFlags
dflags UserTypeCtxt
ctxt Class
cls [Type]
tys
  | Bool -> Bool
not (WarningFlag -> DynFlags -> Bool
wopt WarningFlag
Opt_WarnSimplifiableClassConstraints DynFlags
dflags)
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  | Extension -> DynFlags -> Bool
xopt Extension
LangExt.MonoLocalBinds DynFlags
dflags
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()

  | DataTyCtxt {} <- UserTypeCtxt
ctxt   -- Don't do this check for the "stupid theta"
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()               -- of a data type declaration

  | Class
cls forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
coercibleTyConKey
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()   -- Oddly, we treat (Coercible t1 t2) as unconditionally OK
                -- matchGlobalInst will reply "yes" because we can reduce
                -- (Coercible a b) to (a ~R# b)

  | Bool
otherwise
  = do { ClsInstResult
result <- DynFlags -> Bool -> Class -> [Type] -> TcM ClsInstResult
matchGlobalInst DynFlags
dflags Bool
False Class
cls [Type]
tys
       ; case ClsInstResult
result of
           OneInst { cir_what :: ClsInstResult -> InstanceWhat
cir_what = InstanceWhat
what }
              -> let dia :: TcRnMessage
dia = forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$
                       DiagnosticReason -> [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainDiagnostic (WarningFlag -> DiagnosticReason
WarningWithFlag WarningFlag
Opt_WarnSimplifiableClassConstraints)
                                         [GhcHint]
noHints
                                         (InstanceWhat -> SDoc
simplifiable_constraint_warn InstanceWhat
what)
                 in TcRnMessage -> TcM ()
addDiagnosticTc TcRnMessage
dia
           ClsInstResult
_          -> forall (m :: * -> *) a. Monad m => a -> m a
return () }
  where
    pred :: Type
pred = Class -> [Type] -> Type
mkClassPred Class
cls [Type]
tys

    simplifiable_constraint_warn :: InstanceWhat -> SDoc
    simplifiable_constraint_warn :: InstanceWhat -> SDoc
simplifiable_constraint_warn InstanceWhat
what
     = [SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"The constraint" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr (TidyEnv -> Type -> Type
tidyType TidyEnv
env Type
pred))
                    SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"matches")
                 Int
2 (forall a. Outputable a => a -> SDoc
ppr InstanceWhat
what)
            , SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"This makes type inference for inner bindings fragile;")
                 Int
2 (String -> SDoc
text String
"either use MonoLocalBinds, or simplify it using the instance") ]

{- Note [Simplifiable given constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A type signature like
   f :: Eq [(a,b)] => a -> b
is very fragile, for reasons described at length in GHC.Tc.Solver.Interact
Note [Instance and Given overlap].  As that Note discusses, for the
most part the clever stuff in GHC.Tc.Solver.Interact means that we don't use a
top-level instance if a local Given might fire, so there is no
fragility. But if we /infer/ the type of a local let-binding, things
can go wrong (#11948 is an example, discussed in the Note).

So this warning is switched on only if we have NoMonoLocalBinds; in
that case the warning discourages users from writing simplifiable
class constraints.

The warning only fires if the constraint in the signature
matches the top-level instances in only one way, and with no
unifiers -- that is, under the same circumstances that
GHC.Tc.Solver.Interact.matchInstEnv fires an interaction with the top
level instances.  For example (#13526), consider

  instance {-# OVERLAPPABLE #-} Eq (T a) where ...
  instance                   Eq (T Char) where ..
  f :: Eq (T a) => ...

We don't want to complain about this, even though the context
(Eq (T a)) matches an instance, because the user may be
deliberately deferring the choice so that the Eq (T Char)
has a chance to fire when 'f' is called.  And the fragility
only matters when there's a risk that the instance might
fire instead of the local 'given'; and there is no such
risk in this case.  Just use the same rules as for instance
firing!
-}

-------------------------
okIPCtxt :: UserTypeCtxt -> Bool
  -- See Note [Implicit parameters in instance decls]
okIPCtxt :: UserTypeCtxt -> Bool
okIPCtxt (FunSigCtxt {})        = Bool
True
okIPCtxt (InfSigCtxt {})        = Bool
True
okIPCtxt (ExprSigCtxt {})       = Bool
True
okIPCtxt UserTypeCtxt
TypeAppCtxt            = Bool
True
okIPCtxt UserTypeCtxt
PatSigCtxt             = Bool
True
okIPCtxt UserTypeCtxt
GenSigCtxt             = Bool
True
okIPCtxt (ConArgCtxt {})        = Bool
True
okIPCtxt (ForSigCtxt {})        = Bool
True  -- ??
okIPCtxt (GhciCtxt {})          = Bool
True
okIPCtxt UserTypeCtxt
SigmaCtxt              = Bool
True
okIPCtxt (DataTyCtxt {})        = Bool
True
okIPCtxt (PatSynCtxt {})        = Bool
True
okIPCtxt (TySynCtxt {})         = Bool
True   -- e.g.   type Blah = ?x::Int
                                         -- #11466

okIPCtxt (KindSigCtxt {})       = Bool
False
okIPCtxt (StandaloneKindSigCtxt {}) = Bool
False
okIPCtxt (ClassSCCtxt {})       = Bool
False
okIPCtxt (InstDeclCtxt {})      = Bool
False
okIPCtxt (SpecInstCtxt {})      = Bool
False
okIPCtxt (RuleSigCtxt {})       = Bool
False
okIPCtxt UserTypeCtxt
DefaultDeclCtxt        = Bool
False
okIPCtxt UserTypeCtxt
DerivClauseCtxt        = Bool
False
okIPCtxt (TyVarBndrKindCtxt {}) = Bool
False
okIPCtxt (DataKindCtxt {})      = Bool
False
okIPCtxt (TySynKindCtxt {})     = Bool
False
okIPCtxt (TyFamResKindCtxt {})  = Bool
False

{-
Note [Kind polymorphic type classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MultiParam check:

    class C f where...   -- C :: forall k. k -> Constraint
    instance C Maybe where...

  The dictionary gets type [C * Maybe] even if it's not a MultiParam
  type class.

Flexibility check:

    class C f where...   -- C :: forall k. k -> Constraint
    data D a = D a
    instance C D where

  The dictionary gets type [C * (D *)]. IA0_TODO it should be
  generalized actually.
-}

checkThetaCtxt :: UserTypeCtxt -> ThetaType -> TidyEnv -> TcM (TidyEnv, SDoc)
checkThetaCtxt :: UserTypeCtxt -> [Type] -> TidyEnv -> TcM (TidyEnv, SDoc)
checkThetaCtxt UserTypeCtxt
ctxt [Type]
theta TidyEnv
env
  = forall (m :: * -> *) a. Monad m => a -> m a
return ( TidyEnv
env
           , [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"In the context:" SDoc -> SDoc -> SDoc
<+> [Type] -> SDoc
pprTheta (TidyEnv -> [Type] -> [Type]
tidyTypes TidyEnv
env [Type]
theta)
                  , String -> SDoc
text String
"While checking" SDoc -> SDoc -> SDoc
<+> UserTypeCtxt -> SDoc
pprUserTypeCtxt UserTypeCtxt
ctxt ] )

tyConArityErr :: TyCon -> [TcType] -> TcRnMessage
-- For type-constructor arity errors, be careful to report
-- the number of /visible/ arguments required and supplied,
-- ignoring the /invisible/ arguments, which the user does not see.
-- (e.g. #10516)
tyConArityErr :: TyCon -> [Type] -> TcRnMessage
tyConArityErr TyCon
tc [Type]
tks
  = forall a. Outputable a => SDoc -> a -> Int -> Int -> TcRnMessage
arityErr (forall a. Outputable a => a -> SDoc
ppr (TyCon -> TyConFlavour
tyConFlavour TyCon
tc)) (TyCon -> Name
tyConName TyCon
tc)
             Int
tc_type_arity Int
tc_type_args
  where
    vis_tks :: [Type]
vis_tks = TyCon -> [Type] -> [Type]
filterOutInvisibleTypes TyCon
tc [Type]
tks

    -- tc_type_arity = number of *type* args expected
    -- tc_type_args  = number of *type* args encountered
    tc_type_arity :: Int
tc_type_arity = forall a. (a -> Bool) -> [a] -> Int
count forall tv. VarBndr tv TyConBndrVis -> Bool
isVisibleTyConBinder (TyCon -> [TyConBinder]
tyConBinders TyCon
tc)
    tc_type_args :: Int
tc_type_args  = forall (t :: * -> *) a. Foldable t => t a -> Int
length [Type]
vis_tks

arityErr :: Outputable a => SDoc -> a -> Int -> Int -> TcRnMessage
arityErr :: forall a. Outputable a => SDoc -> a -> Int -> Int -> TcRnMessage
arityErr SDoc
what a
name Int
n Int
m
  = forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
    [SDoc] -> SDoc
hsep [ String -> SDoc
text String
"The" SDoc -> SDoc -> SDoc
<+> SDoc
what, SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr a
name), String -> SDoc
text String
"should have",
           SDoc
n_arguments SDoc -> SDoc -> SDoc
<> SDoc
comma, String -> SDoc
text String
"but has been given",
           if Int
mforall a. Eq a => a -> a -> Bool
==Int
0 then String -> SDoc
text String
"none" else Int -> SDoc
int Int
m]
    where
        n_arguments :: SDoc
n_arguments | Int
n forall a. Eq a => a -> a -> Bool
== Int
0 = String -> SDoc
text String
"no arguments"
                    | Int
n forall a. Eq a => a -> a -> Bool
== Int
1 = String -> SDoc
text String
"1 argument"
                    | Bool
True   = [SDoc] -> SDoc
hsep [Int -> SDoc
int Int
n, String -> SDoc
text String
"arguments"]

{-
************************************************************************
*                                                                      *
\subsection{Checking for a decent instance head type}
*                                                                      *
************************************************************************

@checkValidInstHead@ checks the type {\em and} its syntactic constraints:
it must normally look like: @instance Foo (Tycon a b c ...) ...@

The exceptions to this syntactic checking: (1)~if the @GlasgowExts@
flag is on, or (2)~the instance is imported (they must have been
compiled elsewhere). In these cases, we let them go through anyway.

We can also have instances for functions: @instance Foo (a -> b) ...@.
-}

checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead UserTypeCtxt
ctxt Class
clas [Type]
cls_args
  = do { DynFlags
dflags   <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; Bool
is_boot  <- TcRnIf TcGblEnv TcLclEnv Bool
tcIsHsBootOrSig
       ; Bool
is_sig   <- TcRnIf TcGblEnv TcLclEnv Bool
tcIsHsig
       ; DynFlags
-> Bool -> Bool -> UserTypeCtxt -> Class -> [Type] -> TcM ()
check_special_inst_head DynFlags
dflags Bool
is_boot Bool
is_sig UserTypeCtxt
ctxt Class
clas [Type]
cls_args
       ; TyCon -> [Type] -> TcM ()
checkValidTypePats (Class -> TyCon
classTyCon Class
clas) [Type]
cls_args
       }

{-

Note [Instances of built-in classes in signature files]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

User defined instances for KnownNat, KnownSymbol, KnownChar,
and Typeable are disallowed
  -- they are generated when needed by GHC itself, on-the-fly.

However, if they occur in a Backpack signature file, they have an
entirely different meaning. To illustrate, suppose in M.hsig we see

  signature M where
    data T :: Nat
    instance KnownNat T

That says that any module satisfying M.hsig must provide a KnownNat
instance for T.  We absolultely need that instance when compiling a
module that imports M.hsig: see #15379 and
Note [Fabricating Evidence for Literals in Backpack] in GHC.Tc.Instance.Class.

Hence, checkValidInstHead accepts a user-written instance declaration
in hsig files, where `is_sig` is True.

-}

check_special_inst_head :: DynFlags -> Bool -> Bool
                        -> UserTypeCtxt -> Class -> [Type] -> TcM ()
-- Wow!  There are a surprising number of ad-hoc special cases here.
-- TODO: common up the logic for special typeclasses (see GHC ticket #20441).
check_special_inst_head :: DynFlags
-> Bool -> Bool -> UserTypeCtxt -> Class -> [Type] -> TcM ()
check_special_inst_head DynFlags
dflags Bool
is_boot Bool
is_sig UserTypeCtxt
ctxt Class
clas [Type]
cls_args

  -- If not in an hs-boot file, abstract classes cannot have instances
  | Class -> Bool
isAbstractClass Class
clas
  , Bool -> Bool
not Bool
is_boot
  = forall a. TcRnMessage -> TcM a
failWithTc (Class -> TcRnMessage
TcRnAbstractClassInst Class
clas)

  -- Complain about hand-written instances of built-in classes
  -- Typeable, KnownNat, KnownSymbol, Coercible, HasField.

