Copyright | Will Thompson and Iñaki García Etxebarria |
---|---|
License | LGPL-2.1 |
Maintainer | Iñaki García Etxebarria |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
A GskGLShader
is a snippet of GLSL that is meant to run in the
fragment shader of the rendering pipeline.
A fragment shader gets the coordinates being rendered as input and produces the pixel values for that particular pixel. Additionally, the shader can declare a set of other input arguments, called uniforms (as they are uniform over all the calls to your shader in each instance of use). A shader can also receive up to 4 textures that it can use as input when producing the pixel data.
GskGLShader
is usually used with gtk_snapshot_push_gl_shader()
to produce a GLShaderNode
in the rendering hierarchy,
and then its input textures are constructed by rendering the child
nodes to textures before rendering the shader node itself. (You can
pass texture nodes as children if you want to directly use a texture
as input).
The actual shader code is GLSL code that gets combined with some other code into the fragment shader. Since the exact capabilities of the GPU driver differs between different OpenGL drivers and hardware, GTK adds some defines that you can use to ensure your GLSL code runs on as many drivers as it can.
If the OpenGL driver is GLES, then the shader language version is set to 100, and GSK_GLES will be defined in the shader.
Otherwise, if the OpenGL driver does not support the 3.2 core profile, then the shader will run with language version 110 for GL2 and 130 for GL3, and GSK_LEGACY will be defined in the shader.
If the OpenGL driver supports the 3.2 code profile, it will be used, the shader language version is set to 150, and GSK_GL3 will be defined in the shader.
The main function the shader must implement is:
glsl code
void mainImage(out vec4 fragColor, in vec2 fragCoord, in vec2 resolution, in vec2 uv)
Where the input fragCoord
is the coordinate of the pixel we're
currently rendering, relative to the boundary rectangle that was
specified in the GskGLShaderNode
, and resolution
is the width and
height of that rectangle. This is in the typical GTK coordinate
system with the origin in the top left. uv
contains the u and v
coordinates that can be used to index a texture at the
corresponding point. These coordinates are in the [0..1]x[0..1]
region, with 0, 0 being in the lower left corder (which is typical
for OpenGL).
The output fragColor
should be a RGBA color (with
premultiplied alpha) that will be used as the output for the
specified pixel location. Note that this output will be
automatically clipped to the clip region of the glshader node.
In addition to the function arguments the shader can define up to 4 uniforms for textures which must be called u_textureN (i.e. u_texture1 to u_texture4) as well as any custom uniforms you want of types int, uint, bool, float, vec2, vec3 or vec4.
All textures sources contain premultiplied alpha colors, but if some
there are outer sources of colors there is a gsk_premultiply()
helper
to compute premultiplication when needed.
Note that GTK parses the uniform declarations, so each uniform has to be on a line by itself with no other code, like so:
glsl code
uniform float u_time; uniform vec3 u_color; uniform sampler2D u_texture1; uniform sampler2D u_texture2;
GTK uses the "gsk" namespace in the symbols it uses in the shader, so your code should not use any symbols with the prefix gsk or GSK. There are some helper functions declared that you can use:
glsl code
vec4 GskTexture(sampler2D sampler, vec2 texCoords);
This samples a texture (e.g. u_texture1) at the specified coordinates, and contains some helper ifdefs to ensure that it works on all OpenGL versions.
You can compile the shader yourself using gLShaderCompile
,
otherwise the GSK renderer will do it when it handling the glshader
node. If errors occurs, the returned error
will include the glsl
sources, so you can see what GSK was passing to the compiler. You
can also set GSK_DEBUG=shaders in the environment to see the sources
and other relevant information about all shaders that GSK is handling.
