{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Grisette.Internal.SymPrim.SymBV
( SymWordN (SymWordN),
SymWordN8,
SymWordN16,
SymWordN32,
SymWordN64,
SymIntN (SymIntN),
SymIntN8,
SymIntN16,
SymIntN32,
SymIntN64,
)
where
import Control.DeepSeq (NFData)
import Data.Bits
( Bits
( bit,
bitSize,
bitSizeMaybe,
complement,
isSigned,
popCount,
rotate,
shift,
testBit,
xor,
(.&.),
(.|.)
),
FiniteBits (finiteBitSize),
)
import Data.Hashable (Hashable (hashWithSalt))
import Data.Proxy (Proxy (Proxy))
import Data.String (IsString (fromString))
import GHC.Generics (Generic)
import GHC.TypeNats
( KnownNat,
Nat,
natVal,
type (+),
type (<=),
)
import Grisette.Internal.Core.Data.Class.BitVector
( SizedBV
( sizedBVConcat,
sizedBVExt,
sizedBVSelect,
sizedBVSext,
sizedBVZext
),
)
import Grisette.Internal.Core.Data.Class.Function
( Apply (FunType, apply),
)
import Grisette.Internal.Core.Data.Class.SignConversion
( SignConversion (toSigned, toUnsigned),
)
import Grisette.Internal.Core.Data.Class.Solvable
( Solvable (con, conView, ssym, sym),
pattern Con,
)
import Grisette.Internal.Core.Data.Class.SymRotate
( SymRotate (symRotate, symRotateNegated),
)
import Grisette.Internal.Core.Data.Class.SymShift (SymShift (symShift, symShiftNegated))
import Grisette.Internal.SymPrim.AllSyms (AllSyms (allSymsS), SomeSym (SomeSym))
import Grisette.Internal.SymPrim.BV
( IntN,
WordN,
)
import Grisette.Internal.SymPrim.Prim.Term
( ConRep (ConType),
LinkedRep (underlyingTerm, wrapTerm),
PEvalBVSignConversionTerm (pevalBVToSignedTerm, pevalBVToUnsignedTerm),
PEvalBVTerm (pevalBVConcatTerm, pevalBVExtendTerm, pevalBVSelectTerm),
PEvalBitwiseTerm
( pevalAndBitsTerm,
pevalComplementBitsTerm,
pevalOrBitsTerm,
pevalXorBitsTerm
),
PEvalNumTerm
( pevalAbsNumTerm,
pevalAddNumTerm,
pevalMulNumTerm,
pevalNegNumTerm,
pevalSignumNumTerm
),
PEvalOrdTerm (pevalLeOrdTerm),
PEvalRotateTerm
( pevalRotateLeftTerm,
pevalRotateRightTerm
),
PEvalShiftTerm (pevalShiftLeftTerm, pevalShiftRightTerm),
SupportedPrim (pevalITETerm),
SymRep (SymType),
Term (ConTerm),
conTerm,
pevalEqTerm,
pevalGeOrdTerm,
pevalModIntegralTerm,
pevalOrTerm,
pevalSubNumTerm,
pformat,
symTerm,
)
import Grisette.Internal.Utils.Parameterized
( KnownProof (KnownProof),
LeqProof (LeqProof),
knownAdd,
leqAddPos,
leqTrans,
)
import Language.Haskell.TH.Syntax (Lift)
newtype SymIntN (n :: Nat) = SymIntN {forall (n :: Nat). SymIntN n -> Term (IntN n)
underlyingIntNTerm :: Term (IntN n)}
deriving ((forall (m :: * -> *). Quote m => SymIntN n -> m Exp)
-> (forall (m :: * -> *).
Quote m =>
SymIntN n -> Code m (SymIntN n))
-> Lift (SymIntN n)
forall (n :: Nat) (m :: * -> *). Quote m => SymIntN n -> m Exp
forall (n :: Nat) (m :: * -> *).