  -- Disallow hand-written Typeable instances, except that we
  -- allow a standalone deriving declaration: they are no-ops,
  -- and we warn about them in GHC.Tc.Deriv.deriveStandalone.
  | Name
clas_nm forall a. Eq a => a -> a -> Bool
== Name
typeableClassName
  , Bool -> Bool
not Bool
is_sig
    -- Note [Instances of built-in classes in signature files]
  , Bool
hand_written_bindings
  = forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ Class -> Bool -> TcRnMessage
TcRnSpecialClassInst Class
clas Bool
False

  -- Handwritten instances of KnownNat/KnownChar/KnownSymbol
  -- are forbidden outside of signature files (#12837).
  -- Derived instances are forbidden completely (#21087).
  | Name
clas_nm forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [ Name
knownNatClassName, Name
knownSymbolClassName, Name
knownCharClassName ]
  , (Bool -> Bool
not Bool
is_sig Bool -> Bool -> Bool
&& Bool
hand_written_bindings) Bool -> Bool -> Bool
|| Bool
derived_instance
    -- Note [Instances of built-in classes in signature files]
  = forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ Class -> Bool -> TcRnMessage
TcRnSpecialClassInst Class
clas Bool
False

  -- For the most part we don't allow
  -- instances for (~), (~~), or Coercible;
  -- but we DO want to allow them in quantified constraints:
  --   f :: (forall a b. Coercible a b => Coercible (m a) (m b)) => ...m...
  | Name
clas_nm forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [ Name
heqTyConName, Name
eqTyConName, Name
coercibleTyConName, Name
withDictClassName ]
  , Bool -> Bool
not Bool
quantified_constraint
  = forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ Class -> Bool -> TcRnMessage
TcRnSpecialClassInst Class
clas Bool
False

  -- Check for hand-written Generic instances (disallowed in Safe Haskell)
  | Name
clas_nm forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Name]
genericClassNames
  , Bool
hand_written_bindings
  =  do { Bool -> TcRnMessage -> TcM ()
failIfTc (DynFlags -> Bool
safeLanguageOn DynFlags
dflags) (Class -> Bool -> TcRnMessage
TcRnSpecialClassInst Class
clas Bool
True)
        ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (DynFlags -> Bool
safeInferOn DynFlags
dflags) (Messages TcRnMessage -> TcM ()
recordUnsafeInfer forall e. Messages e
emptyMessages) }

  | Name
clas_nm forall a. Eq a => a -> a -> Bool
== Name
hasFieldClassName
  , Bool -> Bool
not Bool
quantified_constraint
  -- Don't do any validity checking for HasField contexts
  -- inside quantified constraints (#20989): the validity checks
  -- only apply to user-written instances.
  = Class -> [Type] -> TcM ()
checkHasFieldInst Class
clas [Type]
cls_args

  | Class -> Bool
isCTupleClass Class
clas
  = forall a. TcRnMessage -> TcM a
failWithTc (Class -> TcRnMessage
TcRnTupleConstraintInst Class
clas)

  -- Check language restrictions on the args to the class
  | Bool
check_h98_arg_shape
  , Just SDoc
msg <- Maybe SDoc
mb_ty_args_msg
  = forall a. TcRnMessage -> TcM a
failWithTc (Class -> [Type] -> SDoc -> TcRnMessage
instTypeErr Class
clas [Type]
cls_args SDoc
msg)

  | Bool
otherwise
  = forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
  where
    clas_nm :: Name
clas_nm = forall a. NamedThing a => a -> Name
getName Class
clas
    ty_args :: [Type]
ty_args = TyCon -> [Type] -> [Type]
filterOutInvisibleTypes (Class -> TyCon
classTyCon Class
clas) [Type]
cls_args

    hand_written_bindings :: Bool
hand_written_bindings
      = case UserTypeCtxt
ctxt of
          InstDeclCtxt Bool
standalone -> Bool -> Bool
not Bool
standalone
          UserTypeCtxt
SpecInstCtxt            -> Bool
False
          UserTypeCtxt
DerivClauseCtxt         -> Bool
False
          UserTypeCtxt
SigmaCtxt               -> Bool
False
          UserTypeCtxt
_                       -> Bool
True

    derived_instance :: Bool
derived_instance
      = case UserTypeCtxt
ctxt of
            InstDeclCtxt Bool
standalone -> Bool
standalone
            UserTypeCtxt
DerivClauseCtxt         -> Bool
True
            UserTypeCtxt
_                       -> Bool
False

    check_h98_arg_shape :: Bool
check_h98_arg_shape = case UserTypeCtxt
ctxt of
                            UserTypeCtxt
SpecInstCtxt    -> Bool
False
                            UserTypeCtxt
DerivClauseCtxt -> Bool
False
                            UserTypeCtxt
SigmaCtxt       -> Bool
False
                            UserTypeCtxt
_               -> Bool
True
        -- SigmaCtxt: once we are in quantified-constraint land, we
        -- aren't so picky about enforcing H98-language restrictions
        -- E.g. we want to allow a head like Coercible (m a) (m b)


    -- When we are looking at the head of a quantified constraint,
    -- check_quant_pred sets ctxt to SigmaCtxt
    quantified_constraint :: Bool
quantified_constraint = case UserTypeCtxt
ctxt of
                              UserTypeCtxt
SigmaCtxt -> Bool
True
                              UserTypeCtxt
_         -> Bool
False

    head_type_synonym_msg :: SDoc
head_type_synonym_msg = SDoc -> SDoc
parens (
                String -> SDoc
text String
"All instance types must be of the form (T t1 ... tn)" SDoc -> SDoc -> SDoc
$$
                String -> SDoc
text String
"where T is not a synonym." SDoc -> SDoc -> SDoc
$$
                String -> SDoc
text String
"Use TypeSynonymInstances if you want to disable this.")

    head_type_args_tyvars_msg :: SDoc
head_type_args_tyvars_msg = SDoc -> SDoc
parens ([SDoc] -> SDoc
vcat [
                String -> SDoc
text String
"All instance types must be of the form (T a1 ... an)",
                String -> SDoc
text String
"where a1 ... an are *distinct type variables*,",
                String -> SDoc
text String
"and each type variable appears at most once in the instance head.",
                String -> SDoc
text String
"Use FlexibleInstances if you want to disable this."])

    head_one_type_msg :: SDoc
head_one_type_msg = SDoc -> SDoc
parens forall a b. (a -> b) -> a -> b
$
                        String -> SDoc
text String
"Only one type can be given in an instance head." SDoc -> SDoc -> SDoc
$$
                        String -> SDoc
text String
"Use MultiParamTypeClasses if you want to allow more, or zero."

    mb_ty_args_msg :: Maybe SDoc
mb_ty_args_msg
      | Bool -> Bool
not (Extension -> DynFlags -> Bool
xopt Extension
LangExt.TypeSynonymInstances DynFlags
dflags)
      , Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Type -> Bool
tcInstHeadTyNotSynonym [Type]
ty_args)
      = forall a. a -> Maybe a
Just SDoc
head_type_synonym_msg

      | Bool -> Bool
not (Extension -> DynFlags -> Bool
xopt Extension
LangExt.FlexibleInstances DynFlags
dflags)
      , Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Type -> Bool
tcInstHeadTyAppAllTyVars [Type]
ty_args)
      = forall a. a -> Maybe a
Just SDoc
head_type_args_tyvars_msg

      | forall (t :: * -> *) a. Foldable t => t a -> Int
length [Type]
ty_args forall a. Eq a => a -> a -> Bool
/= Int
1
      , Bool -> Bool
not (Extension -> DynFlags -> Bool
xopt Extension
LangExt.MultiParamTypeClasses DynFlags
dflags)
      , Bool -> Bool
not (Extension -> DynFlags -> Bool
xopt Extension
LangExt.NullaryTypeClasses DynFlags
dflags Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
ty_args)
      = forall a. a -> Maybe a
Just SDoc
head_one_type_msg

      | Bool
otherwise
      = forall a. Maybe a
Nothing

tcInstHeadTyNotSynonym :: Type -> Bool
-- Used in Haskell-98 mode, for the argument types of an instance head
-- These must not be type synonyms, but everywhere else type synonyms
-- are transparent, so we need a special function here
tcInstHeadTyNotSynonym :: Type -> Bool
tcInstHeadTyNotSynonym Type
ty
  = case Type
ty of  -- Do not use splitTyConApp,
                -- because that expands synonyms!
        TyConApp TyCon
tc [Type]
_ -> Bool -> Bool
not (TyCon -> Bool
isTypeSynonymTyCon TyCon
tc) Bool -> Bool -> Bool
|| TyCon
tc forall a. Eq a => a -> a -> Bool
== TyCon
unrestrictedFunTyCon
                -- Allow (->), e.g. instance Category (->),
                -- even though it's a type synonym for FUN 'Many
        Type
_ -> Bool
True

tcInstHeadTyAppAllTyVars :: Type -> Bool
-- Used in Haskell-98 mode, for the argument types of an instance head
-- These must be a constructor applied to type variable arguments
-- or a type-level literal.
-- But we allow
-- 1) kind instantiations
-- 2) the type (->) = FUN 'Many, even though it's not in this form.
tcInstHeadTyAppAllTyVars :: Type -> Bool
tcInstHeadTyAppAllTyVars Type
ty
  | Just (TyCon
tc, [Type]
tys) <- HasCallStack => Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe (Type -> Type
dropCasts Type
ty)
  = let tys' :: [Type]
tys' = TyCon -> [Type] -> [Type]
filterOutInvisibleTypes TyCon
tc [Type]
tys  -- avoid kinds
        tys'' :: [Type]
tys'' | TyCon
tc forall a. Eq a => a -> a -> Bool
== TyCon
funTyCon, Type
tys_h:[Type]
tys_t <- [Type]
tys', Type
tys_h Type -> Type -> Bool
`eqType` Type
manyDataConTy = [Type]
tys_t
              | Bool
otherwise = [Type]
tys'
    in [Type] -> Bool
ok [Type]
tys''
  | LitTy TyLit
_ <- Type
ty = Bool
True  -- accept type literals (#13833)
  | Bool
otherwise
  = Bool
False
  where
        -- Check that all the types are type variables,
        -- and that each is distinct
    ok :: [Type] -> Bool
ok [Type]
tys = forall a b. [a] -> [b] -> Bool
equalLength [TyCoVar]
tvs [Type]
tys Bool -> Bool -> Bool
&& forall a. Eq a => [a] -> Bool
hasNoDups [TyCoVar]
tvs
           where
             tvs :: [TyCoVar]
tvs = forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe Type -> Maybe TyCoVar
tcGetTyVar_maybe [Type]
tys

dropCasts :: Type -> Type
-- See Note [Casts during validity checking]
-- This function can turn a well-kinded type into an ill-kinded
-- one, so I've kept it local to this module
-- To consider: drop only HoleCo casts
dropCasts :: Type -> Type
dropCasts (CastTy Type
ty KindCoercion
_)       = Type -> Type
dropCasts Type
ty
dropCasts (AppTy Type
t1 Type
t2)       = Type -> Type -> Type
mkAppTy (Type -> Type
dropCasts Type
t1) (Type -> Type
dropCasts Type
t2)
dropCasts ty :: Type
ty@(FunTy AnonArgFlag
_ Type
w Type
t1 Type
t2)  = Type
ty { ft_mult :: Type
ft_mult = Type -> Type
dropCasts Type
w, ft_arg :: Type
ft_arg = Type -> Type
dropCasts Type
t1, ft_res :: Type
ft_res = Type -> Type
dropCasts Type
t2 }
dropCasts (TyConApp TyCon
tc [Type]
tys)   = TyCon -> [Type] -> Type
mkTyConApp TyCon
tc (forall a b. (a -> b) -> [a] -> [b]
map Type -> Type
dropCasts [Type]
tys)
dropCasts (ForAllTy TyVarBinder
b Type
ty)     = TyVarBinder -> Type -> Type
ForAllTy (TyVarBinder -> TyVarBinder
dropCastsB TyVarBinder
b) (Type -> Type
dropCasts Type
ty)
dropCasts Type
ty                  = Type
ty  -- LitTy, TyVarTy, CoercionTy

dropCastsB :: TyVarBinder -> TyVarBinder
dropCastsB :: TyVarBinder -> TyVarBinder
dropCastsB TyVarBinder
b = TyVarBinder
b   -- Don't bother in the kind of a forall

instTypeErr :: Class -> [Type] -> SDoc -> TcRnMessage
instTypeErr :: Class -> [Type] -> SDoc -> TcRnMessage
instTypeErr Class
cls [Type]
tys SDoc
msg
  = forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
    SDoc -> Int -> SDoc -> SDoc
hang (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Illegal instance declaration for")
             Int
2 (SDoc -> SDoc
quotes (Class -> [Type] -> SDoc
pprClassPred Class
cls [Type]
tys)))
       Int
2 SDoc
msg

-- | See Note [Validity checking of HasField instances]
checkHasFieldInst :: Class -> [Type] -> TcM ()
checkHasFieldInst :: Class -> [Type] -> TcM ()
checkHasFieldInst Class
cls tys :: [Type]
tys@[Type
_k_ty, Type
x_ty, Type
r_ty, Type
_a_ty] =
  case HasDebugCallStack => Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
r_ty of
    Maybe (TyCon, [Type])
Nothing -> SDoc -> TcM ()
whoops (String -> SDoc
text String
"Record data type must be specified")
    Just (TyCon
tc, [Type]
_)
      | TyCon -> Bool
isFamilyTyCon TyCon
tc
                  -> SDoc -> TcM ()
whoops (String -> SDoc
text String
"Record data type may not be a data family")
      | Bool
otherwise -> case Type -> Maybe FastString
isStrLitTy Type
x_ty of
       Just FastString
lbl
         | forall a. Maybe a -> Bool
isJust (FastString -> TyCon -> Maybe FieldLabel
lookupTyConFieldLabel FastString
lbl TyCon
tc)
                     -> SDoc -> TcM ()
whoops (forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"already has a field"
                                       SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr FastString
lbl))
         | Bool
otherwise -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
       Maybe FastString
Nothing
         | forall (t :: * -> *) a. Foldable t => t a -> Bool
null (TyCon -> [FieldLabel]
tyConFieldLabels TyCon
tc) -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
         | Bool
otherwise -> SDoc -> TcM ()
whoops (forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"has fields")
  where
    whoops :: SDoc -> TcM ()
whoops = TcRnMessage -> TcM ()
addErrTc forall b c a. (b -> c) -> (a -> b) -> a -> c
. Class -> [Type] -> SDoc -> TcRnMessage
instTypeErr Class
cls [Type]
tys
checkHasFieldInst Class
_ [Type]
tys = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"checkHasFieldInst" (forall a. Outputable a => a -> SDoc
ppr [Type]
tys)

{- Note [Casts during validity checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the (bogus)
     instance Eq Char#
We elaborate to  'Eq (Char# |> UnivCo(hole))'  where the hole is an
insoluble equality constraint for Type ~ TYPE WordRep.  We'll report the insoluble
constraint separately, but we don't want to *also* complain that Eq is
not applied to a type constructor.  So we look gaily look through
CastTys here.