An example shader
glsl code
uniform float position; uniform sampler2D u_texture1; uniform sampler2D u_texture2; void mainImage(out vec4 fragColor, in vec2 fragCoord, in vec2 resolution, in vec2 uv) { vec4 source1 = GskTexture(u_texture1, uv); vec4 source2 = GskTexture(u_texture2, uv); fragColor = position * source1 + (1.0 - position) * source2; }
Synopsis
- newtype GLShader = GLShader (ManagedPtr GLShader)
- class (GObject o, IsDescendantOf GLShader o) => IsGLShader o
- toGLShader :: (MonadIO m, IsGLShader o) => o -> m GLShader
- gLShaderCompile :: (HasCallStack, MonadIO m, IsGLShader a, IsRenderer b) => a -> b -> m ()
- gLShaderFindUniformByName :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Text -> m Int32
- gLShaderGetArgBool :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Bytes -> Int32 -> m Bool
- gLShaderGetArgFloat :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Bytes -> Int32 -> m Float
- gLShaderGetArgInt :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Bytes -> Int32 -> m Int32
- gLShaderGetArgUint :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Bytes -> Int32 -> m Word32
- gLShaderGetArgVec2 :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Bytes -> Int32 -> Vec2 -> m ()
- gLShaderGetArgVec3 :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Bytes -> Int32 -> Vec3 -> m ()
- gLShaderGetArgVec4 :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Bytes -> Int32 -> Vec4 -> m ()
- gLShaderGetArgsSize :: (HasCallStack, MonadIO m, IsGLShader a) => a -> m CSize
- gLShaderGetNTextures :: (HasCallStack, MonadIO m, IsGLShader a) => a -> m Int32
- gLShaderGetNUniforms :: (HasCallStack, MonadIO m, IsGLShader a) => a -> m Int32
- gLShaderGetResource :: (HasCallStack, MonadIO m, IsGLShader a) => a -> m (Maybe Text)
- gLShaderGetSource :: (HasCallStack, MonadIO m, IsGLShader a) => a -> m Bytes
- gLShaderGetUniformName :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Int32 -> m Text
- gLShaderGetUniformOffset :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Int32 -> m Int32
- gLShaderGetUniformType :: (HasCallStack, MonadIO m, IsGLShader a) => a -> Int32 -> m GLUniformType
- gLShaderNewFromBytes :: (HasCallStack, MonadIO m) => Bytes -> m GLShader
- gLShaderNewFromResource :: (HasCallStack, MonadIO m) => Text -> m GLShader
- constructGLShaderResource :: (IsGLShader o, MonadIO m) => Text -> m (GValueConstruct o)
- getGLShaderResource :: (MonadIO m, IsGLShader o) => o -> m (Maybe Text)
- constructGLShaderSource :: (IsGLShader o, MonadIO m) => Bytes -> m (GValueConstruct o)
- getGLShaderSource :: (MonadIO m, IsGLShader o) => o -> m Bytes
Exported types
Memory-managed wrapper type.
Instances
Eq GLShader Source # | |
GObject GLShader Source # | |
Defined in GI.Gsk.Objects.GLShader | |
ManagedPtrNewtype GLShader Source # | |
Defined in GI.Gsk.Objects.GLShader toManagedPtr :: GLShader -> ManagedPtr GLShader | |
TypedObject GLShader Source # | |
Defined in GI.Gsk.Objects.GLShader | |
HasParentTypes GLShader Source # | |
Defined in GI.Gsk.Objects.GLShader | |
IsGValue (Maybe GLShader) Source # | Convert |
Defined in GI.Gsk.Objects.GLShader gvalueGType_ :: IO GType gvalueSet_ :: Ptr GValue -> Maybe GLShader -> IO () gvalueGet_ :: Ptr GValue -> IO (Maybe GLShader) | |
type ParentTypes GLShader Source # | |
Defined in GI.Gsk.Objects.GLShader type ParentTypes GLShader = '[Object] |
class (GObject o, IsDescendantOf GLShader o) => IsGLShader o Source #
Type class for types which can be safely cast to GLShader
, for instance with toGLShader
.
Instances
(GObject o, IsDescendantOf GLShader o) => IsGLShader o Source # | |
Defined in GI.Gsk.Objects.GLShader |
toGLShader :: (MonadIO m, IsGLShader o) => o -> m GLShader Source #
Methods
Click to display all available methods, including inherited ones
Methods
bindProperty, bindPropertyFull, compile, findUniformByName, forceFloating, freezeNotify, getv, isFloating, notify, notifyByPspec, ref, refSink, runDispose, stealData, stealQdata, thawNotify, unref, watchClosure.
Getters
getArgBool, getArgFloat, getArgInt, getArgUint, getArgVec2, getArgVec3, getArgVec4, getArgsSize, getData, getNTextures, getNUniforms, getProperty, getQdata, getResource, getSource, getUniformName, getUniformOffset, getUniformType.
Setters
compile
:: (HasCallStack, MonadIO m, IsGLShader a, IsRenderer b) | |
=> a |
|
-> b |
|
-> m () | (Can throw |
Tries to compile the shader
for the given renderer
.
If there is a problem, this function returns False
and reports
an error. You should use this function before relying on the shader
for rendering and use a fallback with a simpler shader or without
shaders if it fails.