Quote m =>
SymIntN n -> Code m (SymIntN n)
forall t.
(forall (m :: * -> *). Quote m => t -> m Exp)
-> (forall (m :: * -> *). Quote m => t -> Code m t) -> Lift t
forall (m :: * -> *). Quote m => SymIntN n -> m Exp
forall (m :: * -> *). Quote m => SymIntN n -> Code m (SymIntN n)
$clift :: forall (n :: Nat) (m :: * -> *). Quote m => SymIntN n -> m Exp
lift :: forall (m :: * -> *). Quote m => SymIntN n -> m Exp
$cliftTyped :: forall (n :: Nat) (m :: * -> *).
Quote m =>
SymIntN n -> Code m (SymIntN n)
liftTyped :: forall (m :: * -> *). Quote m => SymIntN n -> Code m (SymIntN n)
Lift, SymIntN n -> ()
(SymIntN n -> ()) -> NFData (SymIntN n)
forall (n :: Nat). SymIntN n -> ()
forall a. (a -> ()) -> NFData a
$crnf :: forall (n :: Nat). SymIntN n -> ()
rnf :: SymIntN n -> ()
NFData, (forall x. SymIntN n -> Rep (SymIntN n) x)
-> (forall x. Rep (SymIntN n) x -> SymIntN n)
-> Generic (SymIntN n)
forall (n :: Nat) x. Rep (SymIntN n) x -> SymIntN n
forall (n :: Nat) x. SymIntN n -> Rep (SymIntN n) x
forall x. Rep (SymIntN n) x -> SymIntN n
forall x. SymIntN n -> Rep (SymIntN n) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cfrom :: forall (n :: Nat) x. SymIntN n -> Rep (SymIntN n) x
from :: forall x. SymIntN n -> Rep (SymIntN n) x
$cto :: forall (n :: Nat) x. Rep (SymIntN n) x -> SymIntN n
to :: forall x. Rep (SymIntN n) x -> SymIntN n
Generic)
type SymIntN8 = SymIntN 8
type SymIntN16 = SymIntN 16
type SymIntN32 = SymIntN 32
type SymIntN64 = SymIntN 64
newtype SymWordN (n :: Nat) = SymWordN {forall (n :: Nat). SymWordN n -> Term (WordN n)
underlyingWordNTerm :: Term (WordN n)}
deriving ((forall (m :: * -> *). Quote m => SymWordN n -> m Exp)
-> (forall (m :: * -> *).
Quote m =>
SymWordN n -> Code m (SymWordN n))
-> Lift (SymWordN n)
forall (n :: Nat) (m :: * -> *). Quote m => SymWordN n -> m Exp
forall (n :: Nat) (m :: * -> *).
Quote m =>
SymWordN n -> Code m (SymWordN n)
forall t.
(forall (m :: * -> *). Quote m => t -> m Exp)
-> (forall (m :: * -> *). Quote m => t -> Code m t) -> Lift t
forall (m :: * -> *). Quote m => SymWordN n -> m Exp
forall (m :: * -> *). Quote m => SymWordN n -> Code m (SymWordN n)
$clift :: forall (n :: Nat) (m :: * -> *). Quote m => SymWordN n -> m Exp
lift :: forall (m :: * -> *). Quote m => SymWordN n -> m Exp
$cliftTyped :: forall (n :: Nat) (m :: * -> *).
