Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
The public face of Template Haskell
For other documentation, refer to: https://wiki.haskell.org/Template_Haskell
Synopsis
- data Q a
- runQ :: Quasi m => Q a -> m a
- class Monad m => Quote m where
- reportError :: String -> Q ()
- reportWarning :: String -> Q ()
- report :: Bool -> String -> Q ()
- recover :: Q a -> Q a -> Q a
- location :: Q Loc
- data Loc = Loc {}
- runIO :: IO a -> Q a
- reify :: Name -> Q Info
- reifyModule :: Module -> Q ModuleInfo
- newDeclarationGroup :: Q [Dec]
- data Info
- data ModuleInfo = ModuleInfo [Module]
- type InstanceDec = Dec
- type ParentName = Name
- type SumAlt = Int
- type SumArity = Int
- type Arity = Int
- type Unlifted = Bool
- data Extension
- = Cpp
- | OverlappingInstances
- | UndecidableInstances
- | IncoherentInstances
- | UndecidableSuperClasses
- | MonomorphismRestriction
- | MonoLocalBinds
- | DeepSubsumption
- | RelaxedPolyRec
- | ExtendedDefaultRules
- | ForeignFunctionInterface
- | UnliftedFFITypes
- | InterruptibleFFI
- | CApiFFI
- | GHCForeignImportPrim
- | JavaScriptFFI
- | ParallelArrays
- | Arrows
- | TemplateHaskell
- | TemplateHaskellQuotes
- | QualifiedDo
- | QuasiQuotes
- | ImplicitParams
- | ImplicitPrelude
- | ScopedTypeVariables
- | AllowAmbiguousTypes
- | UnboxedTuples
- | UnboxedSums
- | UnliftedNewtypes
- | UnliftedDatatypes
- | BangPatterns
- | TypeFamilies
- | TypeFamilyDependencies
- | TypeInType
- | OverloadedStrings
- | OverloadedLists
- | NumDecimals
- | DisambiguateRecordFields
- | RecordWildCards
- | NamedFieldPuns
- | ViewPatterns
- | GADTs
- | GADTSyntax
- | NPlusKPatterns
- | DoAndIfThenElse
- | BlockArguments
- | RebindableSyntax
- | ConstraintKinds
- | PolyKinds
- | DataKinds
- | TypeData
- | InstanceSigs
- | ApplicativeDo
- | LinearTypes
- | StandaloneDeriving
- | DeriveDataTypeable
- | AutoDeriveTypeable
- | DeriveFunctor
- | DeriveTraversable
- | DeriveFoldable
- | DeriveGeneric
- | DefaultSignatures
- | DeriveAnyClass
- | DeriveLift
- | DerivingStrategies
- | DerivingVia
- | TypeSynonymInstances
- | FlexibleContexts
- | FlexibleInstances
- | ConstrainedClassMethods
- | MultiParamTypeClasses
- | NullaryTypeClasses
- | FunctionalDependencies
- | UnicodeSyntax
- | ExistentialQuantification
- | MagicHash
- | EmptyDataDecls
- | KindSignatures
- | RoleAnnotations
- | ParallelListComp
- | TransformListComp
- | MonadComprehensions
- | GeneralizedNewtypeDeriving
- | RecursiveDo
- | PostfixOperators
- | TupleSections
- | PatternGuards
- | LiberalTypeSynonyms
- | RankNTypes
- | ImpredicativeTypes
- | TypeOperators
- | ExplicitNamespaces
- | PackageImports
- | ExplicitForAll
- | AlternativeLayoutRule
- | AlternativeLayoutRuleTransitional
- | DatatypeContexts
- | NondecreasingIndentation
- | RelaxedLayout
- | TraditionalRecordSyntax
- | LambdaCase
- | MultiWayIf
- | BinaryLiterals
- | NegativeLiterals
- | HexFloatLiterals
- | DuplicateRecordFields
- | OverloadedLabels
- | EmptyCase
- | PatternSynonyms
- | PartialTypeSignatures
- | NamedWildCards
- | StaticPointers
- | TypeApplications
- | Strict
- | StrictData
- | EmptyDataDeriving
- | NumericUnderscores
- | QuantifiedConstraints
- | StarIsType
- | ImportQualifiedPost
- | CUSKs
- | StandaloneKindSignatures
- | LexicalNegation
- | FieldSelectors
- | OverloadedRecordDot
- | OverloadedRecordUpdate
- extsEnabled :: Q [Extension]
- isExtEnabled :: Extension -> Q Bool
- lookupTypeName :: String -> Q (Maybe Name)
- lookupValueName :: String -> Q (Maybe Name)
- reifyFixity :: Name -> Q (Maybe Fixity)
- reifyType :: Name -> Q Type
- reifyInstances :: Name -> [Type] -> Q [InstanceDec]
- isInstance :: Name -> [Type] -> Q Bool
- reifyRoles :: Name -> Q [Role]
- reifyAnnotations :: Data a => AnnLookup -> Q [a]
- data AnnLookup
- reifyConStrictness :: Name -> Q [DecidedStrictness]
- data TExp (a :: TYPE (r :: RuntimeRep))
- unType :: TExp a -> Exp
- newtype Code m (a :: TYPE (r :: RuntimeRep)) = Code {
- examineCode :: m (TExp a)
- unTypeCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => Code m a -> m Exp
- unsafeCodeCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m Exp -> Code m a
- hoistCode :: forall m n (r :: RuntimeRep) (a :: TYPE r). Monad m => (forall x. m x -> n x) -> Code m a -> Code n a
- bindCode :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> (a -> Code m b) -> Code m b
- bindCode_ :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> Code m b -> Code m b
- joinCode :: forall m (r :: RuntimeRep) (a :: TYPE r). Monad m => m (Code m a) -> Code m a
- liftCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. m (TExp a) -> Code m a
- data Name
- data NameSpace
- mkName :: String -> Name
- nameBase :: Name -> String
- nameModule :: Name -> Maybe String
- namePackage :: Name -> Maybe String
- nameSpace :: Name -> Maybe NameSpace
- tupleTypeName :: Int -> Name
- tupleDataName :: Int -> Name
- unboxedTupleTypeName :: Int -> Name
- unboxedTupleDataName :: Int -> Name
- unboxedSumTypeName :: SumArity -> Name
- unboxedSumDataName :: SumAlt -> SumArity -> Name
- data Dec
- = FunD Name [Clause]
- | ValD Pat Body [Dec]
- | DataD Cxt Name [TyVarBndr ()] (Maybe Kind) [Con] [DerivClause]
- | NewtypeD Cxt Name [TyVarBndr ()] (Maybe Kind) Con [DerivClause]
- | TySynD Name [TyVarBndr ()] Type
- | ClassD Cxt Name [TyVarBndr ()] [FunDep] [Dec]
- | InstanceD (Maybe Overlap) Cxt Type [Dec]
- | SigD Name Type
- | KiSigD Name Kind
- | ForeignD Foreign
- | InfixD Fixity Name
- | DefaultD [Type]
- | PragmaD Pragma
- | DataFamilyD Name [TyVarBndr ()] (Maybe Kind)
- | DataInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) [Con] [DerivClause]
- | NewtypeInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) Con [DerivClause]
- | TySynInstD TySynEqn
- | OpenTypeFamilyD TypeFamilyHead
- | ClosedTypeFamilyD TypeFamilyHead [TySynEqn]
- | RoleAnnotD Name [Role]
- | StandaloneDerivD (Maybe DerivStrategy) Cxt Type
- | DefaultSigD Name Type
- | PatSynD Name PatSynArgs PatSynDir Pat
- | PatSynSigD Name PatSynType
- | ImplicitParamBindD String Exp
- data Con
- data Clause = Clause [Pat] Body [Dec]
- data SourceUnpackedness
- data SourceStrictness
- data DecidedStrictness
- data Bang = Bang SourceUnpackedness SourceStrictness
- type Strict = Bang
- data Foreign
- data Callconv
- = CCall
- | StdCall
- | CApi
- | Prim
- | JavaScript
- data Safety
- = Unsafe
- | Safe
- | Interruptible
- data Pragma