Another example:  Eq (Either a).  Then we actually get a cast in
the middle:
   Eq ((Either |> g) a)


Note [Validity checking of HasField instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The HasField class has magic constraint solving behaviour (see Note
[HasField instances] in GHC.Tc.Solver.Interact).  However, we permit users to
declare their own instances, provided they do not clash with the
built-in behaviour.  In particular, we forbid:

  1. `HasField _ r _` where r is a variable

  2. `HasField _ (T ...) _` if T is a data family
     (because it might have fields introduced later)

  3. `HasField x (T ...) _` where x is a variable,
      if T has any fields at all

  4. `HasField "foo" (T ...) _` if T has a "foo" field

The usual functional dependency checks also apply.


Note [Valid 'deriving' predicate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
validDerivPred checks for OK 'deriving' context.  See Note [Exotic
derived instance contexts] in GHC.Tc.Deriv.  However the predicate is
here because it uses sizeTypes, fvTypes.

It checks for three things

(VD1) No repeated variables (hasNoDups fvs)

(VD2) No type constructors.  This is done by comparing
        sizeTypes tys == length (fvTypes tys)
      sizeTypes counts variables and constructors; fvTypes returns variables.
      So if they are the same, there must be no constructors.  But there
      might be applications thus (f (g x)).

      Note that tys only includes the visible arguments of the class type
      constructor. Including the non-visible arguments can cause the following,
      perfectly valid instance to be rejected:
         class Category (cat :: k -> k -> *) where ...
         newtype T (c :: * -> * -> *) a b = MkT (c a b)
         instance Category c => Category (T c) where ...
      since the first argument to Category is a non-visible *, which sizeTypes
      would count as a constructor! See #11833.

(VD3) Also check for a bizarre corner case, when the derived instance decl
      would look like
         instance C a b => D (T a) where ...
      Note that 'b' isn't a parameter of T.  This gives rise to all sorts of
      problems; in particular, it's hard to compare solutions for equality
      when finding the fixpoint, and that means the inferContext loop does
      not converge.  See #5287, #21302

Note [Equality class instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can't have users writing instances for the equality classes. But we
still need to be able to write instances for them ourselves. So we allow
instances only in the defining module.

-}

validDerivPred :: TyVarSet -> PredType -> Bool
-- See Note [Valid 'deriving' predicate]
validDerivPred :: VarSet -> Type -> Bool
validDerivPred VarSet
tv_set Type
pred
  | Bool -> Bool
not (Type -> VarSet
tyCoVarsOfType Type
pred VarSet -> VarSet -> Bool
`subVarSet` VarSet
tv_set)
  = Bool
False  -- Check (VD3)

  | Bool
otherwise
  = case Type -> Pred
classifyPredType Type
pred of

       ClassPred Class
cls [Type]
tys
          | Class -> Bool
isTerminatingClass Class
cls -> Bool
True
            -- Typeable constraints are bigger than they appear due
            -- to kind polymorphism, but that's OK

          | Bool
otherwise -> forall a. Eq a => [a] -> Bool
hasNoDups [TyCoVar]
visible_fvs                        -- Check (VD1)
                      Bool -> Bool -> Bool
&& forall a. [a] -> Int -> Bool
lengthIs [TyCoVar]
visible_fvs ([Type] -> Int
sizeTypes [Type]
visible_tys) -- Check (VD2)
          where
            visible_tys :: [Type]
visible_tys = TyCon -> [Type] -> [Type]
filterOutInvisibleTypes (Class -> TyCon
classTyCon Class
cls) [Type]
tys
            visible_fvs :: [TyCoVar]
visible_fvs = [Type] -> [TyCoVar]
fvTypes [Type]
visible_tys

       IrredPred {}   -> Bool
True   -- Accept (f a)
       EqPred {}      -> Bool
False  -- Reject equality constraints
       ForAllPred {}  -> Bool
False  -- Rejects quantified predicates

{-
************************************************************************
*                                                                      *
\subsection{Checking instance for termination}
*                                                                      *
************************************************************************
-}

{- Note [Instances and constraint synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, we don't allow instances for constraint synonyms at all.
Consider these (#13267):
  type C1 a = Show (a -> Bool)
  instance C1 Int where    -- I1
    show _ = "ur"

This elicits "show is not a (visible) method of class C1", which isn't
a great message. But it comes from the renamer, so it's hard to improve.

This needs a bit more care:
  type C2 a = (Show a, Show Int)
  instance C2 Int           -- I2

If we use (splitTyConApp_maybe tau) in checkValidInstance to decompose
the instance head, we'll expand the synonym on fly, and it'll look like
  instance (%,%) (Show Int, Show Int)
and we /really/ don't want that.  So we carefully do /not/ expand
synonyms, by matching on TyConApp directly.
-}

checkValidInstance :: UserTypeCtxt -> LHsSigType GhcRn -> Type -> TcM ()
checkValidInstance :: UserTypeCtxt -> LHsSigType GhcRn -> Type -> TcM ()
checkValidInstance UserTypeCtxt
ctxt LHsSigType GhcRn
hs_type Type
ty
  | Bool -> Bool
not Bool
is_tc_app
  = forall a. TcRnMessage -> TcM a
failWithTc (Type -> TcRnMessage
TcRnNoClassInstHead Type
tau)

  | forall a. Maybe a -> Bool
isNothing Maybe Class
mb_cls
  = forall a. TcRnMessage -> TcM a
failWithTc (TyConFlavour -> TcRnMessage
TcRnIllegalClassInst (TyCon -> TyConFlavour
tyConFlavour TyCon
tc))

  | Bool
otherwise
  = do  { forall ann a. SrcSpanAnn' ann -> TcRn a -> TcRn a
setSrcSpanA SrcSpanAnn' (EpAnn AnnListItem)
head_loc forall a b. (a -> b) -> a -> b
$
          UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead UserTypeCtxt
ctxt Class
clas [Type]
inst_tys

        ; String -> SDoc -> TcM ()
traceTc String
"checkValidInstance {" (forall a. Outputable a => a -> SDoc
ppr Type
ty)

        ; TidyEnv
env0 <- TcM TidyEnv
tcInitTidyEnv
        ; ExpandMode
expand <- TcM ExpandMode
initialExpandMode
        ; TidyEnv -> UserTypeCtxt -> ExpandMode -> [Type] -> TcM ()
check_valid_theta TidyEnv
env0 UserTypeCtxt
ctxt ExpandMode
expand [Type]
theta

        -- The Termination and Coverate Conditions
        -- Check that instance inference will terminate (if we care)
        -- For Haskell 98 this will already have been done by checkValidTheta,
        -- but as we may be using other extensions we need to check.
        --
        -- Note that the Termination Condition is *more conservative* than
        -- the checkAmbiguity test we do on other type signatures
        --   e.g.  Bar a => Bar Int is ambiguous, but it also fails
        --   the termination condition, because 'a' appears more often
        --   in the constraint than in the head
        ; Bool
undecidable_ok <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.UndecidableInstances
        ; if Bool
undecidable_ok
          then UserTypeCtxt -> Type -> TcM ()
checkAmbiguity UserTypeCtxt
ctxt Type
ty
          else [Type] -> Type -> TcM ()
checkInstTermination [Type]
theta Type
tau

        ; String -> SDoc -> TcM ()
traceTc String
"cvi 2" (forall a. Outputable a => a -> SDoc
ppr Type
ty)

        ; case (Bool -> Class -> [Type] -> [Type] -> Validity
checkInstCoverage Bool
undecidable_ok Class
clas [Type]
theta [Type]
inst_tys) of
            Validity
IsValid      -> forall (m :: * -> *) a. Monad m => a -> m a
return ()   -- Check succeeded
            NotValid SDoc
msg -> TcRnMessage -> TcM ()
addErrTc (Class -> [Type] -> SDoc -> TcRnMessage
instTypeErr Class
clas [Type]
inst_tys SDoc
msg)

        ; String -> SDoc -> TcM ()
traceTc String
"End checkValidInstance }" SDoc
empty

        ; forall (m :: * -> *) a. Monad m => a -> m a
return () }
  where
    ([TyCoVar]
_tvs, [Type]
theta, Type
tau)   = Type -> ([TyCoVar], [Type], Type)
tcSplitSigmaTy Type
ty
    is_tc_app :: Bool
is_tc_app            = case Type
tau of { TyConApp {} -> Bool
True; Type
_ -> Bool
False }
    TyConApp TyCon
tc [Type]
inst_tys = Type
tau   -- See Note [Instances and constraint synonyms]
    mb_cls :: Maybe Class
mb_cls               = TyCon -> Maybe Class
tyConClass_maybe TyCon
tc
    Just Class
clas            = Maybe Class
mb_cls

        -- The location of the "head" of the instance
    head_loc :: SrcSpanAnn' (EpAnn AnnListItem)
head_loc = forall l e. GenLocated l e -> l
getLoc (forall (p :: Pass). LHsSigType (GhcPass p) -> LHsType (GhcPass p)
getLHsInstDeclHead LHsSigType GhcRn
hs_type)

{-
Note [Paterson conditions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Termination test: the so-called "Paterson conditions" (see Section 5 of
"Understanding functional dependencies via Constraint Handling Rules,
JFP Jan 2007).

We check that each assertion in the context satisfies:
 (1) no variable has more occurrences in the assertion than in the head, and
 (2) the assertion has fewer constructors and variables (taken together
     and counting repetitions) than the head.
This is only needed with -fglasgow-exts, as Haskell 98 restrictions
(which have already been checked) guarantee termination.

The underlying idea is that

    for any ground substitution, each assertion in the
    context has fewer type constructors than the head.
-}

checkInstTermination :: ThetaType -> TcPredType -> TcM ()
-- See Note [Paterson conditions]
checkInstTermination :: [Type] -> Type -> TcM ()
checkInstTermination [Type]
theta Type
head_pred
  = VarSet -> [Type] -> TcM ()
check_preds VarSet
emptyVarSet [Type]
theta
  where
   head_fvs :: [TyCoVar]
head_fvs  = Type -> [TyCoVar]
fvType Type
head_pred
   head_size :: Int
head_size = Type -> Int
sizeType Type
head_pred

   check_preds :: VarSet -> [PredType] -> TcM ()
   check_preds :: VarSet -> [Type] -> TcM ()
check_preds VarSet
foralld_tvs [Type]
preds = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (VarSet -> Type -> TcM ()
check VarSet
foralld_tvs) [Type]
preds

   check :: VarSet -> PredType -> TcM ()
   check :: VarSet -> Type -> TcM ()
check VarSet
foralld_tvs Type
pred
     = case Type -> Pred
classifyPredType Type
pred of
         EqPred {}      -> forall (m :: * -> *) a. Monad m => a -> m a
return ()  -- See #4200.
         IrredPred {}   -> VarSet -> Type -> Int -> TcM ()
check2 VarSet
foralld_tvs Type
pred (Type -> Int
sizeType Type
pred)
         ClassPred Class
cls [Type]
tys
           | Class -> Bool
isTerminatingClass Class
cls
           -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

           | Class -> Bool
isCTupleClass Class
cls  -- Look inside tuple predicates; #8359
           -> VarSet -> [Type] -> TcM ()
check_preds VarSet
foralld_tvs [Type]
tys

           | Bool
otherwise          -- Other ClassPreds
           -> VarSet -> Type -> Int -> TcM ()
check2 VarSet
foralld_tvs Type
pred Int
bogus_size
           where
              bogus_size :: Int
bogus_size = Int
1 forall a. Num a => a -> a -> a
+ [Type] -> Int
sizeTypes (TyCon -> [Type] -> [Type]
filterOutInvisibleTypes (Class -> TyCon
classTyCon Class
cls) [Type]
tys)
                               -- See Note [Invisible arguments and termination]