Quote m =>
SymWordN n -> Code m (SymWordN n)
liftTyped :: forall (m :: * -> *). Quote m => SymWordN n -> Code m (SymWordN n)
Lift, SymWordN n -> ()
(SymWordN n -> ()) -> NFData (SymWordN n)
forall (n :: Nat). SymWordN n -> ()
forall a. (a -> ()) -> NFData a
$crnf :: forall (n :: Nat). SymWordN n -> ()
rnf :: SymWordN n -> ()
NFData, (forall x. SymWordN n -> Rep (SymWordN n) x)
-> (forall x. Rep (SymWordN n) x -> SymWordN n)
-> Generic (SymWordN n)
forall (n :: Nat) x. Rep (SymWordN n) x -> SymWordN n
forall (n :: Nat) x. SymWordN n -> Rep (SymWordN n) x
forall x. Rep (SymWordN n) x -> SymWordN n
forall x. SymWordN n -> Rep (SymWordN n) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cfrom :: forall (n :: Nat) x. SymWordN n -> Rep (SymWordN n) x
from :: forall x. SymWordN n -> Rep (SymWordN n) x
$cto :: forall (n :: Nat) x. Rep (SymWordN n) x -> SymWordN n
to :: forall x. Rep (SymWordN n) x -> SymWordN n
Generic)
type SymWordN8 = SymWordN 8
type SymWordN16 = SymWordN 16
type SymWordN32 = SymWordN 32
type SymWordN64 = SymWordN 64
instance (KnownNat n, 1 <= n) => ConRep (SymIntN n) where
type ConType (SymIntN n) = IntN n
instance (KnownNat n, 1 <= n) => SymRep (IntN n) where
type SymType (IntN n) = SymIntN n
instance (KnownNat n, 1 <= n) => LinkedRep (IntN n) (SymIntN n) where
underlyingTerm :: SymIntN n -> Term (IntN n)
underlyingTerm (SymIntN Term (IntN n)
a) = Term (IntN n)
a
wrapTerm :: Term (IntN n) -> SymIntN n
wrapTerm = Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN
instance (KnownNat n, 1 <= n) => ConRep (SymWordN n) where
type ConType (SymWordN n) = WordN n
instance (KnownNat n, 1 <= n) => SymRep (WordN n) where
type SymType (WordN n) = SymWordN n
instance (KnownNat n, 1 <= n) => LinkedRep (WordN n) (SymWordN n) where
underlyingTerm :: SymWordN n -> Term (WordN n)
underlyingTerm (SymWordN Term (WordN n)
a) = Term (WordN n)
a
wrapTerm :: Term (WordN n) -> SymWordN n
wrapTerm = Term (WordN n) -> SymWordN n
forall (n :: Nat). Term (WordN n) -> SymWordN n
SymWordN
instance (KnownNat n, 1 <= n) => Apply (SymIntN n) where
type FunType (SymIntN n) = SymIntN n
apply :: SymIntN n -> FunType (SymIntN n)
apply = SymIntN n -> FunType (SymIntN n)
SymIntN n -> SymIntN n
forall a. a -> a
id
instance (KnownNat n, 1 <= n) => Apply (SymWordN n) where
type FunType (SymWordN n) = SymWordN n
apply :: SymWordN n -> FunType (SymWordN n)
apply = SymWordN n -> FunType (SymWordN n)
SymWordN n -> SymWordN n
forall a. a -> a
id
#define SOLVABLE_BV(contype, symtype) \
instance (KnownNat n, 1 <= n) => Solvable (contype n) (symtype n) where \
con = symtype . conTerm; \
sym = symtype . symTerm; \
conView (symtype (ConTerm _ t)) = Just t; \
conView _ = Nothing
#if 1
SOLVABLE_BV(IntN, SymIntN)
SOLVABLE_BV(WordN, SymWordN)
#endif