Note that this will modify the rendering state (for example change the current GL context) and requires the renderer to be set up. This means that the widget has to be realized. Commonly you want to call this from the realize signal of a widget, or during widget snapshot.
findUniformByName
gLShaderFindUniformByName Source #
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Text |
|
-> m Int32 | Returns: The index of the uniform, or -1 |
Looks for a uniform by the name name
, and returns the index
of the uniform, or -1 if it was not found.
getArgBool
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Bytes |
|
-> Int32 |
|
-> m Bool | Returns: The value |
Gets the value of the uniform idx
in the args
block.
The uniform must be of bool type.
getArgFloat
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Bytes |
|
-> Int32 |
|
-> m Float | Returns: The value |
Gets the value of the uniform idx
in the args
block.
The uniform must be of float type.
getArgInt
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Bytes |
|
-> Int32 |
|
-> m Int32 | Returns: The value |
Gets the value of the uniform idx
in the args
block.
The uniform must be of int type.
getArgUint
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Bytes |
|
-> Int32 |
|
-> m Word32 | Returns: The value |
Gets the value of the uniform idx
in the args
block.
The uniform must be of uint type.
getArgVec2
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Bytes |
|
-> Int32 |
|
-> Vec2 |
|
-> m () |
Gets the value of the uniform idx
in the args
block.
The uniform must be of vec2 type.
getArgVec3
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Bytes |
|
-> Int32 |
|
-> Vec3 |
|
-> m () |
Gets the value of the uniform idx
in the args
block.
The uniform must be of vec3 type.
getArgVec4
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Bytes |
|
-> Int32 |
|
-> Vec4 |
|
-> m () |
Gets the value of the uniform idx
in the args
block.
The uniform must be of vec4 type.
getArgsSize
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> m CSize | Returns: The size of the data block |
Get the size of the data block used to specify arguments for this shader.
getNTextures
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> m Int32 | Returns: The number of texture inputs required by |
Returns the number of textures that the shader requires.
This can be used to check that the a passed shader works in your usecase. It is determined by looking at the highest u_textureN value that the shader defines.
getNUniforms
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> m Int32 | Returns: The number of declared uniforms |
Get the number of declared uniforms for this shader.
getResource
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> m (Maybe Text) | Returns: The resource path for the shader |
Gets the resource path for the GLSL sourcecode being used to render this shader.
getSource
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> m Bytes | Returns: The source code for the shader |
Gets the GLSL sourcecode being used to render this shader.
getUniformName
gLShaderGetUniformName Source #
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Int32 |
|
-> m Text | Returns: The name of the declared uniform |
Get the name of the declared uniform for this shader at index idx
.
getUniformOffset
gLShaderGetUniformOffset Source #
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Int32 |
|
-> m Int32 | Returns: The data offset |
Get the offset into the data block where data for this uniforms is stored.
getUniformType
gLShaderGetUniformType Source #
:: (HasCallStack, MonadIO m, IsGLShader a) | |
=> a |
|
-> Int32 |
|
-> m GLUniformType | Returns: The type of the declared uniform |
Get the type of the declared uniform for this shader at index idx
.
newFromBytes
:: (HasCallStack, MonadIO m) | |
=> Bytes |
|
-> m GLShader | Returns: A new |
Creates a GskGLShader
that will render pixels using the specified code.
newFromResource
gLShaderNewFromResource Source #
:: (HasCallStack, MonadIO m) | |
=> Text |
|
-> m GLShader | Returns: A new |
Creates a GskGLShader
that will render pixels using the specified code.
Properties
resource
Resource containing the source code for the shader.
If the shader source is not coming from a resource, this
will be Nothing
.
constructGLShaderResource :: (IsGLShader o, MonadIO m) => Text -> m (GValueConstruct o) Source #
Construct a GValueConstruct
with valid value for the “resource
” property. This is rarely needed directly, but it is used by new
.
getGLShaderResource :: (MonadIO m, IsGLShader o) => o -> m (Maybe Text) Source #
Get the value of the “resource
” property.
When overloading is enabled, this is equivalent to
get
gLShader #resource
source
No description available in the introspection data.
constructGLShaderSource :: (IsGLShader o, MonadIO m) => Bytes -> m (GValueConstruct o) Source #
Construct a GValueConstruct
with valid value for the “source
” property. This is rarely needed directly, but it is used by new
.
getGLShaderSource :: (MonadIO m, IsGLShader o) => o -> m Bytes Source #
Get the value of the “source
” property.
When overloading is enabled, this is equivalent to
get
gLShader #source