         ForAllPred [TyCoVar]
tvs [Type]
_ Type
head_pred'
           -> VarSet -> Type -> TcM ()
check (VarSet
foralld_tvs VarSet -> [TyCoVar] -> VarSet
`extendVarSetList` [TyCoVar]
tvs) Type
head_pred'
              -- Termination of the quantified predicate itself is checked
              -- when the predicates are individually checked for validity

   check2 :: VarSet -> Type -> Int -> TcM ()
check2 VarSet
foralld_tvs Type
pred Int
pred_size
     | Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyCoVar]
bad_tvs)     = forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
       ([TyCoVar] -> SDoc -> SDoc -> SDoc
noMoreMsg [TyCoVar]
bad_tvs SDoc
what (forall a. Outputable a => a -> SDoc
ppr Type
head_pred))
     | Bool -> Bool
not (Type -> Bool
isTyFamFree Type
pred) = forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
       (SDoc -> SDoc
nestedMsg SDoc
what)
     | Int
pred_size forall a. Ord a => a -> a -> Bool
>= Int
head_size = forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
       (SDoc -> SDoc -> SDoc
smallerMsg SDoc
what (forall a. Outputable a => a -> SDoc
ppr Type
head_pred))
     | Bool
otherwise              = forall (m :: * -> *) a. Monad m => a -> m a
return ()
     -- isTyFamFree: see Note [Type families in instance contexts]
     where
        what :: SDoc
what    = String -> SDoc
text String
"constraint" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Type
pred)
        bad_tvs :: [TyCoVar]
bad_tvs = forall a. (a -> Bool) -> [a] -> [a]
filterOut (TyCoVar -> VarSet -> Bool
`elemVarSet` VarSet
foralld_tvs) (Type -> [TyCoVar]
fvType Type
pred)
                  forall a. Eq a => [a] -> [a] -> [a]
\\ [TyCoVar]
head_fvs

smallerMsg :: SDoc -> SDoc -> SDoc
smallerMsg :: SDoc -> SDoc -> SDoc
smallerMsg SDoc
what SDoc
inst_head
  = [SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"The" SDoc -> SDoc -> SDoc
<+> SDoc
what)
              Int
2 ([SDoc] -> SDoc
sep [ String -> SDoc
text String
"is no smaller than"
                     , String -> SDoc
text String
"the instance head" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes SDoc
inst_head ])
         , SDoc -> SDoc
parens SDoc
undecidableMsg ]

noMoreMsg :: [TcTyVar] -> SDoc -> SDoc -> SDoc
noMoreMsg :: [TyCoVar] -> SDoc -> SDoc -> SDoc
noMoreMsg [TyCoVar]
tvs SDoc
what SDoc
inst_head
  = [SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Variable" SDoc -> SDoc -> SDoc
<> forall a. [a] -> SDoc
plural [TyCoVar]
tvs1 SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. (a -> SDoc) -> [a] -> SDoc
pprWithCommas forall a. Outputable a => a -> SDoc
ppr [TyCoVar]
tvs1)
                SDoc -> SDoc -> SDoc
<+> SDoc
occurs SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"more often")
              Int
2 ([SDoc] -> SDoc
sep [ String -> SDoc
text String
"in the" SDoc -> SDoc -> SDoc
<+> SDoc
what
                     , String -> SDoc
text String
"than in the instance head" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes SDoc
inst_head ])
         , SDoc -> SDoc
parens SDoc
undecidableMsg ]
  where
   tvs1 :: [TyCoVar]
tvs1   = forall a. Eq a => [a] -> [a]
nub [TyCoVar]
tvs
   occurs :: SDoc
occurs = if forall a. [a] -> Bool
isSingleton [TyCoVar]
tvs1 then String -> SDoc
text String
"occurs"
                               else String -> SDoc
text String
"occur"

undecidableMsg :: SDoc
undecidableMsg :: SDoc
undecidableMsg = String -> SDoc
text String
"Use UndecidableInstances to permit this"

{- Note [Type families in instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Are these OK?
  type family F a
  instance F a    => C (Maybe [a]) where ...
  instance C (F a) => C [[[a]]]     where ...

No: the type family in the instance head might blow up to an
arbitrarily large type, depending on how 'a' is instantiated.
So we require UndecidableInstances if we have a type family
in the instance head.  #15172.

Note [Invisible arguments and termination]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking the ​Paterson conditions for termination an instance
declaration, we check for the number of "constructors and variables"
in the instance head and constraints. Question: Do we look at

 * All the arguments, visible or invisible?
 * Just the visible arguments?

I think both will ensure termination, provided we are consistent.
Currently we are /not/ consistent, which is really a bug.  It's
described in #15177, which contains a number of examples.
The suspicious bits are the calls to filterOutInvisibleTypes.
-}


{-
************************************************************************
*                                                                      *
        Checking type instance well-formedness and termination
*                                                                      *
************************************************************************
-}

checkValidCoAxiom :: CoAxiom Branched -> TcM ()
checkValidCoAxiom :: CoAxiom Branched -> TcM ()
checkValidCoAxiom ax :: CoAxiom Branched
ax@(CoAxiom { co_ax_tc :: forall (br :: BranchFlag). CoAxiom br -> TyCon
co_ax_tc = TyCon
fam_tc, co_ax_branches :: forall (br :: BranchFlag). CoAxiom br -> Branches br
co_ax_branches = Branches Branched
branches })
  = do { forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (TyCon -> CoAxBranch -> TcM ()
checkValidCoAxBranch TyCon
fam_tc) [CoAxBranch]
branch_list
       ; forall (m :: * -> *) (t :: * -> *) a b.
(Monad m, Foldable t) =>
(a -> b -> m a) -> a -> t b -> m ()
foldlM_ [CoAxBranch] -> CoAxBranch -> TcM [CoAxBranch]
check_branch_compat [] [CoAxBranch]
branch_list }
  where
    branch_list :: [CoAxBranch]
branch_list = forall (br :: BranchFlag). Branches br -> [CoAxBranch]
fromBranches Branches Branched
branches
    injectivity :: Injectivity
injectivity = TyCon -> Injectivity
tyConInjectivityInfo TyCon
fam_tc

    check_branch_compat :: [CoAxBranch]    -- previous branches in reverse order
                        -> CoAxBranch      -- current branch
                        -> TcM [CoAxBranch]-- current branch : previous branches
    -- Check for
    --   (a) this branch is dominated by previous ones
    --   (b) failure of injectivity
    check_branch_compat :: [CoAxBranch] -> CoAxBranch -> TcM [CoAxBranch]
check_branch_compat [CoAxBranch]
prev_branches CoAxBranch
cur_branch
      | CoAxBranch
cur_branch CoAxBranch -> [CoAxBranch] -> Bool
`isDominatedBy` [CoAxBranch]
prev_branches
      = do { let dia :: TcRnMessage
dia = forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$
                   DiagnosticReason -> [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainDiagnostic DiagnosticReason
WarningWithoutFlag [GhcHint]
noHints (TyCon -> CoAxBranch -> SDoc
inaccessibleCoAxBranch TyCon
fam_tc CoAxBranch
cur_branch)
           ; SrcSpan -> TcRnMessage -> TcM ()
addDiagnosticAt (CoAxBranch -> SrcSpan
coAxBranchSpan CoAxBranch
cur_branch) TcRnMessage
dia
           ; forall (m :: * -> *) a. Monad m => a -> m a
return [CoAxBranch]
prev_branches }
      | Bool
otherwise
      = do { [CoAxBranch] -> CoAxBranch -> TcM ()
check_injectivity [CoAxBranch]
prev_branches CoAxBranch
cur_branch
           ; forall (m :: * -> *) a. Monad m => a -> m a
return (CoAxBranch
cur_branch forall a. a -> [a] -> [a]
: [CoAxBranch]
prev_branches) }

     -- Injectivity check: check whether a new (CoAxBranch) can extend
     -- already checked equations without violating injectivity
     -- annotation supplied by the user.
     -- See Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv
    check_injectivity :: [CoAxBranch] -> CoAxBranch -> TcM ()
check_injectivity [CoAxBranch]
prev_branches CoAxBranch
cur_branch
      | Injective [Bool]
inj <- Injectivity
injectivity
      = do { DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
           ; let conflicts :: [CoAxBranch]
conflicts =
                     forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' ([Bool]
-> [CoAxBranch]
-> CoAxBranch
-> ([CoAxBranch], Int)
-> CoAxBranch
-> ([CoAxBranch], Int)
gather_conflicts [Bool]
inj [CoAxBranch]
prev_branches CoAxBranch
cur_branch)
                                 ([], Int
0) [CoAxBranch]
prev_branches
           ; TyCon -> [CoAxBranch] -> CoAxBranch -> TcM ()
reportConflictingInjectivityErrs TyCon
fam_tc [CoAxBranch]
conflicts CoAxBranch
cur_branch
           ; forall (br :: BranchFlag).
DynFlags -> CoAxiom br -> CoAxBranch -> [Bool] -> TcM ()
reportInjectivityErrors DynFlags
dflags CoAxiom Branched
ax CoAxBranch
cur_branch [Bool]
inj }
      | Bool
otherwise
      = forall (m :: * -> *) a. Monad m => a -> m a
return ()

    gather_conflicts :: [Bool]
-> [CoAxBranch]
-> CoAxBranch
-> ([CoAxBranch], Int)
-> CoAxBranch
-> ([CoAxBranch], Int)
gather_conflicts [Bool]
inj [CoAxBranch]
prev_branches CoAxBranch
cur_branch ([CoAxBranch]
acc, Int
n) CoAxBranch
branch
               -- n is 0-based index of branch in prev_branches
      = case [Bool] -> CoAxBranch -> CoAxBranch -> InjectivityCheckResult
injectiveBranches [Bool]
inj CoAxBranch
cur_branch CoAxBranch
branch of
           -- Case 1B2 in Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv
          InjectivityUnified CoAxBranch
ax1 CoAxBranch
ax2
            | CoAxBranch
ax1 CoAxBranch -> [CoAxBranch] -> Bool
`isDominatedBy` ([CoAxBranch] -> Int -> CoAxBranch -> [CoAxBranch]
replace_br [CoAxBranch]
prev_branches Int
n CoAxBranch
ax2)
                -> ([CoAxBranch]
acc, Int
n forall a. Num a => a -> a -> a
+ Int
1)
            | Bool
otherwise
                -> (CoAxBranch
branch forall a. a -> [a] -> [a]
: [CoAxBranch]
acc, Int
n forall a. Num a => a -> a -> a
+ Int
1)
          InjectivityCheckResult
InjectivityAccepted -> ([CoAxBranch]
acc, Int
n forall a. Num a => a -> a -> a
+ Int
1)

    -- Replace n-th element in the list. Assumes 0-based indexing.
    replace_br :: [CoAxBranch] -> Int -> CoAxBranch -> [CoAxBranch]
    replace_br :: [CoAxBranch] -> Int -> CoAxBranch -> [CoAxBranch]
replace_br [CoAxBranch]
brs Int
n CoAxBranch
br = forall a. Int -> [a] -> [a]
take Int
n [CoAxBranch]
brs forall a. [a] -> [a] -> [a]
++ [CoAxBranch
br] forall a. [a] -> [a] -> [a]
++ forall a. Int -> [a] -> [a]
drop (Int
nforall a. Num a => a -> a -> a
+Int
1) [CoAxBranch]
brs


-- Check that a "type instance" is well-formed (which includes decidability
-- unless -XUndecidableInstances is given).
--
checkValidCoAxBranch :: TyCon -> CoAxBranch -> TcM ()
checkValidCoAxBranch :: TyCon -> CoAxBranch -> TcM ()
checkValidCoAxBranch TyCon
fam_tc
                    (CoAxBranch { cab_tvs :: CoAxBranch -> [TyCoVar]
cab_tvs = [TyCoVar]
tvs, cab_cvs :: CoAxBranch -> [TyCoVar]
cab_cvs = [TyCoVar]
cvs
                                , cab_lhs :: CoAxBranch -> [Type]
cab_lhs = [Type]
typats
                                , cab_rhs :: CoAxBranch -> Type
cab_rhs = Type
rhs, cab_loc :: CoAxBranch -> SrcSpan
cab_loc = SrcSpan
loc })
  = forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc forall a b. (a -> b) -> a -> b
$
    TyCon -> [TyCoVar] -> [Type] -> Type -> TcM ()
checkValidTyFamEqn TyCon
fam_tc ([TyCoVar]
tvsforall a. [a] -> [a] -> [a]
++[TyCoVar]
cvs) [Type]
typats Type
rhs

-- | Do validity checks on a type family equation, including consistency
-- with any enclosing class instance head, termination, and lack of
-- polytypes.
checkValidTyFamEqn :: TyCon   -- ^ of the type family
                   -> [Var]   -- ^ Bound variables in the equation
                   -> [Type]  -- ^ Type patterns
                   -> Type    -- ^ Rhs
                   -> TcM ()
checkValidTyFamEqn :: TyCon -> [TyCoVar] -> [Type] -> Type -> TcM ()
checkValidTyFamEqn TyCon
fam_tc [TyCoVar]
qvs [Type]
typats Type
rhs
  = do { TyCon -> [Type] -> TcM ()
checkValidTypePats TyCon
fam_tc [Type]
typats

         -- Check for things used on the right but not bound on the left
       ; TyCon -> [TyCoVar] -> [Type] -> Type -> TcM ()
checkFamPatBinders TyCon
fam_tc [TyCoVar]
qvs [Type]
typats Type
rhs