- data Inline
- data RuleMatch
- data Phases
- data RuleBndr
- data AnnTarget
- data FunDep = FunDep [Name] [Name]
- data TySynEqn = TySynEqn (Maybe [TyVarBndr ()]) Type Type
- data TypeFamilyHead = TypeFamilyHead Name [TyVarBndr ()] FamilyResultSig (Maybe InjectivityAnn)
- data Fixity = Fixity Int FixityDirection
- data FixityDirection
- defaultFixity :: Fixity
- maxPrecedence :: Int
- data PatSynDir
- data PatSynArgs
- = PrefixPatSyn [Name]
- | InfixPatSyn Name Name
- | RecordPatSyn [Name]
- data Exp
- = VarE Name
- | ConE Name
- | LitE Lit
- | AppE Exp Exp
- | AppTypeE Exp Type
- | InfixE (Maybe Exp) Exp (Maybe Exp)
- | UInfixE Exp Exp Exp
- | ParensE Exp
- | LamE [Pat] Exp
- | LamCaseE [Match]
- | LamCasesE [Clause]
- | TupE [Maybe Exp]
- | UnboxedTupE [Maybe Exp]
- | UnboxedSumE Exp SumAlt SumArity
- | CondE Exp Exp Exp
- | MultiIfE [(Guard, Exp)]
- | LetE [Dec] Exp
- | CaseE Exp [Match]
- | DoE (Maybe ModName) [Stmt]
- | MDoE (Maybe ModName) [Stmt]
- | CompE [Stmt]
- | ArithSeqE Range
- | ListE [Exp]
- | SigE Exp Type
- | RecConE Name [FieldExp]
- | RecUpdE Exp [FieldExp]
- | StaticE Exp
- | UnboundVarE Name
- | LabelE String
- | ImplicitParamVarE String
- | GetFieldE Exp String
- | ProjectionE (NonEmpty String)
- data Match = Match Pat Body [Dec]
- data Body
- data Guard
- data Stmt
- data Range
- data Lit
- data Pat
- type FieldExp = (Name, Exp)
- type FieldPat = (Name, Pat)
- data Type
- = ForallT [TyVarBndr Specificity] Cxt Type
- | ForallVisT [TyVarBndr ()] Type
- | AppT Type Type
- | AppKindT Type Kind
- | SigT Type Kind
- | VarT Name
- | ConT Name
- | PromotedT Name
- | InfixT Type Name Type
- | UInfixT Type Name Type
- | PromotedInfixT Type Name Type
- | PromotedUInfixT Type Name Type
- | ParensT Type
- | TupleT Int
- | UnboxedTupleT Int
- | UnboxedSumT SumArity
- | ArrowT
- | MulArrowT
- | EqualityT
- | ListT
- | PromotedTupleT Int
- | PromotedNilT
- | PromotedConsT
- | StarT
- | ConstraintT
- | LitT TyLit
- | WildCardT
- | ImplicitParamT String Type
- data TyVarBndr flag
- data TyLit
- type Kind = Type
- type Cxt = [Pred]
- type Pred = Type
- data Role
- data Specificity
- data FamilyResultSig
- data InjectivityAnn = InjectivityAnn Name [Name]
- type PatSynType = Type
- type BangType = (Bang, Type)
- type VarBangType = (Name, Bang, Type)
- putDoc :: DocLoc -> String -> Q ()
- getDoc :: DocLoc -> Q (Maybe String)
- data DocLoc
- module Language.Haskell.TH.Lib
- class Ppr a where
- pprint :: Ppr a => a -> String
- pprExp :: Precedence -> Exp -> Doc
- pprLit :: Precedence -> Lit -> Doc
- pprPat :: Precedence -> Pat -> Doc
- pprParendType :: Type -> Doc
The monad and its operations
Instances
class Monad m => Quote m where Source #
The Quote
class implements the minimal interface which is necessary for
desugaring quotations.
- The
Monad m
superclass is needed to stitch together the different AST fragments. newName
is used when desugaring binding structures such as lambdas to generate fresh names.
Therefore the type of an untyped quotation in GHC is `Quote m => m Exp`
For many years the type of a quotation was fixed to be `Q Exp` but by
more precisely specifying the minimal interface it enables the Exp
to
be extracted purely from the quotation without interacting with Q
.
newName :: String -> m Name Source #
Generate a fresh name, which cannot be captured.
For example, this:
f = $(do nm1 <- newName "x" let nm2 =mkName
"x" return (LamE
[VarP
nm1] (LamE [VarP nm2] (VarE
nm1))) )
will produce the splice
f = \x0 -> \x -> x0
In particular, the occurrence VarE nm1
refers to the binding VarP nm1
,
and is not captured by the binding VarP nm2
.
Although names generated by newName
cannot be captured, they can
capture other names. For example, this:
g = $(do nm1 <- newName "x" let nm2 = mkName "x" return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2))) )
will produce the splice
g = \x -> \x0 -> x0
since the occurrence VarE nm2
is captured by the innermost binding
of x
, namely VarP nm1
.
Administration: errors, locations and IO
reportError :: String -> Q () Source #
Report an error to the user, but allow the current splice's computation to carry on. To abort the computation, use fail
.
reportWarning :: String -> Q () Source #
Report a warning to the user, and carry on.
report :: Bool -> String -> Q () Source #
Deprecated: Use reportError or reportWarning instead
Report an error (True) or warning (False),
but carry on; use fail
to stop.
Recover from errors raised by reportError
or fail
.
Loc | |
|
Instances
Data Loc Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc # dataTypeOf :: Loc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # | |
Generic Loc Source # | |
Show Loc Source # | |
Binary Loc Source # | |
Ppr Loc Source # | |
Eq Loc Source # | |
Ord Loc Source # | |
type Rep Loc Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Loc = D1 ('MetaData "Loc" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Loc" 'PrefixI 'True) ((S1 ('MetaSel ('Just "loc_filename") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: S1 ('MetaSel ('Just "loc_package") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :*: (S1 ('MetaSel ('Just "loc_module") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: (S1 ('MetaSel ('Just "loc_start") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos) :*: S1 ('MetaSel ('Just "loc_end") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos))))) |
The runIO
function lets you run an I/O computation in the Q
monad.
Take care: you are guaranteed the ordering of calls to runIO
within
a single Q
computation, but not about the order in which splices are run.
Note: for various murky reasons, stdout and stderr handles are not necessarily flushed when the compiler finishes running, so you should flush them yourself.
Querying the compiler
Reify
reify :: Name -> Q Info Source #
reify
looks up information about the Name
. It will fail with
a compile error if the Name
is not visible. A Name
is visible if it is
imported or defined in a prior top-level declaration group. See the
documentation for newDeclarationGroup
for more details.
It is sometimes useful to construct the argument name using lookupTypeName
or lookupValueName
to ensure that we are reifying from the right namespace. For instance, in this context:
data D = D
which D
does reify (mkName "D")
return information about? (Answer: D
-the-type, but don't rely on it.)