#define NUM_BV(symtype) \
instance (KnownNat n, 1 <= n) => Num (symtype n) where \
(symtype l) + (symtype r) = symtype $ pevalAddNumTerm l r; \
(symtype l) - (symtype r) = symtype $ pevalSubNumTerm l r; \
(symtype l) * (symtype r) = symtype $ pevalMulNumTerm l r; \
negate (symtype v) = symtype $ pevalNegNumTerm v; \
abs (symtype v) = symtype $ pevalAbsNumTerm v; \
signum (symtype v) = symtype $ pevalSignumNumTerm v; \
fromInteger i = con $ fromInteger i
#if 1
NUM_BV(SymIntN)
NUM_BV(SymWordN)
#endif
#define BITS_BV(symtype, signed) \
instance (KnownNat n, 1 <= n) => Bits (symtype n) where \
symtype l .&. symtype r = symtype $ pevalAndBitsTerm l r; \
{-# INLINE (.&.) #-}; \
symtype l .|. symtype r = symtype $ pevalOrBitsTerm l r; \
{-# INLINE (.|.) #-}; \
symtype l `xor` symtype r = symtype $ pevalXorBitsTerm l r; \
{-# INLINE xor #-}; \
complement (symtype n) = symtype $ pevalComplementBitsTerm n; \
{-# INLINE complement #-}; \
shift (symtype n) i | i > 0 = symtype $ pevalShiftLeftTerm n (conTerm $ fromIntegral i); \
shift (symtype n) i | i < 0 = symtype $ pevalShiftRightTerm n (conTerm $ fromIntegral (-i)); \
shift (symtype n) _ = symtype n; \
{-# INLINE shift #-}; \
rotate (symtype n) i | i > 0 = symtype $ pevalRotateLeftTerm n (conTerm $ fromIntegral i); \
rotate (symtype n) i | i < 0 = symtype $ pevalRotateRightTerm n (conTerm $ fromIntegral (-i)); \
rotate (symtype n) _ = symtype n; \
{-# INLINE rotate #-}; \
bitSize = finiteBitSize; \
{-# INLINE bitSize #-}; \
bitSizeMaybe = Just . finiteBitSize; \
{-# INLINE bitSizeMaybe #-}; \
isSigned _ = signed; \
{-# INLINE isSigned #-}; \
testBit (Con n) = testBit n; \
testBit _ = error "You cannot call testBit on symbolic variables"; \
{-# INLINE testBit #-}; \
bit = con . bit; \
{-# INLINE bit #-}; \
popCount (Con n) = popCount n; \
popCount _ = error "You cannot call popCount on symbolic variables"; \
{-# INLINE popCount #-}
#if 1
BITS_BV(SymIntN, True)
BITS_BV(SymWordN, False)
#endif
#define FINITE_BITS_BV(symtype) \
instance (KnownNat n, 1 <= n) => FiniteBits (symtype n) where \
finiteBitSize _ = fromIntegral $ natVal (Proxy @n); \
{-# INLINE finiteBitSize #-}; \
#if 1
FINITE_BITS_BV(SymIntN)
FINITE_BITS_BV(SymWordN)
#endif
#define SHOW_BV(symtype) \
instance (KnownNat n, 1 <= n) => Show (symtype n) where \
show (symtype t) = pformat t
#if 1
SHOW_BV(SymIntN)
SHOW_BV(SymWordN)
#endif
#define HASHABLE_BV(symtype) \
instance (KnownNat n, 1 <= n) => Hashable (symtype n) where \
hashWithSalt s (symtype v) = s `hashWithSalt` v
#if 1
HASHABLE_BV(SymIntN)
HASHABLE_BV(SymWordN)
#endif
#define EQ_BV(symtype) \
instance (KnownNat n, 1 <= n) => Eq (symtype n) where \
(symtype l) == (symtype r) = l == r
#if 1
EQ_BV(SymIntN)
EQ_BV(SymWordN)
#endif
#define IS_STRING_BV(symtype) \