         -- Check for oversaturated visible kind arguments in a type family
         -- equation.
         -- See Note [Oversaturated type family equations]
       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (TyCon -> Bool
isTypeFamilyTyCon TyCon
fam_tc) forall a b. (a -> b) -> a -> b
$
           case forall a. Int -> [a] -> [a]
drop (TyCon -> Int
tyConArity TyCon
fam_tc) [Type]
typats of
             [] -> forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
             Type
spec_arg:[Type]
_ ->
               TcRnMessage -> TcM ()
addErr (Type -> TcRnMessage
TcRnOversaturatedVisibleKindArg Type
spec_arg)

         -- The argument patterns, and RHS, are all boxed tau types
         -- E.g  Reject type family F (a :: k1) :: k2
         --             type instance F (forall a. a->a) = ...
         --             type instance F Int#             = ...
         --             type instance F Int              = forall a. a->a
         --             type instance F Int              = Int#
         -- See #9357
       ; Type -> TcM ()
checkValidMonoType Type
rhs

         -- We have a decidable instance unless otherwise permitted
       ; Bool
undecidable_ok <- forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.UndecidableInstances
       ; String -> SDoc -> TcM ()
traceTc String
"checkVTFE" (forall a. Outputable a => a -> SDoc
ppr TyCon
fam_tc SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Type
rhs SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr (Type -> [(TyCon, [Type])]
tcTyFamInsts Type
rhs))
       ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
undecidable_ok forall a b. (a -> b) -> a -> b
$
         forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ TcRnMessage -> TcM ()
addErrTc (TyCon -> [Type] -> [(TyCon, [Type])] -> [TcRnMessage]
checkFamInstRhs TyCon
fam_tc [Type]
typats (Type -> [(TyCon, [Type])]
tcTyFamInsts Type
rhs)) }

-- | Checks that an associated type family default:
--
-- 1. Only consists of arguments that are bare type variables, and
--
-- 2. Has a distinct type variable in each argument.
--
-- See @Note [Type-checking default assoc decls]@ in "GHC.Tc.TyCl".
checkValidAssocTyFamDeflt :: TyCon  -- ^ of the type family
                          -> [Type] -- ^ Type patterns
                          -> TcM ()
checkValidAssocTyFamDeflt :: TyCon -> [Type] -> TcM ()
checkValidAssocTyFamDeflt TyCon
fam_tc [Type]
pats =
  do { [TyCoVar]
cpt_tvs <- forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM Type -> ArgFlag -> TcM TyCoVar
extract_tv [Type]
pats [ArgFlag]
pats_vis
     ; [(TyCoVar, ArgFlag)] -> TcM ()
check_all_distinct_tvs forall a b. (a -> b) -> a -> b
$ forall a b. [a] -> [b] -> [(a, b)]
zip [TyCoVar]
cpt_tvs [ArgFlag]
pats_vis }
  where
    pats_vis :: [ArgFlag]
    pats_vis :: [ArgFlag]
pats_vis = TyCon -> [Type] -> [ArgFlag]
tyConArgFlags TyCon
fam_tc [Type]
pats

    -- Checks that a pattern on the LHS of a default is a type
    -- variable. If so, return the underlying type variable, and if
    -- not, throw an error.
    -- See Note [Type-checking default assoc decls]
    extract_tv :: Type    -- The particular type pattern from which to extract
                          -- its underlying type variable
               -> ArgFlag -- The visibility of the type pattern
                          -- (only used for error message purposes)
               -> TcM TyVar
    extract_tv :: Type -> ArgFlag -> TcM TyCoVar
extract_tv Type
pat ArgFlag
pat_vis =
      case Type -> Maybe TyCoVar
getTyVar_maybe Type
pat of
        Just TyCoVar
tv -> forall (f :: * -> *) a. Applicative f => a -> f a
pure TyCoVar
tv
        Maybe TyCoVar
Nothing -> forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
          Bool -> SDoc -> SDoc
pprWithExplicitKindsWhen (ArgFlag -> Bool
isInvisibleArgFlag ArgFlag
pat_vis) forall a b. (a -> b) -> a -> b
$
          SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Illegal argument" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Type
pat) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"in:")
             Int
2 ([SDoc] -> SDoc
vcat [SDoc
ppr_eqn, SDoc
suggestion])

    -- Checks that no type variables in an associated default declaration are
    -- duplicated. If that is the case, throw an error.
    -- See Note [Type-checking default assoc decls]
    check_all_distinct_tvs ::
         [(TyVar, ArgFlag)] -- The type variable arguments in the associated
                            -- default declaration, along with their respective
                            -- visibilities (the latter are only used for error
                            -- message purposes)
      -> TcM ()
    check_all_distinct_tvs :: [(TyCoVar, ArgFlag)] -> TcM ()
check_all_distinct_tvs [(TyCoVar, ArgFlag)]
cpt_tvs_vis =
      let dups :: [NonEmpty (TyCoVar, ArgFlag)]
dups = forall a. (a -> a -> Bool) -> [a] -> [NonEmpty a]
findDupsEq (forall a. Eq a => a -> a -> Bool
(==) forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` forall a b. (a, b) -> a
fst) [(TyCoVar, ArgFlag)]
cpt_tvs_vis in
      forall (t :: * -> *) (f :: * -> *) a b.
(Foldable t, Applicative f) =>
(a -> f b) -> t a -> f ()
traverse_
        (\NonEmpty (TyCoVar, ArgFlag)
d -> let (TyCoVar
pat_tv, ArgFlag
pat_vis) = forall a. NonEmpty a -> a
NE.head NonEmpty (TyCoVar, ArgFlag)
d in forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$
               forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
               Bool -> SDoc -> SDoc
pprWithExplicitKindsWhen (ArgFlag -> Bool
isInvisibleArgFlag ArgFlag
pat_vis) forall a b. (a -> b) -> a -> b
$
               SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Illegal duplicate variable"
                       SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr TyCoVar
pat_tv) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"in:")
                  Int
2 ([SDoc] -> SDoc
vcat [SDoc
ppr_eqn, SDoc
suggestion]))
        [NonEmpty (TyCoVar, ArgFlag)]
dups

    ppr_eqn :: SDoc
    ppr_eqn :: SDoc
ppr_eqn =
      SDoc -> SDoc
quotes (String -> SDoc
text String
"type" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (TyCon -> [Type] -> Type
mkTyConApp TyCon
fam_tc [Type]
pats)
                SDoc -> SDoc -> SDoc
<+> SDoc
equals SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"...")

    suggestion :: SDoc
    suggestion :: SDoc
suggestion = String -> SDoc
text String
"The arguments to" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr TyCon
fam_tc)
             SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"must all be distinct type variables"

-- Make sure that each type family application is
--   (1) strictly smaller than the lhs,
--   (2) mentions no type variable more often than the lhs, and
--   (3) does not contain any further type family instances.
--
checkFamInstRhs :: TyCon -> [Type]         -- LHS
                -> [(TyCon, [Type])]       -- type family calls in RHS
                -> [TcRnMessage]
checkFamInstRhs :: TyCon -> [Type] -> [(TyCon, [Type])] -> [TcRnMessage]
checkFamInstRhs TyCon
lhs_tc [Type]
lhs_tys [(TyCon, [Type])]
famInsts
  = forall a b. (a -> b) -> [a] -> [b]
map (forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall b c a. (b -> c) -> (a -> b) -> a -> c
. [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (TyCon, [Type]) -> Maybe SDoc
check [(TyCon, [Type])]
famInsts
  where
   lhs_size :: Int
lhs_size  = TyCon -> [Type] -> Int
sizeTyConAppArgs TyCon
lhs_tc [Type]
lhs_tys
   inst_head :: SDoc
inst_head = Type -> SDoc
pprType (TyCon -> [Type] -> Type
TyConApp TyCon
lhs_tc [Type]
lhs_tys)
   lhs_fvs :: [TyCoVar]
lhs_fvs   = [Type] -> [TyCoVar]
fvTypes [Type]
lhs_tys
   check :: (TyCon, [Type]) -> Maybe SDoc
check (TyCon
tc, [Type]
tys)
      | Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Type -> Bool
isTyFamFree [Type]
tys) = forall a. a -> Maybe a
Just (SDoc -> SDoc
nestedMsg SDoc
what)
      | Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyCoVar]
bad_tvs)        = forall a. a -> Maybe a
Just ([TyCoVar] -> SDoc -> SDoc -> SDoc
noMoreMsg [TyCoVar]
bad_tvs SDoc
what SDoc
inst_head)
      | Int
lhs_size forall a. Ord a => a -> a -> Bool
<= Int
fam_app_size  = forall a. a -> Maybe a
Just (SDoc -> SDoc -> SDoc
smallerMsg SDoc
what SDoc
inst_head)
      | Bool
otherwise                 = forall a. Maybe a
Nothing
      where
        what :: SDoc
what = String -> SDoc
text String
"type family application"
               SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (Type -> SDoc
pprType (TyCon -> [Type] -> Type
TyConApp TyCon
tc [Type]
tys))
        fam_app_size :: Int
fam_app_size = TyCon -> [Type] -> Int
sizeTyConAppArgs TyCon
tc [Type]
tys
        bad_tvs :: [TyCoVar]
bad_tvs      = [Type] -> [TyCoVar]
fvTypes [Type]
tys forall a. Eq a => [a] -> [a] -> [a]
\\ [TyCoVar]
lhs_fvs
                       -- The (\\) is list difference; e.g.
                       --   [a,b,a,a] \\ [a,a] = [b,a]
                       -- So we are counting repetitions

-----------------
checkFamPatBinders :: TyCon
                   -> [TcTyVar]   -- Bound on LHS of family instance
                   -> [TcType]    -- LHS patterns
                   -> Type        -- RHS
                   -> TcM ()
checkFamPatBinders :: TyCon -> [TyCoVar] -> [Type] -> Type -> TcM ()
checkFamPatBinders TyCon
fam_tc [TyCoVar]
qtvs [Type]
pats Type
rhs
  = do { String -> SDoc -> TcM ()
traceTc String
"checkFamPatBinders" forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ Type -> SDoc
debugPprType (TyCon -> [Type] -> Type
mkTyConApp TyCon
fam_tc [Type]
pats)
              , forall a. Outputable a => a -> SDoc
ppr (TyCon -> [Type] -> Type
mkTyConApp TyCon
fam_tc [Type]
pats)
              , String -> SDoc
text String
"qtvs:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr [TyCoVar]
qtvs
              , String -> SDoc
text String
"rhs_tvs:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr (FV -> VarSet
fvVarSet FV
rhs_fvs)
              , String -> SDoc
text String
"cpt_tvs:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr VarSet
cpt_tvs
              , String -> SDoc
text String
"inj_cpt_tvs:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr VarSet
inj_cpt_tvs ]

         -- Check for implicitly-bound tyvars, mentioned on the
         -- RHS but not bound on the LHS
         --    data T            = MkT (forall (a::k). blah)
         --    data family D Int = MkD (forall (a::k). blah)
         -- In both cases, 'k' is not bound on the LHS, but is used on the RHS
         -- We catch the former in kcDeclHeader, and the latter right here
         -- See Note [Check type-family instance binders]
       ; [TyCoVar] -> SDoc -> SDoc -> TcM ()
check_tvs [TyCoVar]
bad_rhs_tvs (String -> SDoc
text String
"mentioned in the RHS")
                               (String -> SDoc
text String
"bound on the LHS of")

         -- Check for explicitly forall'd variable that is not bound on LHS
         --    data instance forall a.  T Int = MkT Int
         -- See Note [Unused explicitly bound variables in a family pattern]
         -- See Note [Check type-family instance binders]
       ; [TyCoVar] -> SDoc -> SDoc -> TcM ()
check_tvs [TyCoVar]
bad_qtvs (String -> SDoc
text String
"bound by a forall")
                            (String -> SDoc
text String
"used in")
       }
  where
    cpt_tvs :: VarSet
cpt_tvs     = [Type] -> VarSet
tyCoVarsOfTypes [Type]
pats
    inj_cpt_tvs :: VarSet
inj_cpt_tvs = FV -> VarSet
fvVarSet forall a b. (a -> b) -> a -> b
$ Bool -> [Type] -> FV
injectiveVarsOfTypes Bool
False [Type]
pats
      -- The type variables that are in injective positions.
      -- See Note [Dodgy binding sites in type family instances]
      -- NB: The False above is irrelevant, as we never have type families in
      -- patterns.
      --
      -- NB: It's OK to use the nondeterministic `fvVarSet` function here,
      -- since the order of `inj_cpt_tvs` is never revealed in an error
      -- message.
    rhs_fvs :: FV
rhs_fvs     = Type -> FV
tyCoFVsOfType Type
rhs
    used_tvs :: VarSet
used_tvs    = VarSet
cpt_tvs VarSet -> VarSet -> VarSet
`unionVarSet` FV -> VarSet
fvVarSet FV
rhs_fvs
    bad_qtvs :: [TyCoVar]
bad_qtvs    = forall a. (a -> Bool) -> [a] -> [a]
filterOut (TyCoVar -> VarSet -> Bool
`elemVarSet` VarSet
used_tvs) [TyCoVar]
qtvs
                  -- Bound but not used at all
    bad_rhs_tvs :: [TyCoVar]
bad_rhs_tvs = forall a. (a -> Bool) -> [a] -> [a]
filterOut (TyCoVar -> VarSet -> Bool
`elemVarSet` VarSet
inj_cpt_tvs) (FV -> [TyCoVar]
fvVarList FV
rhs_fvs)
                  -- Used on RHS but not bound on LHS
    dodgy_tvs :: VarSet
dodgy_tvs   = VarSet
cpt_tvs VarSet -> VarSet -> VarSet
`minusVarSet` VarSet
inj_cpt_tvs

    check_tvs :: [TyCoVar] -> SDoc -> SDoc -> TcM ()
check_tvs [TyCoVar]
tvs SDoc
what SDoc
what2
      = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyCoVar]
tvs) forall a b. (a -> b) -> a -> b
$ SrcSpan -> TcRnMessage -> TcM ()
addErrAt (forall a. NamedThing a => a -> SrcSpan
getSrcSpan (forall a. [a] -> a
head [TyCoVar]
tvs)) forall a b. (a -> b) -> a -> b
$ forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
        SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Type variable" SDoc -> SDoc -> SDoc
<> forall a. [a] -> SDoc
plural [TyCoVar]
tvs SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => [a] -> SDoc
pprQuotedList [TyCoVar]
tvs
              SDoc -> SDoc -> SDoc
<+> forall a. [a] -> SDoc
isOrAre [TyCoVar]
tvs SDoc -> SDoc -> SDoc
<+> SDoc
what SDoc -> SDoc -> SDoc
<> SDoc
comma)
           Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"but not" SDoc -> SDoc -> SDoc
<+> SDoc
what2 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"the family instance"
                   , [TyCoVar] -> SDoc
mk_extra [TyCoVar]
tvs ])