To ensure we get information about D
-the-value, use lookupValueName
:
do Just nm <- lookupValueName "D" reify nm
and to get information about D
-the-type, use lookupTypeName
.
reifyModule :: Module -> Q ModuleInfo Source #
reifyModule mod
looks up information about module mod
. To
look up the current module, call this function with the return
value of thisModule
.
newDeclarationGroup :: Q [Dec] Source #
Template Haskell is capable of reifying information about types and terms defined in previous declaration groups. Top-level declaration splices break up declaration groups.
For an example, consider this code block. We define a datatype X
and
then try to call reify
on the datatype.
module Check where data X = X deriving Eq $(do info <- reify ''X runIO $ print info )
This code fails to compile, noting that X
is not available for reification at the site of reify
. We can fix this by creating a new declaration group using an empty top-level splice:
data X = X deriving Eq $(pure []) $(do info <- reify ''X runIO $ print info )
We provide newDeclarationGroup
as a means of documenting this behavior
and providing a name for the pattern.
Since top level splices infer the presence of the $( ... )
brackets, we can also write:
data X = X deriving Eq newDeclarationGroup $(do info <- reify ''X runIO $ print info )
ClassI Dec [InstanceDec] | A class, with a list of its visible instances |
ClassOpI Name Type ParentName | A class method |
TyConI Dec | A "plain" type constructor. "Fancier" type constructors are returned
using |
FamilyI Dec [InstanceDec] | A type or data family, with a list of its visible instances. A closed type family is returned with 0 instances. |
PrimTyConI Name Arity Unlifted | A "primitive" type constructor, which can't be expressed with a |
DataConI Name Type ParentName | A data constructor |
PatSynI Name PatSynType | A pattern synonym |
VarI Name Type (Maybe Dec) | A "value" variable (as opposed to a type variable, see The |
TyVarI Name Type | A type variable. The |
Instances
data ModuleInfo Source #
Obtained from reifyModule
in the Q
Monad.
ModuleInfo [Module] | Contains the import list of the module. |
Instances
type InstanceDec = Dec Source #
InstanceDec
describes a single instance of a class or type function.
It is just a Dec
, but guaranteed to be one of the following:
InstanceD
(with empty[
)Dec
]DataInstD
orNewtypeInstD
(with empty derived[
)Name
]TySynInstD
In UnboxedSumE
and UnboxedSumP
, the number associated with a
particular data constructor. SumAlt
s are one-indexed and should never
exceed the value of its corresponding SumArity
. For example:
In UnboxedSumE
, UnboxedSumT
, and UnboxedSumP
, the total number of
SumAlt
s. For example, (#|#)
has a SumArity
of 2.
In PrimTyConI
, arity of the type constructor
In PrimTyConI
, is the type constructor unlifted?
Language extension lookup
The language extensions known to GHC.
Note that there is an orphan Binary
instance for this type supplied by
the GHC.LanguageExtensions module provided by ghc-boot
. We can't provide
here as this would require adding transitive dependencies to the
template-haskell
package, which must have a minimal dependency set.
Instances
Bounded Extension Source # | |
Enum Extension Source # | |
Defined in GHC.LanguageExtensions.Type succ :: Extension -> Extension # pred :: Extension -> Extension # fromEnum :: Extension -> Int # enumFrom :: Extension -> [Extension] # enumFromThen :: Extension -> Extension -> [Extension] # enumFromTo :: Extension -> Extension -> [Extension] # enumFromThenTo :: Extension -> Extension -> Extension -> [Extension] # | |
Generic Extension Source # | |
Show Extension Source # | |
Binary Extension Source # | |
Outputable Extension Source # | |
Eq Extension Source # | |
Ord Extension Source # | |
Defined in GHC.LanguageExtensions.Type | |
type Rep Extension Source # | |
Defined in GHC.LanguageExtensions.Type type Rep Extension = D1 ('MetaData "Extension" "GHC.LanguageExtensions.Type" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) ((((((C1 ('MetaCons "Cpp" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "OverlappingInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UndecidableInstances" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "IncoherentInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UndecidableSuperClasses" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "MonomorphismRestriction" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MonoLocalBinds" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "DeepSubsumption" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RelaxedPolyRec" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ExtendedDefaultRules" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ForeignFunctionInterface" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "UnliftedFFITypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InterruptibleFFI" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CApiFFI" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GHCForeignImportPrim" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "JavaScriptFFI" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ParallelArrays" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "Arrows" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TemplateHaskell" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "TemplateHaskellQuotes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "QualifiedDo" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "QuasiQuotes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImplicitParams" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "ImplicitPrelude" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ScopedTypeVariables" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "AllowAmbiguousTypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnboxedTuples" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "UnboxedSums" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnliftedNewtypes" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "UnliftedDatatypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "BangPatterns" 'PrefixI 'False) (U1 :: Type -> Type)))))) :+: (((((C1 ('MetaCons "TypeFamilies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TypeFamilyDependencies" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TypeInType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OverloadedStrings" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "OverloadedLists" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NumDecimals" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DisambiguateRecordFields" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RecordWildCards" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "NamedFieldPuns" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ViewPatterns" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "GADTs" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GADTSyntax" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "NPlusKPatterns" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DoAndIfThenElse" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "BlockArguments" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RebindableSyntax" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "ConstraintKinds" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PolyKinds" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DataKinds" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TypeData" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "InstanceSigs" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ApplicativeDo" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LinearTypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StandaloneDeriving" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "DeriveDataTypeable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AutoDeriveTypeable" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DeriveFunctor" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveTraversable" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "DeriveFoldable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveGeneric" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DefaultSignatures" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveAnyClass" 'PrefixI 'False) (U1 :: Type -> Type))))))) :+: (((((C1 ('MetaCons "DeriveLift" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DerivingStrategies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DerivingVia" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "TypeSynonymInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "FlexibleContexts" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "FlexibleInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ConstrainedClassMethods" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "MultiParamTypeClasses" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NullaryTypeClasses" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "FunctionalDependencies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnicodeSyntax" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ExistentialQuantification" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MagicHash" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "EmptyDataDecls" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "KindSignatures" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "RoleAnnotations" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ParallelListComp" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TransformListComp" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MonadComprehensions" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "GeneralizedNewtypeDeriving" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RecursiveDo" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PostfixOperators" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TupleSections" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "PatternGuards" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LiberalTypeSynonyms" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "RankNTypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImpredicativeTypes" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "TypeOperators" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplicitNamespaces" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PackageImports" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplicitForAll" 'PrefixI 'False) (U1 :: Type -> Type)))))) :+: (((((C1 ('MetaCons "AlternativeLayoutRule" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AlternativeLayoutRuleTransitional" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DatatypeContexts" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NondecreasingIndentation" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "RelaxedLayout" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TraditionalRecordSyntax" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LambdaCase" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MultiWayIf" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "BinaryLiterals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NegativeLiterals" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "HexFloatLiterals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DuplicateRecordFields" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "OverloadedLabels" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "EmptyCase" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PatternSynonyms" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PartialTypeSignatures" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "NamedWildCards" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StaticPointers" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TypeApplications" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Strict" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "StrictData" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "EmptyDataDeriving" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "NumericUnderscores" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "QuantifiedConstraints" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "StarIsType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImportQualifiedPost" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CUSKs" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StandaloneKindSignatures" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "LexicalNegation" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "FieldSelectors" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "OverloadedRecordDot" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OverloadedRecordUpdate" 'PrefixI 'False) (U1 :: Type -> Type)))))))) |
extsEnabled :: Q [Extension] Source #
List all enabled language extensions.
isExtEnabled :: Extension -> Q Bool Source #
Determine whether the given language extension is enabled in the Q
monad.
