Common library for algebraic structures. Has the advantage of automatically inferring lots of useful structure, especially
in the writing of linear programs. For example, here are several ways of writing `3 x - 4 y + z`

:

gsum [3 *& x, (-4) *^ var y, var z] linCombination [(3, x), (-4, y), (1, z)] 3 *& x ^-^ 4 *& y ^+^ var z

In addition, if we have two functions `f`

and `g`

, we can construct linear combinations of those functions, using
exactly the same syntax. Moreover, we can multiply functions with `Double`

coefficients by `Rational`

values successfully.
This module is intended to offer as much generality as possible without getting in your way.

- class Group g where
- class Group r => Ring r where
- class Ring f => Field f where
- class (Ring r, Group m) => Module r m where
- (*^) :: r -> m -> m

- class (Module f v, Field f) => VectorSpace f v
- type Poly = []
- varPoly :: Ring r => Poly r
- type GroupRing r g = Map g r
- type LinFunc = Map
- gsum :: Group g => [g] -> g
- combination :: Module r m => [(r, m)] -> m
- evalPoly :: (Module r m, Ring m) => Poly r -> m -> m
- var :: (Ord v, Ring c) => v -> LinFunc v c
- varSum :: (Ord v, Ring c) => [v] -> LinFunc v c
- (*&) :: (Ord v, Ring c) => c -> v -> LinFunc v c
- linCombination :: (Ord v, Num r) => [(r, v)] -> LinFunc v r

# Algebraic structures

The algebraic structure of a group. Written additively. Required functions: `zero`

and (`^-^`

or (`^+^`

and `neg`

)).

Group Bool | |

Group Double | |

Group Int | |

Group Integer | |

Integral a => Group (Ratio a) | |

Group g => Group (IntMap g) | |

Group g => Group (Poly g) | |

Group g => Group (a -> g) | |

(Group g1, Group g2) => Group (g1, g2) | |

(Ord k, Group g) => Group (Map k g) | |

(Ord v, Group c) => Group (LinExpr v c) | |

(Group g1, Group g2, Group g3) => Group (g1, g2, g3) | |

(Group g1, Group g2, Group g3, Group g4) => Group (g1, g2, g3, g4) |

class Group r => Ring r whereSource

The algebraic structure of a unital ring. Assumes that the additive operation forms an abelian group, that the multiplication operation forms a group, and that multiplication distributes.

class (Ring r, Group m) => Module r m whereSource

The algebraic structure of a module. A vector space is a module with coefficients in a field.

Module Double Double | |

Module Int Double | |

Module Int Int | |

Module Int Integer | |

Module Integer Double | |

Module Integer Integer | |

Integral a => Module Int (Ratio a) | |

Integral a => Module Integer (Ratio a) | |

Module r m => Module r (IntMap m) | |

(Module r m1, Module r m2) => Module r (m1, m2) | |

(Ord k, Module r m) => Module r (Map k m) | |

Module r m => Module r (a -> m) | |

(Ord v, Module r c) => Module r (LinExpr v c) | |

(Module r m1, Module r m2, Module r m3) => Module r (m1, m2, m3) | |

(Module r m1, Module r m2, Module r m3, Module r m4) => Module r (m1, m2, m3, m4) | |

Integral a => Module (Ratio a) Double | |

Integral a => Module (Ratio a) (Ratio a) | |

(Ord g, Group g, Ring r) => Module (GroupRing r g) (GroupRing r g) |

class (Module f v, Field f) => VectorSpace f v Source

(Module f v, Field f) => VectorSpace f v |

type GroupRing r g = Map g rSource

A way of forming a ring from functions. See http://en.wikipedia.org/wiki/Group_ring.

is a linear combination of variables of type `LinFunc`

v c`v`

with coefficients
from `c`

. Formally, this is the free `c`

-module on `v`

.

# Algebraic functions

combination :: Module r m => [(r, m)] -> mSource

Given a collection of vectors and scaling coefficients, returns this linear combination.

## Specialized methods on linear functions

var :: (Ord v, Ring c) => v -> LinFunc v cSource

Given a variable `v`

, returns the function equivalent to `v`

.

linCombination :: (Ord v, Num r) => [(r, v)] -> LinFunc v rSource

Given a set of basic variables and coefficients, returns the linear combination obtained by summing.