    -- mk_extra: #7536: give a decent error message for
    --         type T a = Int
    --         type instance F (T a) = a
    mk_extra :: [TyCoVar] -> SDoc
mk_extra [TyCoVar]
tvs = Bool -> SDoc -> SDoc
ppWhen (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (TyCoVar -> VarSet -> Bool
`elemVarSet` VarSet
dodgy_tvs) [TyCoVar]
tvs) forall a b. (a -> b) -> a -> b
$
                   SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"The real LHS (expanding synonyms) is:")
                      Int
2 (TyCon -> [Type] -> SDoc
pprTypeApp TyCon
fam_tc (forall a b. (a -> b) -> [a] -> [b]
map Type -> Type
expandTypeSynonyms [Type]
pats))


-- | Checks that a list of type patterns is valid in a matching (LHS)
-- position of a class instances or type/data family instance.
--
-- Specifically:
--    * All monotypes
--    * No type-family applications
checkValidTypePats :: TyCon -> [Type] -> TcM ()
checkValidTypePats :: TyCon -> [Type] -> TcM ()
checkValidTypePats TyCon
tc [Type]
pat_ty_args
  = do { -- Check that each of pat_ty_args is a monotype.
         -- One could imagine generalising to allow
         --      instance C (forall a. a->a)
         -- but we don't know what all the consequences might be.
         forall (t :: * -> *) (f :: * -> *) a b.
(Foldable t, Applicative f) =>
(a -> f b) -> t a -> f ()
traverse_ Type -> TcM ()
checkValidMonoType [Type]
pat_ty_args

       -- Ensure that no type family applications occur a type pattern
       ; case TyCon -> [Type] -> [(Bool, TyCon, [Type])]
tcTyConAppTyFamInstsAndVis TyCon
tc [Type]
pat_ty_args of
            [] -> forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
            ((Bool
tf_is_invis_arg, TyCon
tf_tc, [Type]
tf_args):[(Bool, TyCon, [Type])]
_) -> forall a. TcRnMessage -> TcM a
failWithTc forall a b. (a -> b) -> a -> b
$ forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
               Bool -> Type -> SDoc
ty_fam_inst_illegal_err Bool
tf_is_invis_arg
                                       (TyCon -> [Type] -> Type
mkTyConApp TyCon
tf_tc [Type]
tf_args) }
  where
    inst_ty :: Type
inst_ty = TyCon -> [Type] -> Type
mkTyConApp TyCon
tc [Type]
pat_ty_args

    ty_fam_inst_illegal_err :: Bool -> Type -> SDoc
    ty_fam_inst_illegal_err :: Bool -> Type -> SDoc
ty_fam_inst_illegal_err Bool
invis_arg Type
ty
      = Bool -> SDoc -> SDoc
pprWithExplicitKindsWhen Bool
invis_arg forall a b. (a -> b) -> a -> b
$
        SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Illegal type synonym family application"
                SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Type
ty) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"in instance" SDoc -> SDoc -> SDoc
<> SDoc
colon)
           Int
2 (forall a. Outputable a => a -> SDoc
ppr Type
inst_ty)

-- Error messages

inaccessibleCoAxBranch :: TyCon -> CoAxBranch -> SDoc
inaccessibleCoAxBranch :: TyCon -> CoAxBranch -> SDoc
inaccessibleCoAxBranch TyCon
fam_tc CoAxBranch
cur_branch
  = String -> SDoc
text String
"Type family instance equation is overlapped:" SDoc -> SDoc -> SDoc
$$
    Int -> SDoc -> SDoc
nest Int
2 (TyCon -> CoAxBranch -> SDoc
pprCoAxBranchUser TyCon
fam_tc CoAxBranch
cur_branch)

nestedMsg :: SDoc -> SDoc
nestedMsg :: SDoc -> SDoc
nestedMsg SDoc
what
  = [SDoc] -> SDoc
sep [ String -> SDoc
text String
"Illegal nested" SDoc -> SDoc -> SDoc
<+> SDoc
what
        , SDoc -> SDoc
parens SDoc
undecidableMsg ]

-------------------------
checkConsistentFamInst :: AssocInstInfo
                       -> TyCon     -- ^ Family tycon
                       -> CoAxBranch
                       -> TcM ()
-- See Note [Checking consistent instantiation]

checkConsistentFamInst :: AssocInstInfo -> TyCon -> CoAxBranch -> TcM ()
checkConsistentFamInst AssocInstInfo
NotAssociated TyCon
_ CoAxBranch
_
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()

checkConsistentFamInst (InClsInst { ai_class :: AssocInstInfo -> Class
ai_class = Class
clas
                                  , ai_tyvars :: AssocInstInfo -> [TyCoVar]
ai_tyvars = [TyCoVar]
inst_tvs
                                  , ai_inst_env :: AssocInstInfo -> VarEnv Type
ai_inst_env = VarEnv Type
mini_env })
                       TyCon
fam_tc CoAxBranch
branch
  = do { String -> SDoc -> TcM ()
traceTc String
"checkConsistentFamInst" ([SDoc] -> SDoc
vcat [ forall a. Outputable a => a -> SDoc
ppr [TyCoVar]
inst_tvs
                                                , forall a. Outputable a => a -> SDoc
ppr [(Type, Type, ArgFlag)]
arg_triples
                                                , forall a. Outputable a => a -> SDoc
ppr VarEnv Type
mini_env
                                                , forall a. Outputable a => a -> SDoc
ppr [TyCoVar]
ax_tvs
                                                , forall a. Outputable a => a -> SDoc
ppr [Type]
ax_arg_tys
                                                , forall a. Outputable a => a -> SDoc
ppr [(Type, Type, ArgFlag)]
arg_triples ])
       -- Check that the associated type indeed comes from this class
       -- See [Mismatched class methods and associated type families]
       -- in TcInstDecls.
       ; Bool -> TcRnMessage -> TcM ()
checkTc (forall a. a -> Maybe a
Just (Class -> TyCon
classTyCon Class
clas) forall a. Eq a => a -> a -> Bool
== TyCon -> Maybe TyCon
tyConAssoc_maybe TyCon
fam_tc)
                 (Name -> Name -> TcRnMessage
TcRnBadAssociatedType (Class -> Name
className Class
clas) (TyCon -> Name
tyConName TyCon
fam_tc))

       ; [(Type, Type, ArgFlag)] -> TcM ()
check_match [(Type, Type, ArgFlag)]
arg_triples
       }
  where
    ([TyCoVar]
ax_tvs, [Type]
ax_arg_tys, Type
_) = CoAxBranch -> ([TyCoVar], [Type], Type)
etaExpandCoAxBranch CoAxBranch
branch

    arg_triples :: [(Type,Type, ArgFlag)]
    arg_triples :: [(Type, Type, ArgFlag)]
arg_triples = [ (Type
cls_arg_ty, Type
at_arg_ty, ArgFlag
vis)
                  | (TyCoVar
fam_tc_tv, ArgFlag
vis, Type
at_arg_ty)
                       <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 (TyCon -> [TyCoVar]
tyConTyVars TyCon
fam_tc)
                               (TyCon -> [Type] -> [ArgFlag]
tyConArgFlags TyCon
fam_tc [Type]
ax_arg_tys)
                               [Type]
ax_arg_tys
                  , Just Type
cls_arg_ty <- [forall a. VarEnv a -> TyCoVar -> Maybe a
lookupVarEnv VarEnv Type
mini_env TyCoVar
fam_tc_tv] ]

    pp_wrong_at_arg :: ArgFlag -> SDoc
pp_wrong_at_arg ArgFlag
vis
      = Bool -> SDoc -> SDoc
pprWithExplicitKindsWhen (ArgFlag -> Bool
isInvisibleArgFlag ArgFlag
vis) forall a b. (a -> b) -> a -> b
$
        [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Type indexes must match class instance head"
             , String -> SDoc
text String
"Expected:" SDoc -> SDoc -> SDoc
<+> SDoc
pp_expected_ty
             , String -> SDoc
text String
"  Actual:" SDoc -> SDoc -> SDoc
<+> SDoc
pp_actual_ty ]

    -- Fiddling around to arrange that wildcards unconditionally print as "_"
    -- We only need to print the LHS, not the RHS at all
    -- See Note [Printing conflicts with class header]
    (TidyEnv
tidy_env1, [TyCoVar]
_) = TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar])
tidyVarBndrs TidyEnv
emptyTidyEnv [TyCoVar]
inst_tvs
    (TidyEnv
tidy_env2, [TyCoVar]
_) = TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar])
tidyCoAxBndrsForUser TidyEnv
tidy_env1 ([TyCoVar]
ax_tvs forall a. Eq a => [a] -> [a] -> [a]
\\ [TyCoVar]
inst_tvs)

    pp_expected_ty :: SDoc
pp_expected_ty = PprPrec -> IfaceTyCon -> IfaceAppArgs -> SDoc
pprIfaceTypeApp PprPrec
topPrec (TyCon -> IfaceTyCon
toIfaceTyCon TyCon
fam_tc) forall a b. (a -> b) -> a -> b
$
                     TyCon -> [Type] -> IfaceAppArgs
toIfaceTcArgs TyCon
fam_tc forall a b. (a -> b) -> a -> b
$
                     [ case forall a. VarEnv a -> TyCoVar -> Maybe a
lookupVarEnv VarEnv Type
mini_env TyCoVar
at_tv of
                         Just Type
cls_arg_ty -> TidyEnv -> Type -> Type
tidyType TidyEnv
tidy_env2 Type
cls_arg_ty
                         Maybe Type
Nothing         -> TyCoVar -> Type
mk_wildcard TyCoVar
at_tv
                     | TyCoVar
at_tv <- TyCon -> [TyCoVar]
tyConTyVars TyCon
fam_tc ]

    pp_actual_ty :: SDoc
pp_actual_ty = PprPrec -> IfaceTyCon -> IfaceAppArgs -> SDoc
pprIfaceTypeApp PprPrec
topPrec (TyCon -> IfaceTyCon
toIfaceTyCon TyCon
fam_tc) forall a b. (a -> b) -> a -> b
$
                   TyCon -> [Type] -> IfaceAppArgs
toIfaceTcArgs TyCon
fam_tc forall a b. (a -> b) -> a -> b
$
                   TidyEnv -> [Type] -> [Type]
tidyTypes TidyEnv
tidy_env2 [Type]
ax_arg_tys

    mk_wildcard :: TyCoVar -> Type
mk_wildcard TyCoVar
at_tv = TyCoVar -> Type
mkTyVarTy (Name -> Type -> TyCoVar
mkTyVar Name
tv_name (TyCoVar -> Type
tyVarKind TyCoVar
at_tv))
    tv_name :: Name
tv_name = Unique -> OccName -> SrcSpan -> Name
mkInternalName (Int -> Unique
mkAlphaTyVarUnique Int
1) (String -> OccName
mkTyVarOcc String
"_") SrcSpan
noSrcSpan