Name lookup
lookupTypeName :: String -> Q (Maybe Name) Source #
Look up the given name in the (type namespace of the) current splice's scope. See Language.Haskell.TH.Syntax for more details.
lookupValueName :: String -> Q (Maybe Name) Source #
Look up the given name in the (value namespace of the) current splice's scope. See Language.Haskell.TH.Syntax for more details.
Fixity lookup
reifyFixity :: Name -> Q (Maybe Fixity) Source #
reifyFixity nm
attempts to find a fixity declaration for nm
. For
example, if the function foo
has the fixity declaration infixr 7 foo
, then
reifyFixity 'foo
would return
. If the function
Just
(Fixity
7 InfixR
)bar
does not have a fixity declaration, then reifyFixity 'bar
returns
Nothing
, so you may assume bar
has defaultFixity
.
Type lookup
reifyType :: Name -> Q Type Source #
reifyType nm
attempts to find the type or kind of nm
. For example,
reifyType 'not
returns Bool -> Bool
, and
reifyType ''Bool
returns Type
.
This works even if there's no explicit signature and the type or kind is inferred.
Instance lookup
reifyInstances :: Name -> [Type] -> Q [InstanceDec] Source #
reifyInstances nm tys
returns a list of all visible instances (see below for "visible")
of nm tys
. That is,
if nm
is the name of a type class, then all instances of this class at the types tys
are returned. Alternatively, if nm
is the name of a data family or type family,
all instances of this family at the types tys
are returned.
Note that this is a "shallow" test; the declarations returned merely have
instance heads which unify with nm tys
, they need not actually be satisfiable.
reifyInstances ''Eq [
contains theTupleT
2 `AppT
`ConT
''A `AppT
`ConT
''B ]instance (Eq a, Eq b) => Eq (a, b)
regardless of whetherA
andB
themselves implementEq
reifyInstances ''Show [
produces every available instance ofVarT
(mkName
"a") ]Eq
There is one edge case: reifyInstances ''Typeable tys
currently always
produces an empty list (no matter what tys
are given).
In principle, the *visible* instances are
* all instances defined in a prior top-level declaration group
(see docs on newDeclarationGroup
), or
* all instances defined in any module transitively imported by the
module being compiled
However, actually searching all modules transitively below the one being
compiled is unreasonably expensive, so reifyInstances
will report only the
instance for modules that GHC has had some cause to visit during this
compilation. This is a shortcoming: reifyInstances
might fail to report
instances for a type that is otherwise unusued, or instances defined in a
different component. You can work around this shortcoming by explicitly importing the modules
whose instances you want to be visible. GHC issue #20529
has some discussion around this.
isInstance :: Name -> [Type] -> Q Bool Source #
Is the list of instances returned by reifyInstances
nonempty?
If you're confused by an instance not being visible despite being
defined in the same module and above the splice in question, see the
docs for newDeclarationGroup
for a possible explanation.
Roles lookup
reifyRoles :: Name -> Q [Role] Source #
reifyRoles nm
returns the list of roles associated with the parameters
(both visible and invisible) of
the tycon nm
. Fails if nm
cannot be found or is not a tycon.
The returned list should never contain InferR
.
An invisible parameter to a tycon is often a kind parameter. For example, if we have
type Proxy :: forall k. k -> Type data Proxy a = MkProxy
and reifyRoles Proxy
, we will get [
. The NominalR
, PhantomR
]NominalR
is
the role of the invisible k
parameter. Kind parameters are always nominal.
Annotation lookup
reifyAnnotations :: Data a => AnnLookup -> Q [a] Source #
reifyAnnotations target
returns the list of annotations
associated with target
. Only the annotations that are
appropriately typed is returned. So if you have Int
and String
annotations for the same target, you have to call this function twice.
Annotation target for reifyAnnotations
Instances
Data AnnLookup Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup # toConstr :: AnnLookup -> Constr # dataTypeOf :: AnnLookup -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # | |
Generic AnnLookup Source # | |
Show AnnLookup Source # | |
Binary AnnLookup Source # | |
Eq AnnLookup Source # | |
Ord AnnLookup Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep AnnLookup Source # | |
Defined in Language.Haskell.TH.Syntax type Rep AnnLookup = D1 ('MetaData "AnnLookup" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "AnnLookupModule" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Module)) :+: C1 ('MetaCons "AnnLookupName" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) |
Constructor strictness lookup
reifyConStrictness :: Name -> Q [DecidedStrictness] Source #
reifyConStrictness nm
looks up the strictness information for the fields
of the constructor with the name nm
. Note that the strictness information
that reifyConStrictness
returns may not correspond to what is written in
the source code. For example, in the following data declaration:
data Pair a = Pair a a
reifyConStrictness
would return [
under most
circumstances, but it would return DecidedLazy
, DecidedLazy][
if the
DecidedStrict
, DecidedStrict]-XStrictData
language extension was enabled.
Typed expressions
data TExp (a :: TYPE (r :: RuntimeRep)) Source #
Represents an expression which has type a
. Built on top of Exp
, typed
expressions allow for type-safe splicing via:
- typed quotes, written as
[|| ... ||]
where...
is an expression; if that expression has typea
, then the quotation has typeQ
(TExp
a) - typed splices inside of typed quotes, written as
$$(...)
where...
is an arbitrary expression of typeQ
(TExp
a)
Traditional expression quotes and splices let us construct ill-typed expressions:
>>>
fmap ppr $ runQ [| True == $( [| "foo" |] ) |]
GHC.Types.True GHC.Classes.== "foo">>>
GHC.Types.True GHC.Classes.== "foo"
<interactive> error: • Couldn't match expected type ‘Bool’ with actual type ‘[Char]’ • In the second argument of ‘(==)’, namely ‘"foo"’ In the expression: True == "foo" In an equation for ‘it’: it = True == "foo"
With typed expressions, the type error occurs when constructing the Template Haskell expression:
>>>
fmap ppr $ runQ [|| True == $$( [|| "foo" ||] ) ||]
<interactive> error: • Couldn't match type ‘[Char]’ with ‘Bool’ Expected type: Q (TExp Bool) Actual type: Q (TExp [Char]) • In the Template Haskell quotation [|| "foo" ||] In the expression: [|| "foo" ||] In the Template Haskell splice $$([|| "foo" ||])
Representation-polymorphic since template-haskell-2.16.0.0.
newtype Code m (a :: TYPE (r :: RuntimeRep)) Source #
Code | |
|
unTypeCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => Code m a -> m Exp Source #
Extract the untyped representation from the typed representation
unsafeCodeCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m Exp -> Code m a Source #
Unsafely convert an untyped code representation into a typed code representation.
hoistCode :: forall m n (r :: RuntimeRep) (a :: TYPE r). Monad m => (forall x. m x -> n x) -> Code m a -> Code n a Source #
Modify the ambient monad used during code generation. For example, you
can use hoistCode
to handle a state effect:
handleState :: Code (StateT Int Q) a -> Code Q a
handleState = hoistCode (flip runState 0)
bindCode :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> (a -> Code m b) -> Code m b Source #
Variant of (>>=) which allows effectful computations to be injected into code generation.
bindCode_ :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> Code m b -> Code m b Source #
Variant of (>>) which allows effectful computations to be injected into code generation.
joinCode :: forall m (r :: RuntimeRep) (a :: TYPE r). Monad m => m (Code m a) -> Code m a Source #
A useful combinator for embedding monadic actions into Code
myCode :: ... => Code m a
myCode = joinCode $ do
x <- someSideEffect
return (makeCodeWith x)
liftCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. m (TExp a) -> Code m a Source #
Lift a monadic action producing code into the typed Code
representation
Names
An abstract type representing names in the syntax tree.