instance (KnownNat n, 1 <= n) => IsString (symtype n) where \
fromString = ssym . fromString
#if 1
IS_STRING_BV(SymIntN)
IS_STRING_BV(SymWordN)
#endif
#define BVCONCAT_SIZED(symtype) \
sizedBVConcat :: forall l r. (KnownNat l, KnownNat r, 1 <= l, 1 <= r) => symtype l -> symtype r -> symtype (l + r); \
sizedBVConcat (symtype l) (symtype r) = \
case (leqAddPos pl pr, knownAdd (KnownProof @l) (KnownProof @r)) of \
(LeqProof, KnownProof) -> \
symtype (pevalBVConcatTerm l r); \
where; \
pl = Proxy :: Proxy l; \
pr = Proxy :: Proxy r
#define BVZEXT_SIZED(symtype) \
sizedBVZext :: forall l r proxy. (KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) => proxy r -> symtype l -> symtype r; \
sizedBVZext _ (symtype v) = \
case leqTrans (LeqProof @1 @l) (LeqProof @l @r) of \
LeqProof -> symtype $ pevalBVExtendTerm False (Proxy @r) v
#define BVSEXT_SIZED(symtype) \
sizedBVSext :: forall l r proxy. (KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) => proxy r -> symtype l -> symtype r; \
sizedBVSext _ (symtype v) = \
case leqTrans (LeqProof @1 @l) (LeqProof @l @r) of \
LeqProof -> symtype $ pevalBVExtendTerm True (Proxy @r) v
#define BVSELECT_SIZED(symtype) \
sizedBVSelect :: forall n ix w p q. (KnownNat n, KnownNat ix, KnownNat w, 1 <= n, 1 <= w, ix + w <= n) => \
p ix -> q w -> symtype n -> symtype w; \
sizedBVSelect pix pw (symtype v) = symtype $ pevalBVSelectTerm pix pw v
#if 1
instance SizedBV SymIntN where
BVCONCAT_SIZED(SymIntN)
BVZEXT_SIZED(SymIntN)
BVSEXT_SIZED(SymIntN)
sizedBVExt :: forall (l :: Nat) (r :: Nat) (proxy :: Nat -> *).
(KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) =>
proxy r -> SymIntN l -> SymIntN r
sizedBVExt = proxy r -> SymIntN l -> SymIntN r
forall (l :: Nat) (r :: Nat) (proxy :: Nat -> *).
(KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) =>
proxy r -> SymIntN l -> SymIntN r
forall (bv :: Nat -> *) (l :: Nat) (r :: Nat) (proxy :: Nat -> *).
(SizedBV bv, KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) =>
proxy r -> bv l -> bv r
sizedBVSext
BVSELECT_SIZED(SymIntN)
instance SizedBV SymWordN where
BVCONCAT_SIZED(SymWordN)
BVZEXT_SIZED(SymWordN)
BVSEXT_SIZED(SymWordN)
sizedBVExt :: forall (l :: Nat) (r :: Nat) (proxy :: Nat -> *).
(KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) =>
proxy r -> SymWordN l -> SymWordN r
sizedBVExt = proxy r -> SymWordN l -> SymWordN r
forall (l :: Nat) (r :: Nat) (proxy :: Nat -> *).
(KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) =>
proxy r -> SymWordN l -> SymWordN r
forall (bv :: Nat -> *) (l :: Nat) (r :: Nat) (proxy :: Nat -> *).
(SizedBV bv, KnownNat l, KnownNat r, 1 <= l, KnownNat r, l <= r) =>
proxy r -> bv l -> bv r
sizedBVZext
BVSELECT_SIZED(SymWordN)
#endif
#define BVCONCAT(somety, origty) \
bvConcat (somety (a :: origty l)) (somety (b :: origty r)) = \