    -- For check_match, bind_me, see
    -- Note [Matching in the consistent-instantiation check]
    check_match :: [(Type,Type,ArgFlag)] -> TcM ()
    check_match :: [(Type, Type, ArgFlag)] -> TcM ()
check_match [(Type, Type, ArgFlag)]
triples = TCvSubst -> TCvSubst -> [(Type, Type, ArgFlag)] -> TcM ()
go TCvSubst
emptyTCvSubst TCvSubst
emptyTCvSubst [(Type, Type, ArgFlag)]
triples

    go :: TCvSubst -> TCvSubst -> [(Type, Type, ArgFlag)] -> TcM ()
go TCvSubst
_ TCvSubst
_ [] = forall (m :: * -> *) a. Monad m => a -> m a
return ()
    go TCvSubst
lr_subst TCvSubst
rl_subst ((Type
ty1,Type
ty2,ArgFlag
vis):[(Type, Type, ArgFlag)]
triples)
      | Just TCvSubst
lr_subst1 <- BindFun -> TCvSubst -> Type -> Type -> Maybe TCvSubst
tcMatchTyX_BM BindFun
bind_me TCvSubst
lr_subst Type
ty1 Type
ty2
      , Just TCvSubst
rl_subst1 <- BindFun -> TCvSubst -> Type -> Type -> Maybe TCvSubst
tcMatchTyX_BM BindFun
bind_me TCvSubst
rl_subst Type
ty2 Type
ty1
      = TCvSubst -> TCvSubst -> [(Type, Type, ArgFlag)] -> TcM ()
go TCvSubst
lr_subst1 TCvSubst
rl_subst1 [(Type, Type, ArgFlag)]
triples
      | Bool
otherwise
      = TcRnMessage -> TcM ()
addErrTc (forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$ ArgFlag -> SDoc
pp_wrong_at_arg ArgFlag
vis)

    -- The /scoped/ type variables from the class-instance header
    -- should not be alpha-renamed.  Inferred ones can be.
    no_bind_set :: VarSet
no_bind_set = [TyCoVar] -> VarSet
mkVarSet [TyCoVar]
inst_tvs
    bind_me :: BindFun
bind_me TyCoVar
tv Type
_ty | TyCoVar
tv TyCoVar -> VarSet -> Bool
`elemVarSet` VarSet
no_bind_set = BindFlag
Apart
                   | Bool
otherwise                   = BindFlag
BindMe


{- Note [Check type-family instance binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a type family instance, we require (of course), type variables
used on the RHS are matched on the LHS. This is checked by
checkFamPatBinders.  Here is an interesting example:

    type family   T :: k
    type instance T = (Nothing :: Maybe a)

Upon a cursory glance, it may appear that the kind variable `a` is unbound
since there are no (visible) LHS patterns in `T`. However, there is an
*invisible* pattern due to the return kind, so inside of GHC, the instance
looks closer to this:

    type family T @k :: k
    type instance T @(Maybe a) = (Nothing :: Maybe a)

Here, we can see that `a` really is bound by a LHS type pattern, so `a` is in
fact not unbound. Contrast that with this example (#13985)

    type instance T = Proxy (Nothing :: Maybe a)

This would looks like this inside of GHC:

    type instance T @(*) = Proxy (Nothing :: Maybe a)

So this time, `a` is neither bound by a visible nor invisible type pattern on
the LHS, so `a` would be reported as not in scope.

Finally, here's one more brain-teaser (from #9574). In the example below:

    class Funct f where
      type Codomain f :: *
    instance Funct ('KProxy :: KProxy o) where
      type Codomain 'KProxy = NatTr (Proxy :: o -> *)

As it turns out, `o` is in scope in this example. That is because `o` is
bound by the kind signature of the LHS type pattern 'KProxy. To make this more
obvious, one can also write the instance like so:

    instance Funct ('KProxy :: KProxy o) where
      type Codomain ('KProxy :: KProxy o) = NatTr (Proxy :: o -> *)

Note [Dodgy binding sites in type family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following example (from #7536):

  type T a = Int
  type instance F (T a) = a

This `F` instance is extremely fishy, since the RHS, `a`, purports to be
"bound" by the LHS pattern `T a`. "Bound" has scare quotes around it because
`T a` expands to `Int`, which doesn't mention at all, so it's as if one had
actually written:

  type instance F Int = a

That is clearly bogus, so to reject this, we check that every type variable
that is mentioned on the RHS is /actually/ bound on the LHS. In other words,
we need to do something slightly more sophisticated that just compute the free
variables of the LHS patterns.

It's tempting to just expand all type synonyms on the LHS and then compute
their free variables, but even that isn't sophisticated enough. After all,
an impish user could write the following (#17008):

  type family ConstType (a :: Type) :: Type where
    ConstType _ = Type

  type family F (x :: ConstType a) :: Type where
    F (x :: ConstType a) = a

Just like in the previous example, the `a` on the RHS isn't actually bound
on the LHS, but this time a type family is responsible for the deception, not
a type synonym.

We avoid both issues by requiring that all RHS type variables are mentioned
in injective positions on the left-hand side (by way of
`injectiveVarsOfTypes`). For instance, the `a` in `T a` is not in an injective
position, as `T` is not an injective type constructor, so we do not count that.
Similarly for the `a` in `ConstType a`.

Note [Matching in the consistent-instantiation check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Matching the class-instance header to family-instance tyvars is
tricker than it sounds.  Consider (#13972)
    class C (a :: k) where
      type T k :: Type
    instance C Left where
      type T (a -> Either a b) = Int

Here there are no lexically-scoped variables from (C Left).
Yet the real class-instance header is   C @(p -> Either @p @q)) (Left @p @q)
while the type-family instance is       T (a -> Either @a @b)
So we allow alpha-renaming of variables that don't come
from the class-instance header.

We track the lexically-scoped type variables from the
class-instance header in ai_tyvars.

Here's another example (#14045a)
    class C (a :: k) where
      data S (a :: k)
    instance C (z :: Bool) where
      data S :: Bool -> Type where

Again, there is no lexical connection, but we will get
   class-instance header:   C @Bool (z::Bool)
   family instance          S @Bool (a::Bool)

When looking for mis-matches, we check left-to-right,
kinds first.  If we look at types first, we'll fail to
suggest -fprint-explicit-kinds for a mis-match with
      T @k    vs    T @Type
somewhere deep inside the type

Note [Checking consistent instantiation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #11450 for background discussion on this check.

  class C a b where
    type T a x b

With this class decl, if we have an instance decl
  instance C ty1 ty2 where ...
then the type instance must look like
     type T ty1 v ty2 = ...
with exactly 'ty1' for 'a', 'ty2' for 'b', and some type 'v' for 'x'.
For example:

  instance C [p] Int
    type T [p] y Int = (p,y,y)

Note that

* We used to allow completely different bound variables in the
  associated type instance; e.g.
    instance C [p] Int
      type T [q] y Int = ...
  But from GHC 8.2 onwards, we don't.  It's much simpler this way.
  See #11450.

* When the class variable isn't used on the RHS of the type instance,
  it's tempting to allow wildcards, thus
    instance C [p] Int
      type T [_] y Int = (y,y)
  But it's awkward to do the test, and it doesn't work if the
  variable is repeated:
    instance C (p,p) Int
      type T (_,_) y Int = (y,y)
  Even though 'p' is not used on the RHS, we still need to use 'p'
  on the LHS to establish the repeated pattern.  So to keep it simple
  we just require equality.

* For variables in associated type families that are not bound by the class
  itself, we do _not_ check if they are over-specific. In other words,
  it's perfectly acceptable to have an instance like this:

    instance C [p] Int where
      type T [p] (Maybe x) Int = x

  While the first and third arguments to T are required to be exactly [p] and
  Int, respectively, since they are bound by C, the second argument is allowed
  to be more specific than just a type variable. Furthermore, it is permissible
  to define multiple equations for T that differ only in the non-class-bound
  argument:

    instance C [p] Int where
      type T [p] (Maybe x)    Int = x
      type T [p] (Either x y) Int = x -> y

  We once considered requiring that non-class-bound variables in associated
  type family instances be instantiated with distinct type variables. However,
  that requirement proved too restrictive in practice, as there were examples
  of extremely simple associated type family instances that this check would
  reject, and fixing them required tiresome boilerplate in the form of
  auxiliary type families. For instance, you would have to define the above
  example as:

    instance C [p] Int where
      type T [p] x Int = CAux x

    type family CAux x where
      CAux (Maybe x)    = x
      CAux (Either x y) = x -> y

  We decided that this restriction wasn't buying us much, so we opted not
  to pursue that design (see also GHC #13398).

Implementation
  * Form the mini-envt from the class type variables a,b
    to the instance decl types [p],Int:   [a->[p], b->Int]

  * Look at the tyvars a,x,b of the type family constructor T
    (it shares tyvars with the class C)

  * Apply the mini-evnt to them, and check that the result is
    consistent with the instance types [p] y Int. (where y can be any type, as
    it is not scoped over the class type variables.

We make all the instance type variables scope over the
type instances, of course, which picks up non-obvious kinds.  Eg
   class Foo (a :: k) where
      type F a
   instance Foo (b :: k -> k) where
      type F b = Int
Here the instance is kind-indexed and really looks like
      type F (k->k) (b::k->k) = Int
But if the 'b' didn't scope, we would make F's instance too
poly-kinded.

Note [Printing conflicts with class header]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's remarkably painful to give a decent error message for conflicts
with the class header.  Consider
   clase C b where
     type F a b c
   instance C [b] where
     type F x Int _ _ = ...

Here we want to report a conflict between
    Expected: F _ [b] _
    Actual:   F x Int _ _

But if the type instance shadows the class variable like this
(rename/should_fail/T15828):
   instance C [b] where
     type forall b. F x (Tree b) _ _ = ...

then we must use a fresh variable name
    Expected: F _ [b] _
    Actual:   F x [b1] _ _

Notice that:
  - We want to print an underscore in the "Expected" type in
    positions where the class header has no influence over the
    parameter.  Hence the fancy footwork in pp_expected_ty

  - Although the binders in the axiom are already tidy, we must
    re-tidy them to get a fresh variable name when we shadow

  - The (ax_tvs \\ inst_tvs) is to avoid tidying one of the
    class-instance variables a second time, from 'a' to 'a1' say.
    Remember, the ax_tvs of the axiom share identity with the
    class-instance variables, inst_tvs..

  - We use tidyCoAxBndrsForUser to get underscores rather than
    _1, _2, etc in the axiom tyvars; see the definition of
    tidyCoAxBndrsForUser

This all seems absurdly complicated.

Note [Unused explicitly bound variables in a family pattern]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Why is 'unusedExplicitForAllErr' not just a warning?

Consider the following examples:

  type instance F a = Maybe b
  type instance forall b. F a = Bool
  type instance forall b. F a = Maybe b

In every case, b is a type variable not determined by the LHS pattern. The
first is caught by the renamer, but we catch the last two here. Perhaps one
could argue that the second should be accepted, albeit with a warning, but
consider the fact that in a type family instance, there is no way to interact
with such a varable. At least with @x :: forall a. Int@ we can use visibile
type application, like @x \@Bool 1@. (Of course it does nothing, but it is
permissible.) In the type family case, the only sensible explanation is that
the user has made a mistake -- thus we throw an error.

Note [Oversaturated type family equations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type family tycons have very rigid arities. We want to reject something like
this:

  type family Foo :: Type -> Type where
    Foo x = ...

Because Foo has arity zero (i.e., it doesn't bind anything to the left of the
double colon), we want to disallow any equation for Foo that has more than zero
arguments, such as `Foo x = ...`. The algorithm here is pretty simple: if an
equation has more arguments than the arity of the type family, reject.

Things get trickier when visible kind application enters the picture. Consider
the following example:

  type family Bar (x :: j) :: forall k. Either j k where
    Bar 5 @Symbol = ...

The arity of Bar is two, since it binds two variables, `j` and `x`. But even
though Bar's equation has two arguments, it's still invalid. Imagine the same
equation in Core:

    Bar Nat 5 Symbol = ...

Here, it becomes apparent that Bar is actually taking /three/ arguments! So
we can't just rely on a simple counting argument to reject
`Bar 5 @Symbol = ...`, since it only has two user-written arguments.
Moreover, there's one explicit argument (5) and one visible kind argument
(@Symbol), which matches up perfectly with the fact that Bar has one required
binder (x) and one specified binder (j), so that's not a valid way to detect
oversaturation either.

To solve this problem in a robust way, we do the following:

1. When kind-checking, we count the number of user-written *required*
   arguments and check if there is an equal number of required tycon binders.
   If not, reject. (See `wrongNumberOfParmsErr` in GHC.Tc.TyCl.)

   We perform this step during kind-checking, not during validity checking,
   since we can give better error messages if we catch it early.
2. When validity checking, take all of the (Core) type patterns from on
   equation, drop the first n of them (where n is the arity of the type family
   tycon), and check if there are any types leftover. If so, reject.

   Why does this work? We know that after dropping the first n type patterns,
   none of the leftover types can be required arguments, since step (1) would
   have already caught that. Moreover, the only places where visible kind
   applications should be allowed are in the first n types, since those are the
   only arguments that can correspond to binding forms. Therefore, the
   remaining arguments must correspond to oversaturated uses of visible kind
   applications, which are precisely what we want to reject.

Note that we only perform this check for type families, and not for data
families. This is because it is perfectly acceptable to oversaturate data
family instance equations: see Note [Arity of data families] in GHC.Core.FamInstEnv.

************************************************************************
*                                                                      *
   Telescope checking
*                                                                      *
************************************************************************

Note [Bad TyCon telescopes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now that we can mix type and kind variables, there are an awful lot of
ways to shoot yourself in the foot. Here are some.

  data SameKind :: k -> k -> *   -- just to force unification

1.  data T1 a k (b :: k) (x :: SameKind a b)

The problem here is that we discover that a and b should have the same
kind. But this kind mentions k, which is bound *after* a.
(Testcase: dependent/should_fail/BadTelescope)

2.  data T2 a (c :: Proxy b) (d :: Proxy a) (x :: SameKind b d)

Note that b is not bound. Yet its kind mentions a. Because we have
a nice rule that all implicitly bound variables come before others,
this is bogus.