Name
s can be constructed in several ways, which come with different
name-capture guarantees (see Language.Haskell.TH.Syntax for
an explanation of name capture):
- the built-in syntax
'f
and''T
can be used to construct names, The expression'f
gives aName
which refers to the valuef
currently in scope, and''T
gives aName
which refers to the typeT
currently in scope. These names can never be captured. lookupValueName
andlookupTypeName
are similar to'f
and''T
respectively, but theName
s are looked up at the point where the current splice is being run. These names can never be captured.newName
monadically generates a new name, which can never be captured.mkName
generates a capturable name.
Names constructed using newName
and mkName
may be used in bindings
(such as let x = ...
or x -> ...
), but names constructed using
lookupValueName
, lookupTypeName
, 'f
, ''T
may not.
Instances
Data Name Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
Generic Name Source # | |
Show Name Source # | |
Binary Name Source # | |
Ppr Name Source # | |
Eq Name Source # | |
Ord Name Source # | |
type Rep Name Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Name = D1 ('MetaData "Name" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Name" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 OccName) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NameFlavour))) |
Instances
Data NameSpace Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace # toConstr :: NameSpace -> Constr # dataTypeOf :: NameSpace -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # | |
Generic NameSpace Source # | |
Show NameSpace Source # | |
Binary NameSpace Source # | |
Eq NameSpace Source # | |
Ord NameSpace Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep NameSpace Source # | |
Defined in Language.Haskell.TH.Syntax type Rep NameSpace = D1 ('MetaData "NameSpace" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "VarName" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DataName" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TcClsName" 'PrefixI 'False) (U1 :: Type -> Type))) |
Constructing names
mkName :: String -> Name Source #
Generate a capturable name. Occurrences of such names will be resolved according to the Haskell scoping rules at the occurrence site.
For example:
f = [| pi + $(varE (mkName "pi")) |] ... g = let pi = 3 in $f
In this case, g
is desugared to
g = Prelude.pi + 3
Note that mkName
may be used with qualified names:
mkName "Prelude.pi"
See also dyn
for a useful combinator. The above example could
be rewritten using dyn
as
f = [| pi + $(dyn "pi") |]
Deconstructing names
nameBase :: Name -> String Source #
The name without its module prefix.
Examples
>>>
nameBase ''Data.Either.Either
"Either">>>
nameBase (mkName "foo")
"foo">>>
nameBase (mkName "Module.foo")
"foo"
nameModule :: Name -> Maybe String Source #
Module prefix of a name, if it exists.
Examples
>>>
nameModule ''Data.Either.Either
Just "Data.Either">>>
nameModule (mkName "foo")
Nothing>>>
nameModule (mkName "Module.foo")
Just "Module"
namePackage :: Name -> Maybe String Source #
A name's package, if it exists.
Examples
>>>
namePackage ''Data.Either.Either
Just "base">>>
namePackage (mkName "foo")
Nothing>>>
namePackage (mkName "Module.foo")
Nothing
nameSpace :: Name -> Maybe NameSpace Source #
Returns whether a name represents an occurrence of a top-level variable
(VarName
), data constructor (DataName
), type constructor, or type class
(TcClsName
). If we can't be sure, it returns Nothing
.
Examples
>>>
nameSpace 'Prelude.id
Just VarName>>>
nameSpace (mkName "id")
Nothing -- only works for top-level variable names>>>
nameSpace 'Data.Maybe.Just
Just DataName>>>
nameSpace ''Data.Maybe.Maybe
Just TcClsName>>>
nameSpace ''Data.Ord.Ord
Just TcClsName
Built-in names
tupleTypeName :: Int -> Name Source #
Tuple type constructor
tupleDataName :: Int -> Name Source #
Tuple data constructor
unboxedTupleTypeName :: Int -> Name Source #
Unboxed tuple type constructor
unboxedTupleDataName :: Int -> Name Source #
Unboxed tuple data constructor
unboxedSumTypeName :: SumArity -> Name Source #
Unboxed sum type constructor
The algebraic data types
The lowercase versions (syntax operators) of these constructors are
preferred to these constructors, since they compose better with
quotations ([| |]
) and splices ($( ... )
)
Declarations
FunD Name [Clause] | { f p1 p2 = b where decs } |
ValD Pat Body [Dec] | { p = b where decs } |
DataD Cxt Name [TyVarBndr ()] (Maybe Kind) [Con] [DerivClause] | { data Cxt x => T x = A x | B (T x) deriving (Z,W) deriving stock Eq } |
NewtypeD Cxt Name [TyVarBndr ()] (Maybe Kind) Con [DerivClause] | { newtype Cxt x => T x = A (B x) deriving (Z,W Q) deriving stock Eq } |
TySynD Name [TyVarBndr ()] Type | { type T x = (x,x) } |
ClassD Cxt Name [TyVarBndr ()] [FunDep] [Dec] | { class Eq a => Ord a where ds } |
InstanceD (Maybe Overlap) Cxt Type [Dec] | { instance {-# OVERLAPS #-} Show w => Show [w] where ds } |
SigD Name Type | { length :: [a] -> Int } |
KiSigD Name Kind | { type TypeRep :: k -> Type } |
ForeignD Foreign | { foreign import ... } { foreign export ... } |
InfixD Fixity Name | { infix 3 foo } |
DefaultD [Type] | { default (Integer, Double) } |
PragmaD | pragmas |
| |
DataFamilyD | data families (may also appear in [Dec] of |
DataInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) [Con] [DerivClause] | { data instance Cxt x => T [x] = A x | B (T x) deriving (Z,W) deriving stock Eq } |
NewtypeInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) Con [DerivClause] | { newtype instance Cxt x => T [x] = A (B x) deriving (Z,W) deriving stock Eq } |
TySynInstD TySynEqn | { type instance ... } |
OpenTypeFamilyD | open type families (may also appear in [Dec] of |
| |
ClosedTypeFamilyD TypeFamilyHead [TySynEqn] | { type family F a b = (r :: *) | r -> a where ... } |
RoleAnnotD Name [Role] | { type role T nominal representational } |
StandaloneDerivD (Maybe DerivStrategy) Cxt Type | { deriving stock instance Ord a => Ord (Foo a) } |
DefaultSigD Name Type | { default size :: Data a => a -> Int } |
PatSynD | Pattern Synonyms |
| |
PatSynSigD Name PatSynType | A pattern synonym's type signature. |
ImplicitParamBindD String Exp | { ?x = expr } Implicit parameter binding declaration. Can only be used in let and where clauses which consist entirely of implicit bindings. |
Instances
A single data constructor.
The constructors for Con
can roughly be divided up into two categories:
those for constructors with "vanilla" syntax (NormalC
, RecC
, and
InfixC
), and those for constructors with GADT syntax (GadtC
and
RecGadtC
). The ForallC
constructor, which quantifies additional type
variables and class contexts, can surround either variety of constructor.
However, the type variables that it quantifies are different depending
on what constructor syntax is used:
- If a
ForallC
surrounds a constructor with vanilla syntax, then theForallC
will only quantify existential type variables. For example:
data Foo a = forall b. MkFoo a b
In MkFoo
, ForallC
will quantify b
, but not a
.
- If a
ForallC
surrounds a constructor with GADT syntax, then theForallC
will quantify all type variables used in the constructor. For example:
data Bar a b where MkBar :: (a ~ b) => c -> MkBar a b
In MkBar
, ForallC
will quantify a
, b
, and c
.
Multiplicity annotations for data types are currently not supported in Template Haskell (i.e. all fields represented by Template Haskell will be linear).