case (leqAddPos (Proxy @l) (Proxy @r), knownAdd @l @r KnownProof KnownProof) of \
(LeqProof, KnownProof) -> \
somety $ sizedBVConcat a b
#define BVZEXT(somety, origty) \
bvZext l (somety (a :: origty n)) \
| l < n = error "bvZext: trying to zero extend a value to a smaller size" \
| otherwise = res (Proxy @n) \
where \
n = fromIntegral $ natVal (Proxy @n); \
res :: forall (l :: Nat). Proxy l -> somety; \
res p = \
case (unsafeKnownProof @l (fromIntegral l), unsafeLeqProof @1 @l, unsafeLeqProof @n @l) of \
(KnownProof, LeqProof, LeqProof) -> somety $ sizedBVZext p a
#define BVSEXT(somety, origty) \
bvSext l (somety (a :: origty n)) \
| l < n = error "bvZext: trying to zero extend a value to a smaller size" \
| otherwise = res (Proxy @n) \
where \
n = fromIntegral $ natVal (Proxy @n); \
res :: forall (l :: Nat). Proxy l -> somety; \
res p = \
case (unsafeKnownProof @l (fromIntegral l), unsafeLeqProof @1 @l, unsafeLeqProof @n @l) of \
(KnownProof, LeqProof, LeqProof) -> somety $ sizedBVSext p a
#define BVSELECT(somety, origty) \
bvSelect ix w (somety (a :: origty n)) \
| ix + w > n = error "bvSelect: trying to select a bitvector outside the bounds of the input" \
| w == 0 = error "bvSelect: trying to select a bitvector of size 0" \
| otherwise = res (Proxy @n) (Proxy @n) \
where \
n = fromIntegral $ natVal (Proxy @n); \
res :: forall (w :: Nat) (ix :: Nat). Proxy w -> Proxy ix -> somety; \
res _ _ = \
case ( unsafeKnownProof @ix (fromIntegral ix), \
unsafeKnownProof @w (fromIntegral w), \
unsafeLeqProof @1 @w, \
unsafeLeqProof @(ix + w) @n \
) of \
(KnownProof, KnownProof, LeqProof, LeqProof) -> \
somety $ sizedBVSelect (Proxy @ix) (Proxy @w) a
#define BVBV(somety, origty) \
bv n i = case mkNatRepr n of \
Some (natRepr :: NatRepr x) -> \
case unsafeLeqProof @1 @x of \
LeqProof -> withKnownNat natRepr $ \
somety (fromIntegral i :: origty x)
instance (KnownNat n, 1 <= n) => SignConversion (SymWordN n) (SymIntN n) where
toSigned :: SymWordN n -> SymIntN n
toSigned (SymWordN Term (WordN n)
n) = Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$ Term (WordN n) -> Term (IntN n)
forall (n :: Nat).
(KnownNat n, 1 <= n) =>
Term (WordN n) -> Term (IntN n)
forall (u :: Nat -> *) (s :: Nat -> *) (n :: Nat).
(PEvalBVSignConversionTerm u s, KnownNat n, 1 <= n) =>
Term (u n) -> Term (s n)
pevalBVToSignedTerm Term (WordN n)
n
toUnsigned :: SymIntN n -> SymWordN n
toUnsigned (SymIntN Term (IntN n)
n) = Term (WordN n) -> SymWordN n
forall (n :: Nat). Term (WordN n) -> SymWordN n
SymWordN (Term (WordN n) -> SymWordN n) -> Term (WordN n) -> SymWordN n
forall a b. (a -> b) -> a -> b
$ Term (IntN n) -> Term (WordN n)
forall (n :: Nat).
(KnownNat n, 1 <= n) =>
Term (IntN n) -> Term (WordN n)
forall (u :: Nat -> *) (s :: Nat -> *) (n :: Nat).