To catch these errors, we call checkTyConTelescope during kind-checking
datatype declarations.  This checks for

* Ill-scoped binders. From (1) and (2) above we can get putative
  kinds like
       T1 :: forall (a:k) (k:*) (b:k). SameKind a b -> *
  where 'k' is mentioned a's kind before k is bound

  This is easy to check for: just look for
  out-of-scope variables in the kind

* We should arguably also check for ambiguous binders
  but we don't.  See Note [Ambiguous kind vars].

See also
  * Note [Required, Specified, and Inferred for types] in GHC.Tc.TyCl.
  * Note [Checking telescopes] in GHC.Tc.Types.Constraint discusses how
    this check works for `forall x y z.` written in a type.

Note [Ambiguous kind vars]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to be concerned about ambiguous binders. Suppose we have the kind
     S1 :: forall k -> * -> *
     S2 :: forall k. * -> *
Here S1 is OK, because k is Required, and at a use of S1 we will
see (S1 *) or (S1 (*->*)) or whatever.

But S2 is /not/ OK because 'k' is Specfied (and hence invisible) and
we have no way (ever) to figure out how 'k' should be instantiated.
For example if we see (S2 Int), that tells us nothing about k's
instantiation.  (In this case we'll instantiate it to Any, but that
seems wrong.)  This is really the same test as we make for ambiguous
type in term type signatures.

Now, it's impossible for a Specified variable not to occur
at all in the kind -- after all, it is Specified so it must have
occurred.  (It /used/ to be possible; see tests T13983 and T7873.  But
with the advent of the forall-or-nothing rule for kind variables,
those strange cases went away. See Note [forall-or-nothing rule] in
GHC.Hs.Type.)

But one might worry about
    type v k = *
    S3 :: forall k. V k -> *
which appears to mention 'k' but doesn't really.  Or
    S4 :: forall k. F k -> *
where F is a type function.  But we simply don't check for
those cases of ambiguity, yet anyway.  The worst that can happen
is ambiguity at the call sites.

Historical note: this test used to be called reportFloatingKvs.
-}

-- | Check a list of binders to see if they make a valid telescope.
-- See Note [Bad TyCon telescopes]
type TelescopeAcc
      = ( TyVarSet   -- Bound earlier in the telescope
        , Bool       -- At least one binder occurred (in a kind) before
                     -- it was bound in the telescope.  E.g.
        )            --    T :: forall (a::k) k. blah

checkTyConTelescope :: TyCon -> TcM ()
checkTyConTelescope :: TyCon -> TcM ()
checkTyConTelescope TyCon
tc
  | Bool
bad_scope
  = -- See "Ill-scoped binders" in Note [Bad TyCon telescopes]
    TcRnMessage -> TcM ()
addErr forall a b. (a -> b) -> a -> b
$ forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints forall a b. (a -> b) -> a -> b
$
    [SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"The kind of" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr TyCon
tc) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"is ill-scoped")
              Int
2 SDoc
pp_tc_kind
         , SDoc
extra
         , SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Perhaps try this order instead:")
              Int
2 ([TyCoVar] -> SDoc
pprTyVars [TyCoVar]
sorted_tvs) ]

  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  where
    tcbs :: [TyConBinder]
tcbs = TyCon -> [TyConBinder]
tyConBinders TyCon
tc
    tvs :: [TyCoVar]
tvs  = forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [TyConBinder]
tcbs
    sorted_tvs :: [TyCoVar]
sorted_tvs = [TyCoVar] -> [TyCoVar]
scopedSort [TyCoVar]
tvs

    (VarSet
_, Bool
bad_scope) = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (VarSet, Bool) -> TyConBinder -> (VarSet, Bool)
add_one (VarSet
emptyVarSet, Bool
False) [TyConBinder]
tcbs

    add_one :: TelescopeAcc -> TyConBinder -> TelescopeAcc
    add_one :: (VarSet, Bool) -> TyConBinder -> (VarSet, Bool)
add_one (VarSet
bound, Bool
bad_scope) TyConBinder
tcb
      = ( VarSet
bound VarSet -> TyCoVar -> VarSet
`extendVarSet` TyCoVar
tv
        , Bool
bad_scope Bool -> Bool -> Bool
|| Bool -> Bool
not (VarSet -> Bool
isEmptyVarSet (VarSet
fkvs VarSet -> VarSet -> VarSet
`minusVarSet` VarSet
bound)) )
      where
        tv :: TyCoVar
tv = forall tv argf. VarBndr tv argf -> tv
binderVar TyConBinder
tcb
        fkvs :: VarSet
fkvs = Type -> VarSet
tyCoVarsOfType (TyCoVar -> Type
tyVarKind TyCoVar
tv)

    inferred_tvs :: [TyCoVar]
inferred_tvs  = [ forall tv argf. VarBndr tv argf -> tv
binderVar TyConBinder
tcb
                    | TyConBinder
tcb <- [TyConBinder]
tcbs, ArgFlag
Inferred forall a. Eq a => a -> a -> Bool
== TyConBinder -> ArgFlag
tyConBinderArgFlag TyConBinder
tcb ]
    specified_tvs :: [TyCoVar]
specified_tvs = [ forall tv argf. VarBndr tv argf -> tv
binderVar TyConBinder
tcb
                    | TyConBinder
tcb <- [TyConBinder]
tcbs, ArgFlag
Specified forall a. Eq a => a -> a -> Bool
== TyConBinder -> ArgFlag
tyConBinderArgFlag TyConBinder
tcb ]

    pp_inf :: SDoc
pp_inf  = SDoc -> SDoc
parens (String -> SDoc
text String
"namely:" SDoc -> SDoc -> SDoc
<+> [TyCoVar] -> SDoc
pprTyVars [TyCoVar]
inferred_tvs)
    pp_spec :: SDoc
pp_spec = SDoc -> SDoc
parens (String -> SDoc
text String
"namely:" SDoc -> SDoc -> SDoc
<+> [TyCoVar] -> SDoc
pprTyVars [TyCoVar]
specified_tvs)

    pp_tc_kind :: SDoc
pp_tc_kind = String -> SDoc
text String
"Inferred kind:" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> Type -> SDoc
ppr_untidy (TyCon -> Type
tyConKind TyCon
tc)
    ppr_untidy :: Type -> SDoc
ppr_untidy Type
ty = IfaceType -> SDoc
pprIfaceType (Type -> IfaceType
toIfaceType Type
ty)
      -- We need ppr_untidy here because pprType will tidy the type, which
      -- will turn the bogus kind we are trying to report
      --     T :: forall (a::k) k (b::k) -> blah
      -- into a misleadingly sanitised version
      --     T :: forall (a::k) k1 (b::k1) -> blah

    extra :: SDoc
extra
      | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyCoVar]
inferred_tvs Bool -> Bool -> Bool
&& forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyCoVar]
specified_tvs
      = SDoc
empty
      | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyCoVar]
inferred_tvs
      = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"NB: Specified variables")
           Int
2 ([SDoc] -> SDoc
sep [SDoc
pp_spec, String -> SDoc
text String
"always come first"])
      | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyCoVar]
specified_tvs
      = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"NB: Inferred variables")
           Int
2 ([SDoc] -> SDoc
sep [SDoc
pp_inf, String -> SDoc
text String
"always come first"])
      | Bool
otherwise
      = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"NB: Inferred variables")
           Int
2 ([SDoc] -> SDoc
vcat [ [SDoc] -> SDoc
sep [ SDoc
pp_inf, String -> SDoc
text String
"always come first"]
                   , [SDoc] -> SDoc
sep [String -> SDoc
text String
"then Specified variables", SDoc
pp_spec]])

{-
************************************************************************
*                                                                      *
\subsection{Auxiliary functions}
*                                                                      *
************************************************************************
-}

-- Free variables of a type, retaining repetitions, and expanding synonyms
-- This ignores coercions, as coercions aren't user-written
fvType :: Type -> [TyCoVar]
fvType :: Type -> [TyCoVar]
fvType Type
ty | Just Type
exp_ty <- Type -> Maybe Type
tcView Type
ty = Type -> [TyCoVar]
fvType Type
exp_ty
fvType (TyVarTy TyCoVar
tv)          = [TyCoVar
tv]
fvType (TyConApp TyCon
_ [Type]
tys)      = [Type] -> [TyCoVar]
fvTypes [Type]
tys
fvType (LitTy {})            = []
fvType (AppTy Type
fun Type
arg)       = Type -> [TyCoVar]
fvType Type
fun forall a. [a] -> [a] -> [a]
++ Type -> [TyCoVar]
fvType Type
arg
fvType (FunTy AnonArgFlag
_ Type
w Type
arg Type
res)   = Type -> [TyCoVar]
fvType Type
w forall a. [a] -> [a] -> [a]
++ Type -> [TyCoVar]
fvType Type
arg forall a. [a] -> [a] -> [a]
++ Type -> [TyCoVar]
fvType Type
res
fvType (ForAllTy (Bndr TyCoVar
tv ArgFlag
_) Type
ty)
  = Type -> [TyCoVar]
fvType (TyCoVar -> Type
tyVarKind TyCoVar
tv) forall a. [a] -> [a] -> [a]
++
    forall a. (a -> Bool) -> [a] -> [a]
filter (forall a. Eq a => a -> a -> Bool
/= TyCoVar
tv) (Type -> [TyCoVar]
fvType Type
ty)
fvType (CastTy Type
ty KindCoercion
_)         = Type -> [TyCoVar]
fvType Type
ty
fvType (CoercionTy {})       = []

fvTypes :: [Type] -> [TyVar]
fvTypes :: [Type] -> [TyCoVar]
fvTypes [Type]
tys                = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Type -> [TyCoVar]
fvType [Type]
tys

sizeType :: Type -> Int
-- Size of a type: the number of variables and constructors
sizeType :: Type -> Int
sizeType Type
ty | Just Type
exp_ty <- Type -> Maybe Type
tcView Type
ty = Type -> Int
sizeType Type
exp_ty
sizeType (TyVarTy {})      = Int
1
sizeType (TyConApp TyCon
tc [Type]
tys) = Int
1 forall a. Num a => a -> a -> a
+ TyCon -> [Type] -> Int
sizeTyConAppArgs TyCon
tc [Type]
tys
sizeType (LitTy {})        = Int
1
sizeType (AppTy Type
fun Type
arg)   = Type -> Int
sizeType Type
fun forall a. Num a => a -> a -> a
+ Type -> Int
sizeType Type
arg
sizeType (FunTy AnonArgFlag
_ Type
w Type
arg Type
res) = Type -> Int
sizeType Type
w forall a. Num a => a -> a -> a
+ Type -> Int
sizeType Type
arg forall a. Num a => a -> a -> a
+ Type -> Int
sizeType Type
res forall a. Num a => a -> a -> a
+ Int
1
sizeType (ForAllTy TyVarBinder
_ Type
ty)   = Type -> Int
sizeType Type
ty
sizeType (CastTy Type
ty KindCoercion
_)     = Type -> Int
sizeType Type
ty
sizeType (CoercionTy KindCoercion
_)    = Int
0

sizeTypes :: [Type] -> Int
sizeTypes :: [Type] -> Int
sizeTypes = forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (forall a. Num a => a -> a -> a
(+) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Int
sizeType) Int
0

sizeTyConAppArgs :: TyCon -> [Type] -> Int
sizeTyConAppArgs :: TyCon -> [Type] -> Int
sizeTyConAppArgs TyCon
_tc [Type]
tys = [Type] -> Int
sizeTypes [Type]
tys -- (filterOutInvisibleTypes tc tys)
                           -- See Note [Invisible arguments and termination]

-- | When this says "True", ignore this class constraint during
-- a termination check
isTerminatingClass :: Class -> Bool
isTerminatingClass :: Class -> Bool
isTerminatingClass Class
cls
  = Class -> Bool
isIPClass Class
cls    -- Implicit parameter constraints always terminate because
                     -- there are no instances for them --- they are only solved
                     -- by "local instances" in expressions
    Bool -> Bool -> Bool
|| Class -> Bool
isEqPredClass Class
cls
    Bool -> Bool -> Bool
|| Class
cls forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
typeableClassKey
    Bool -> Bool -> Bool
|| Class
cls forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
coercibleTyConKey

allDistinctTyVars :: TyVarSet -> [KindOrType] -> Bool
-- (allDistinctTyVars tvs tys) returns True if tys are
-- a) all tyvars
-- b) all distinct
-- c) disjoint from tvs
allDistinctTyVars :: VarSet -> [Type] -> Bool
allDistinctTyVars VarSet
_    [] = Bool
True
allDistinctTyVars VarSet
tkvs (Type
ty : [Type]
tys)
  = case Type -> Maybe TyCoVar
getTyVar_maybe Type
ty of
      Maybe TyCoVar
Nothing -> Bool
False
      Just TyCoVar
tv | TyCoVar
tv TyCoVar -> VarSet -> Bool
`elemVarSet` VarSet
tkvs -> Bool
False
              | Bool
otherwise -> VarSet -> [Type] -> Bool
allDistinctTyVars (VarSet
tkvs VarSet -> TyCoVar -> VarSet
`extendVarSet` TyCoVar
tv) [Type]
tys