NormalC Name [BangType] | C Int a |
RecC Name [VarBangType] | C { v :: Int, w :: a } |
InfixC BangType Name BangType | Int :+ a |
ForallC [TyVarBndr Specificity] Cxt Con | forall a. Eq a => C [a] |
GadtC [Name] [BangType] Type | C :: a -> b -> T b Int |
RecGadtC [Name] [VarBangType] Type | C :: { v :: Int } -> T b Int |
Instances
Instances
Data Clause Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause # toConstr :: Clause -> Constr # dataTypeOf :: Clause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # | |
Generic Clause Source # | |
Show Clause Source # | |
Binary Clause Source # | |
Ppr Clause Source # | |
Eq Clause Source # | |
Ord Clause Source # | |
type Rep Clause Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Clause = D1 ('MetaData "Clause" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Clause" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) |
data SourceUnpackedness Source #
SourceUnpackedness
corresponds to unpack annotations found in the source code.
This may not agree with the annotations returned by reifyConStrictness
.
See reifyConStrictness
for more information.
NoSourceUnpackedness | C a |
SourceNoUnpack | C { {-# NOUNPACK #-} } a |
SourceUnpack | C { {-# UNPACK #-} } a |
Instances
data SourceStrictness Source #
SourceStrictness
corresponds to strictness annotations found in the source code.
This may not agree with the annotations returned by reifyConStrictness
.
See reifyConStrictness
for more information.
NoSourceStrictness | C a |
SourceLazy | C {~}a |
SourceStrict | C {!}a |
Instances
data DecidedStrictness Source #
Unlike SourceStrictness
and SourceUnpackedness
, DecidedStrictness
refers to the strictness annotations that the compiler chooses for a data constructor
field, which may be different from what is written in source code.
Note that non-unpacked strict fields are assigned DecidedLazy
when a bang would be inappropriate,
such as the field of a newtype constructor and fields that have an unlifted type.
See reifyConStrictness
for more information.
DecidedLazy | Field inferred to not have a bang. |
DecidedStrict | Field inferred to have a bang. |
DecidedUnpack | Field inferred to be unpacked. |
Instances
Bang SourceUnpackedness SourceStrictness | C { {-# UNPACK #-} !}a |
Instances
Data Bang Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang # dataTypeOf :: Bang -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # | |
Generic Bang Source # | |
Show Bang Source # | |
Binary Bang Source # | |
Ppr Bang Source # | |
Eq Bang Source # | |
Ord Bang Source # | |
type Rep Bang Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Bang = D1 ('MetaData "Bang" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Bang" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceUnpackedness) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceStrictness))) |
Instances
Instances
Data Callconv Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv # toConstr :: Callconv -> Constr # dataTypeOf :: Callconv -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # | |
Generic Callconv Source # | |
Show Callconv Source # | |
Binary Callconv Source # | |
Eq Callconv Source # | |
Ord Callconv Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Callconv Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Callconv = D1 ('MetaData "Callconv" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) ((C1 ('MetaCons "CCall" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StdCall" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CApi" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "Prim" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "JavaScript" 'PrefixI 'False) (U1 :: Type -> Type)))) |
Instances
Data Safety Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety # toConstr :: Safety -> Constr # dataTypeOf :: Safety -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # | |
Generic Safety Source # | |
Show Safety Source # | |
Binary Safety Source # | |
Eq Safety Source # | |
Ord Safety Source # | |
type Rep Safety Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Safety = D1 ('MetaData "Safety" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Unsafe" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "Safe" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Interruptible" 'PrefixI 'False) (U1 :: Type -> Type))) |
InlineP Name Inline RuleMatch Phases | |
OpaqueP Name | |
SpecialiseP Name Type (Maybe Inline) Phases | |
SpecialiseInstP Type | |
RuleP String (Maybe [TyVarBndr ()]) [RuleBndr] Exp Exp Phases | |
AnnP AnnTarget Exp | |
LineP Int String | |
CompleteP [Name] (Maybe Name) | { {-# COMPLETE C_1, ..., C_i [ :: T ] #-} } |
Instances
Instances
Data Inline Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline # toConstr :: Inline -> Constr # dataTypeOf :: Inline -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # | |
Generic Inline Source # | |
Show Inline Source # | |
Binary Inline Source # | |
Ppr Inline Source # | |
Eq Inline Source # | |
Ord Inline Source # | |
type Rep Inline Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Inline = D1 ('MetaData "Inline" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "NoInline" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "Inline" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Inlinable" 'PrefixI 'False) (U1 :: Type -> Type))) |
Instances
Data RuleMatch Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch # toConstr :: RuleMatch -> Constr # dataTypeOf :: RuleMatch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # | |
Generic RuleMatch Source # | |
Show RuleMatch Source # | |
Binary RuleMatch Source # | |
Ppr RuleMatch Source # | |
Eq RuleMatch Source # | |
Ord RuleMatch Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep RuleMatch Source # | |
Defined in Language.Haskell.TH.Syntax |
Instances
Data Phases Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases # toConstr :: Phases -> Constr # dataTypeOf :: Phases -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # | |
Generic Phases Source # | |
Show Phases Source # | |
Binary Phases Source # | |
Ppr Phases Source # | |
Eq Phases Source # | |
Ord Phases Source # | |
type Rep Phases Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Phases = D1 ('MetaData "Phases" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "AllPhases" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "FromPhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :+: C1 ('MetaCons "BeforePhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)))) |
Instances
Data RuleBndr Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr # toConstr :: RuleBndr -> Constr # dataTypeOf :: RuleBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # | |
Generic RuleBndr Source # | |
Show RuleBndr Source # | |
Binary RuleBndr Source # | |
Ppr RuleBndr Source # | |
Eq RuleBndr Source # | |
Ord RuleBndr Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep RuleBndr Source # | |
Defined in Language.Haskell.TH.Syntax type Rep RuleBndr = D1 ('MetaData "RuleBndr" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "RuleVar" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "TypedRuleVar" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) |
Instances
Data AnnTarget Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget # toConstr :: AnnTarget -> Constr # dataTypeOf :: AnnTarget -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # | |
Generic AnnTarget Source # | |
Show AnnTarget Source # | |
Binary AnnTarget Source # | |
Eq AnnTarget Source # | |
Ord AnnTarget Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep AnnTarget Source # | |
Defined in Language.Haskell.TH.Syntax type Rep AnnTarget = D1 ('MetaData "AnnTarget" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "ModuleAnnotation" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "TypeAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "ValueAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)))) |
Instances
Data FunDep Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep # toConstr :: FunDep -> Constr # dataTypeOf :: FunDep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # | |
Generic FunDep Source # | |
Show FunDep Source # | |
Binary FunDep Source # | |
Ppr FunDep Source # | |
Eq FunDep Source # | |
Ord FunDep Source # | |
type Rep FunDep Source # | |
Defined in Language.Haskell.TH.Syntax type Rep FunDep = D1 ('MetaData "FunDep" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "FunDep" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]))) |
One equation of a type family instance or closed type family. The arguments are the left-hand-side type and the right-hand-side result.
For instance, if you had the following type family:
type family Foo (a :: k) :: k where forall k (a :: k). Foo @k a = a
The Foo @k a = a
equation would be represented as follows:
TySynEqn
(Just
[PlainTV
k,KindedTV
a (VarT
k)]) (AppT
(AppKindT
(ConT
''Foo) (VarT
k)) (VarT
a)) (VarT
a)
Instances
Data TySynEqn Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn # toConstr :: TySynEqn -> Constr # dataTypeOf :: TySynEqn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # | |
Generic TySynEqn Source # | |
Show TySynEqn Source # | |
Binary TySynEqn Source # | |
Eq TySynEqn Source # | |
Ord TySynEqn Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep TySynEqn Source # | |
Defined in Language.Haskell.TH.Syntax type Rep TySynEqn = D1 ('MetaData "TySynEqn" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "TySynEqn" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe [TyVarBndr ()])) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) |
data TypeFamilyHead Source #
Common elements of OpenTypeFamilyD
and ClosedTypeFamilyD
. By
analogy with "head" for type classes and type class instances as
defined in Type classes: an exploration of the design space, the
TypeFamilyHead
is defined to be the elements of the declaration
between type family
and where
.