(PEvalBVSignConversionTerm u s, KnownNat n, 1 <= n) =>
Term (s n) -> Term (u n)
pevalBVToUnsignedTerm Term (IntN n)
n
instance (KnownNat n, 1 <= n) => SymShift (SymWordN n) where
symShift :: SymWordN n -> SymWordN n -> SymWordN n
symShift (SymWordN Term (WordN n)
a) (SymWordN Term (WordN n)
s) = Term (WordN n) -> SymWordN n
forall (n :: Nat). Term (WordN n) -> SymWordN n
SymWordN (Term (WordN n) -> SymWordN n) -> Term (WordN n) -> SymWordN n
forall a b. (a -> b) -> a -> b
$ Term (WordN n) -> Term (WordN n) -> Term (WordN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftLeftTerm Term (WordN n)
a Term (WordN n)
s
symShiftNegated :: SymWordN n -> SymWordN n -> SymWordN n
symShiftNegated (SymWordN Term (WordN n)
a) (SymWordN Term (WordN n)
s) = Term (WordN n) -> SymWordN n
forall (n :: Nat). Term (WordN n) -> SymWordN n
SymWordN (Term (WordN n) -> SymWordN n) -> Term (WordN n) -> SymWordN n
forall a b. (a -> b) -> a -> b
$ Term (WordN n) -> Term (WordN n) -> Term (WordN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftRightTerm Term (WordN n)
a Term (WordN n)
s
instance (KnownNat n, 1 <= n) => SymShift (SymIntN n) where
symShift :: SymIntN n -> SymIntN n -> SymIntN n
symShift SymIntN n
a SymIntN n
_ | SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
a Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 = SymIntN n
a
symShift as :: SymIntN n
as@(SymIntN Term (IntN n)
a) (SymIntN Term (IntN n)
s)
| SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 =
Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$
Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall a. PEvalOrdTerm a => Term a -> Term a -> Term Bool
pevalGeOrdTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0))
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftLeftTerm Term (IntN n)
a Term (IntN n)
s)
( Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall t. SupportedPrim t => Term t -> Term t -> Term Bool
pevalEqTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (-IntN n
2)))
( Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall a. PEvalOrdTerm a => Term a -> Term a -> Term Bool
pevalGeOrdTerm Term (IntN n)
a (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0))
(IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0)
(IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (-IntN n
1))
)
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftRightTerm Term (IntN n)
a (Term (IntN n) -> Term (IntN n)
forall t. PEvalNumTerm t => Term t -> Term t
pevalNegNumTerm Term (IntN n)
s))
)
symShift (SymIntN Term (IntN n)
a) (SymIntN Term (IntN n)
s) =
Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$
Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall a. PEvalOrdTerm a => Term a -> Term a -> Term Bool
pevalGeOrdTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0))
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftLeftTerm Term (IntN n)
a Term (IntN n)
s)
( Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall a. PEvalOrdTerm a => Term a -> Term a -> Term Bool
pevalLeOrdTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (-IntN n
bs)))
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftRightTerm Term (IntN n)
a (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
bs))
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftRightTerm Term (IntN n)
a (Term (IntN n) -> Term (IntN n)
forall t. PEvalNumTerm t => Term t -> Term t
pevalNegNumTerm Term (IntN n)
s))
)
where
bs :: IntN n
bs = Int -> IntN n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize (IntN n
0 :: IntN n)) :: IntN n
symShiftNegated :: SymIntN n -> SymIntN n -> SymIntN n
symShiftNegated (SymIntN Term (IntN n)
a) (SymIntN Term (IntN n)
s) =
Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$
Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall a. PEvalOrdTerm a => Term a -> Term a -> Term Bool
pevalGeOrdTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0))
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftRightTerm Term (IntN n)
a Term (IntN n)
s)
( Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall a. PEvalOrdTerm a => Term a -> Term a -> Term Bool
pevalLeOrdTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (-IntN n
bs)))
(IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0)
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalShiftTerm t => Term t -> Term t -> Term t
pevalShiftLeftTerm Term (IntN n)
a (Term (IntN n) -> Term (IntN n)
forall t. PEvalNumTerm t => Term t -> Term t
pevalNegNumTerm Term (IntN n)
s))
)
where
bs :: IntN n
bs = Int -> IntN n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize (IntN n