Instances
Instances
Data Fixity Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Generic Fixity Source # | |
Show Fixity Source # | |
Binary Fixity Source # | |
Eq Fixity Source # | |
Ord Fixity Source # | |
type Rep Fixity Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Fixity = D1 ('MetaData "Fixity" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Fixity" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 FixityDirection))) |
data FixityDirection Source #
Instances
defaultFixity :: Fixity Source #
Default fixity: infixl 9
maxPrecedence :: Int Source #
Highest allowed operator precedence for Fixity
constructor (answer: 9)
A pattern synonym's directionality.
Unidir | pattern P x {<-} p |
ImplBidir | pattern P x {=} p |
ExplBidir [Clause] | pattern P x {<-} p where P x = e |
Instances
Data PatSynDir Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir # toConstr :: PatSynDir -> Constr # dataTypeOf :: PatSynDir -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # | |
Generic PatSynDir Source # | |
Show PatSynDir Source # | |
Binary PatSynDir Source # | |
Ppr PatSynDir Source # | |
Eq PatSynDir Source # | |
Ord PatSynDir Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep PatSynDir Source # | |
Defined in Language.Haskell.TH.Syntax type Rep PatSynDir = D1 ('MetaData "PatSynDir" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Unidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "ImplBidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplBidir" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Clause])))) |
data PatSynArgs Source #
A pattern synonym's argument type.
PrefixPatSyn [Name] | pattern P {x y z} = p |
InfixPatSyn Name Name | pattern {x P y} = p |
RecordPatSyn [Name] | pattern P { {x,y,z} } = p |
Instances
Expressions
VarE Name | { x } |
ConE Name | data T1 = C1 t1 t2; p = {C1} e1 e2 |
LitE Lit | { 5 or 'c'} |
AppE Exp Exp | { f x } |
AppTypeE Exp Type | { f @Int } |
InfixE (Maybe Exp) Exp (Maybe Exp) | {x + y} or {(x+)} or {(+ x)} or {(+)} |
UInfixE Exp Exp Exp | {x + y} |
ParensE Exp | { (e) } |
LamE [Pat] Exp | { \ p1 p2 -> e } |
LamCaseE [Match] | { \case m1; m2 } |
LamCasesE [Clause] | { \cases m1; m2 } |
TupE [Maybe Exp] | { (e1,e2) } The (1,) translates to TupE [Just (LitE (IntegerL 1)),Nothing] |
UnboxedTupE [Maybe Exp] | { (# e1,e2 #) } The (# 'c', #) translates to UnboxedTupE [Just (LitE (CharL 'c')),Nothing] |
UnboxedSumE Exp SumAlt SumArity | { (#|e|#) } |
CondE Exp Exp Exp | { if e1 then e2 else e3 } |
MultiIfE [(Guard, Exp)] | { if | g1 -> e1 | g2 -> e2 } |
LetE [Dec] Exp | { let { x=e1; y=e2 } in e3 } |
CaseE Exp [Match] | { case e of m1; m2 } |
DoE (Maybe ModName) [Stmt] |
|
MDoE (Maybe ModName) [Stmt] |
|
CompE [Stmt] | { [ (x,y) | x <- xs, y <- ys ] } The result expression of the comprehension is
the last of the E.g. translation: [ f x | x <- xs ] CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))] |
ArithSeqE Range | { [ 1 ,2 .. 10 ] } |
ListE [Exp] | { [1,2,3] } |
SigE Exp Type | { e :: t } |
RecConE Name [FieldExp] | { T { x = y, z = w } } |
RecUpdE Exp [FieldExp] | { (f x) { z = w } } |
StaticE Exp | { static e } |
UnboundVarE Name | { _x } This is used for holes or unresolved identifiers in AST quotes. Note that it could either have a variable name or constructor name. |
LabelE String |
|
ImplicitParamVarE String |
|
GetFieldE Exp String |
|
ProjectionE (NonEmpty String) |
|
Instances
Instances
Data Match Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match # dataTypeOf :: Match -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) # gmapT :: (forall b. Data b => b -> b) -> Match -> Match # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # | |
Generic Match Source # | |
Show Match Source # | |
Binary Match Source # | |
Ppr Match Source # | |
Eq Match Source # | |
Ord Match Source # | |
type Rep Match Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Match = D1 ('MetaData "Match" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "Match" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) |
Instances
Data Body Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body # dataTypeOf :: Body -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) # gmapT :: (forall b. Data b => b -> b) -> Body -> Body # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # | |
Generic Body Source # | |
Show Body Source # | |
Binary Body Source # | |
Eq Body Source # | |
Ord Body Source # | |
type Rep Body Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Body = D1 ('MetaData "Body" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "GuardedB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [(Guard, Exp)])) :+: C1 ('MetaCons "NormalB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) |
Instances
Data Guard Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard # dataTypeOf :: Guard -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # | |
Generic Guard Source # | |
Show Guard Source # | |
Binary Guard Source # | |
Eq Guard Source # | |
Ord Guard Source # | |
type Rep Guard Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Guard = D1 ('MetaData "Guard" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "NormalG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "PatG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt]))) |
BindS Pat Exp | p <- e |
LetS [Dec] | { let { x=e1; y=e2 } } |
NoBindS Exp | e |
ParS [[Stmt]] |
|
RecS [Stmt] | rec { s1; s2 } |
Instances
Instances
CharL Char | |
StringL String | |
IntegerL Integer | Used for overloaded and non-overloaded literals. We don't have a good way to represent non-overloaded literals at the moment. Maybe that doesn't matter? |
RationalL Rational | |
IntPrimL Integer | |
WordPrimL Integer | |
FloatPrimL Rational | |
DoublePrimL Rational | |
StringPrimL [Word8] | A primitive C-style string, type |
BytesPrimL Bytes | Some raw bytes, type |
CharPrimL Char |
Instances
Patterns
Pattern in Haskell given in {}
LitP Lit | { 5 or 'c' } |
VarP Name | { x } |
TupP [Pat] | { (p1,p2) } |
UnboxedTupP [Pat] | { (# p1,p2 #) } |
UnboxedSumP Pat SumAlt SumArity | { (#|p|#) } |
ConP Name [Type] [Pat] | data T1 = C1 t1 t2; {C1 @ty1 p1 p2} = e |
InfixP Pat Name Pat | foo ({x :+ y}) = e |
UInfixP Pat Name Pat | foo ({x :+ y}) = e |
ParensP Pat | {(p)} |
TildeP Pat | { ~p } |
BangP Pat | { !p } |
AsP Name Pat | { x @ p } |
WildP | { _ } |
RecP Name [FieldPat] | f (Pt { pointx = x }) = g x |
ListP [Pat] | { [1,2,3] } |
SigP Pat Type | { p :: t } |
ViewP Exp Pat | { e -> p } |
Instances
Types
ForallT [TyVarBndr Specificity] Cxt Type | forall <vars>. <ctxt> => <type> |
ForallVisT [TyVarBndr ()] Type | forall <vars> -> <type> |
AppT Type Type | T a b |
AppKindT Type Kind | T @k t |
SigT Type Kind | t :: k |
VarT Name | a |
ConT Name | T |
PromotedT Name | 'T |
InfixT Type Name Type | T + T |
UInfixT Type Name Type | T + T |
PromotedInfixT Type Name Type | T :+: T |
PromotedUInfixT Type Name Type | T :+: T |
ParensT Type | (T) |
TupleT Int |
|
UnboxedTupleT Int |
|
UnboxedSumT SumArity |
|
ArrowT | -> |
MulArrowT | %n -> Generalised arrow type with multiplicity argument |
EqualityT | ~ |
ListT | [] |
PromotedTupleT Int |
|
PromotedNilT | '[] |
PromotedConsT | '(:) |
StarT | * |
ConstraintT | Constraint |
LitT TyLit |
|
WildCardT | _ |
ImplicitParamT String Type | ?x :: t |
Instances
Instances
Functor TyVarBndr Source # | |
Data flag => Data (TyVarBndr flag) Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr flag -> c (TyVarBndr flag) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (TyVarBndr flag) # toConstr :: TyVarBndr flag -> Constr # dataTypeOf :: TyVarBndr flag -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (TyVarBndr flag)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (TyVarBndr flag)) # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr flag -> TyVarBndr flag # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr flag -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr flag -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # | |
Generic (TyVarBndr flag) Source # | |
Show flag => Show (TyVarBndr flag) Source # | |
Binary flag => Binary (TyVarBndr flag) Source # | |
PprFlag flag => Ppr (TyVarBndr flag) Source # | |
Eq flag => Eq (TyVarBndr flag) Source # | |
Ord flag => Ord (TyVarBndr flag) Source # | |
Defined in Language.Haskell.TH.Syntax compare :: TyVarBndr flag -> TyVarBndr flag -> Ordering # (<) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (<=) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (>) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (>=) :: TyVarBndr flag -> TyVarBndr flag -> Bool # | |
type Rep (TyVarBndr flag) Source # | |
Defined in Language.Haskell.TH.Syntax type Rep (TyVarBndr flag) = D1 ('MetaData "TyVarBndr" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "PlainTV" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 flag)) :+: C1 ('MetaCons "KindedTV" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 flag) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Kind)))) |
Instances
Data TyLit Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Generic TyLit Source # | |
Show TyLit Source # | |
Binary TyLit Source # | |
Ppr TyLit Source # | |
Eq TyLit Source # | |
Ord TyLit Source # | |
type Rep TyLit Source # | |
Defined in Language.Haskell.TH.Syntax type Rep TyLit = D1 ('MetaData "TyLit" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) (C1 ('MetaCons "NumTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Integer)) :+: (C1 ('MetaCons "StrTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :+: C1 ('MetaCons "CharTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Char)))) |
To avoid duplication between kinds and types, they
are defined to be the same. Naturally, you would never
have a type be StarT
and you would never have a kind
be SigT
, but many of the other constructors are shared.
Note that the kind Bool
is denoted with ConT
, not
PromotedT
. Similarly, tuple kinds are made with TupleT
,
not PromotedTupleT
.
Since the advent of ConstraintKinds
, constraints are really just types.
Equality constraints use the EqualityT
constructor. Constraints may also
be tuples of other constraints.
Role annotations
NominalR | nominal |
RepresentationalR | representational |
PhantomR | phantom |
InferR | _ |
Instances
Data Role Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Generic Role Source # | |
Show Role Source # | |
Binary Role Source # | |
Ppr Role Source # | |
Eq Role Source # | |
Ord Role Source # | |
type Rep Role Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Role = D1 ('MetaData "Role" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) ((C1 ('MetaCons "NominalR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RepresentationalR" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PhantomR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InferR" 'PrefixI 'False) (U1 :: Type -> Type))) |
data Specificity Source #
Instances
data FamilyResultSig Source #
Type family result signature
Instances
data InjectivityAnn Source #
Injectivity annotation
Instances
type PatSynType = Type Source #
A pattern synonym's type. Note that a pattern synonym's fully specified type has a peculiar shape coming with two forall quantifiers and two constraint contexts. For example, consider the pattern synonym
pattern P x1 x2 ... xn = <some-pattern>
P's complete type is of the following form
pattern P :: forall universals. required constraints => forall existentials. provided constraints => t1 -> t2 -> ... -> tn -> t
consisting of four parts:
- the (possibly empty lists of) universally quantified type variables and required constraints on them.
- the (possibly empty lists of) existentially quantified type variables and the provided constraints on them.
- the types
t1
,t2
, ..,tn
ofx1
,x2
, ..,xn
, respectively - the type
t
of<some-pattern>
, mentioning only universals.
Pattern synonym types interact with TH when (a) reifying a pattern synonym, (b) pretty printing, or (c) specifying a pattern synonym's type signature explicitly:
- Reification always returns a pattern synonym's fully specified type in abstract syntax.
- Pretty printing via
pprPatSynType
abbreviates a pattern synonym's type unambiguously in concrete syntax: The rule of thumb is to print initial empty universals and the required context as() =>
, if existentials and a provided context follow. If only universals and their required context, but no existentials are specified, only the universals and their required context are printed. If both or none are specified, so both (or none) are printed. - When specifying a pattern synonym's type explicitly with
PatSynSigD
either one of the universals, the existentials, or their contexts may be left empty.
See the GHC user's guide for more information on pattern synonyms and their types: https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#pattern-synonyms.
Documentation
putDoc :: DocLoc -> String -> Q () Source #
Add Haddock documentation to the specified location. This will overwrite
any documentation at the location if it already exists. This will reify the
specified name, so it must be in scope when you call it. If you want to add
documentation to something that you are currently splicing, you can use
addModFinalizer
e.g.
do let nm = mkName "x" addModFinalizer $ putDoc (DeclDoc nm) "Hello" [d| $(varP nm) = 42 |]
The helper functions withDecDoc
and withDecsDoc
will do this for you, as
will the funD_doc
and other _doc
combinators.
You most likely want to have the -haddock
flag turned on when using this.
Adding documentation to anything outside of the current module will cause an
error.
getDoc :: DocLoc -> Q (Maybe String) Source #
Retreives the Haddock documentation at the specified location, if one
exists.
It can be used to read documentation on things defined outside of the current
module, provided that those modules were compiled with the -haddock
flag.
A location at which to attach Haddock documentation.
Note that adding documentation to a Name
defined oustide of the current
module will cause an error.
ModuleDoc | At the current module's header. |
DeclDoc Name | At a declaration, not necessarily top level. |
ArgDoc Name Int | At a specific argument of a function, indexed by its position. |
InstDoc Type | At a class or family instance. |
Instances
Data DocLoc Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DocLoc -> c DocLoc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DocLoc # toConstr :: DocLoc -> Constr # dataTypeOf :: DocLoc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DocLoc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocLoc) # gmapT :: (forall b. Data b => b -> b) -> DocLoc -> DocLoc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQ :: (forall d. Data d => d -> u) -> DocLoc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DocLoc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # | |
Generic DocLoc Source # | |
Show DocLoc Source # | |
Binary DocLoc Source # | |
Eq DocLoc Source # | |
Ord DocLoc Source # | |
type Rep DocLoc Source # | |
Defined in Language.Haskell.TH.Syntax type Rep DocLoc = D1 ('MetaData "DocLoc" "Language.Haskell.TH.Syntax" "ghc-lib-parser-0.20221201-GXhFoTW1UmzGzhmRRPn1cR" 'False) ((C1 ('MetaCons "ModuleDoc" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeclDoc" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) :+: (C1 ('MetaCons "ArgDoc" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :+: C1 ('MetaCons "InstDoc" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) |
Library functions
module Language.Haskell.TH.Lib
Pretty-printer
Instances
pprParendType :: Type -> Doc Source #