0 :: IntN n)) :: IntN n
instance (KnownNat n, 1 <= n) => SymRotate (SymWordN n) where
symRotate :: SymWordN n -> SymWordN n -> SymWordN n
symRotate (SymWordN Term (WordN n)
a) (SymWordN Term (WordN n)
s) = Term (WordN n) -> SymWordN n
forall (n :: Nat). Term (WordN n) -> SymWordN n
SymWordN (Term (WordN n) -> Term (WordN n) -> Term (WordN n)
forall t. PEvalRotateTerm t => Term t -> Term t -> Term t
pevalRotateLeftTerm Term (WordN n)
a Term (WordN n)
s)
symRotateNegated :: SymWordN n -> SymWordN n -> SymWordN n
symRotateNegated (SymWordN Term (WordN n)
a) (SymWordN Term (WordN n)
s) =
Term (WordN n) -> SymWordN n
forall (n :: Nat). Term (WordN n) -> SymWordN n
SymWordN (Term (WordN n) -> Term (WordN n) -> Term (WordN n)
forall t. PEvalRotateTerm t => Term t -> Term t -> Term t
pevalRotateRightTerm Term (WordN n)
a Term (WordN n)
s)
instance (KnownNat n, 1 <= n) => SymRotate (SymIntN n) where
symRotate :: SymIntN n -> SymIntN n -> SymIntN n
symRotate as :: SymIntN n
as@(SymIntN Term (IntN n)
a) (SymIntN Term (IntN n)
s)
| SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 = SymIntN n
as
| SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 =
Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$
Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
( Term Bool -> Term Bool -> Term Bool
pevalOrTerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall t. SupportedPrim t => Term t -> Term t -> Term Bool
pevalEqTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0))
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall t. SupportedPrim t => Term t -> Term t -> Term Bool
pevalEqTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (-IntN n
2)))
)
Term (IntN n)
a
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalRotateTerm t => Term t -> Term t -> Term t
pevalRotateLeftTerm Term (IntN n)
a (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
1))
| Bool
otherwise =
Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$
Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalRotateTerm t => Term t -> Term t -> Term t
pevalRotateLeftTerm
Term (IntN n)
a
( Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalDivModIntegralTerm t => Term t -> Term t -> Term t
pevalModIntegralTerm
Term (IntN n)
s
(IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (Int -> IntN n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> IntN n) -> Int -> IntN n
forall a b. (a -> b) -> a -> b
$ SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
as))
)
symRotateNegated :: SymIntN n -> SymIntN n -> SymIntN n
symRotateNegated as :: SymIntN n
as@(SymIntN Term (IntN n)
a) (SymIntN Term (IntN n)
s)
| SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 = SymIntN n
as
| SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 =
Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$
Term Bool -> Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t.
SupportedPrim t =>
Term Bool -> Term t -> Term t -> Term t
pevalITETerm
( Term Bool -> Term Bool -> Term Bool
pevalOrTerm
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall t. SupportedPrim t => Term t -> Term t -> Term Bool
pevalEqTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
0))
(Term (IntN n) -> Term (IntN n) -> Term Bool
forall t. SupportedPrim t => Term t -> Term t -> Term Bool
pevalEqTerm Term (IntN n)
s (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (-IntN n
2)))
)
Term (IntN n)
a
(Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalRotateTerm t => Term t -> Term t -> Term t
pevalRotateLeftTerm Term (IntN n)
a (IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm IntN n
1))
| Bool
otherwise =
Term (IntN n) -> SymIntN n
forall (n :: Nat). Term (IntN n) -> SymIntN n
SymIntN (Term (IntN n) -> SymIntN n) -> Term (IntN n) -> SymIntN n
forall a b. (a -> b) -> a -> b
$
Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalRotateTerm t => Term t -> Term t -> Term t
pevalRotateRightTerm
Term (IntN n)
a
( Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall t. PEvalDivModIntegralTerm t => Term t -> Term t -> Term t
pevalModIntegralTerm
Term (IntN n)
s
(IntN n -> Term (IntN n)
forall t.
(SupportedPrim t, Typeable t, Hashable t, Eq t, Show t) =>
t -> Term t
conTerm (Int -> IntN n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> IntN n) -> Int -> IntN n
forall a b. (a -> b) -> a -> b
$ SymIntN n -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize SymIntN n
as))
)
#define ALLSYMS_BV(t) \
instance (KnownNat n, 1 <= n) => AllSyms (t n) where \
allSymsS v = (SomeSym v :)
#if 1
ALLSYMS_BV(SymIntN)
ALLSYMS_BV(SymWordN)
#endif