{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
{-# OPTIONS_GHC -w #-}
module AttrGrammarParser (agParser) where
import ParseMonad
import AttrGrammar
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 1.20.0

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
newtype HappyWrap4 = HappyWrap4 ([AgRule])
happyIn4 :: ([AgRule]) -> (HappyAbsSyn )
happyIn4 :: [AgRule] -> HappyAbsSyn
happyIn4 [AgRule]
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([AgRule] -> HappyWrap4
HappyWrap4 [AgRule]
x)
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn ) -> HappyWrap4
happyOut4 :: HappyAbsSyn -> HappyWrap4
happyOut4 HappyAbsSyn
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut4 #-}
newtype HappyWrap5 = HappyWrap5 ([AgRule])
happyIn5 :: ([AgRule]) -> (HappyAbsSyn )
happyIn5 :: [AgRule] -> HappyAbsSyn
happyIn5 [AgRule]
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([AgRule] -> HappyWrap5
HappyWrap5 [AgRule]
x)
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> HappyWrap5
happyOut5 :: HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut5 #-}
newtype HappyWrap6 = HappyWrap6 (AgRule)
happyIn6 :: (AgRule) -> (HappyAbsSyn )
happyIn6 :: AgRule -> HappyAbsSyn
happyIn6 AgRule
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (AgRule -> HappyWrap6
HappyWrap6 AgRule
x)
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> HappyWrap6
happyOut6 :: HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut6 #-}
newtype HappyWrap7 = HappyWrap7 ([AgToken])
happyIn7 :: ([AgToken]) -> (HappyAbsSyn )
happyIn7 :: [AgToken] -> HappyAbsSyn
happyIn7 [AgToken]
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([AgToken] -> HappyWrap7
HappyWrap7 [AgToken]
x)
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> HappyWrap7
happyOut7 :: HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
newtype HappyWrap8 = HappyWrap8 ([AgToken])
happyIn8 :: ([AgToken]) -> (HappyAbsSyn )
happyIn8 :: [AgToken] -> HappyAbsSyn
happyIn8 [AgToken]
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([AgToken] -> HappyWrap8
HappyWrap8 [AgToken]
x)
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> HappyWrap8
happyOut8 :: HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
happyInTok :: (AgToken) -> (HappyAbsSyn )
happyInTok :: AgToken -> HappyAbsSyn
happyInTok AgToken
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# AgToken
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (AgToken)
happyOutTok :: HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
x = unsafeCoerce# :: forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}


happyExpList :: HappyAddr
happyExpList :: HappyAddr
happyExpList = Addr# -> HappyAddr
HappyA# Addr#
"\x00\xf0\x00\xc0\x03\x00\x00\x00\x01\x00\xe9\x01\x20\x00\x80\x00\x00\x02\x00\x00\x00\xa4\x07\x90\x1e\x40\x7a\x00\x00\x00\xb4\x07\x90\x1e\x40\x7a\x00\xe9\x01\xa4\x07\x90\x1e\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x40\x7b\x00\xed\x01\xb4\x07\xd0\x1e\x40\x7b\x00\xe9\x01\xb4\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\xe9\x01\x00\x00\xd0\x1e\x00\x00\x00\x00"#

{-# NOINLINE happyExpListPerState #-}
happyExpListPerState :: Int -> [String]
happyExpListPerState Int
st =
    [String]
token_strs_expected
  where token_strs :: [String]
token_strs = [String
"error",String
"%dummy",String
"%start_agParser",String
"agParser",String
"rules",String
"rule",String
"code",String
"code0",String
"\"{\"",String
"\"}\"",String
"\";\"",String
"\"=\"",String
"where",String
"selfRef",String
"subRef",String
"rightRef",String
"unknown",String
"%eof"]
        bit_start :: Int
bit_start = Int
st forall a. Num a => a -> a -> a
Prelude.* Int
18
        bit_end :: Int
bit_end = (Int
st forall a. Num a => a -> a -> a
Prelude.+ Int
1) forall a. Num a => a -> a -> a
Prelude.* Int
18
        read_bit :: Int -> Bool
read_bit = HappyAddr -> Int -> Bool
readArrayBit HappyAddr
happyExpList
        bits :: [Bool]
bits = forall a b. (a -> b) -> [a] -> [b]
Prelude.map Int -> Bool
read_bit [Int
bit_start..Int
bit_end forall a. Num a => a -> a -> a
Prelude.- Int
1]
        bits_indexed :: [(Bool, Int)]
bits_indexed = forall a b. [a] -> [b] -> [(a, b)]
Prelude.zip [Bool]
bits [Int
0..Int
17]
        token_strs_expected :: [String]
token_strs_expected = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
Prelude.concatMap (Bool, Int) -> [String]
f [(Bool, Int)]
bits_indexed
        f :: (Bool, Int) -> [String]
f (Bool
Prelude.False, Int
_) = []
        f (Bool
Prelude.True, Int
nr) = [[String]
token_strs forall a. [a] -> Int -> a
Prelude.!! Int
nr]

happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x0f\x00\x0f\x00\x00\x00\xfe\xff\x0a\x00\xff\xff\x02\x00\x19\x00\x05\x00\x0a\x00\x0a\x00\x0a\x00\x00\x00\x01\x00\x0a\x00\x0a\x00\x0a\x00\x0a\x00\x0a\x00\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00\x0a\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x00\x0a\x00\x00\x00\x01\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x18\x00\x0b\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1f\x00\x20\x00\x21\x00\x00\x00\x22\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2f\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x00\x00\x00\x33\x00\x00\x00\x00\x00"#

happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset :: Int# -> Int#
happyAdjustOffset Int#
off = Int#
off

happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# Addr#
"\xfb\xff\x00\x00\xfe\xff\xfc\xff\xf0\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf0\xff\xf0\xff\xf0\xff\xf7\xff\xe8\xff\xf0\xff\xf0\xff\xf0\xff\xf0\xff\xf0\xff\xfb\xff\xfd\xff\xf1\xff\xf2\xff\xf3\xff\xf4\xff\xf5\xff\x00\x00\xe8\xff\xe8\xff\xe8\xff\xe8\xff\xe8\xff\xf0\xff\xe8\xff\xfa\xff\xf9\xff\xf8\xff\xe9\xff\xea\xff\xeb\xff\xec\xff\xee\xff\xed\xff\x00\x00\xf0\xff\xf6\xff\xe8\xff\xef\xff"#

happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# Addr#
"\xff\xff\x03\x00\x01\x00\x04\x00\x03\x00\x04\x00\x04\x00\x06\x00\x07\x00\x08\x00\x09\x00\x01\x00\x01\x00\x02\x00\x04\x00\x0a\x00\x06\x00\x07\x00\x08\x00\x09\x00\x05\x00\x06\x00\x07\x00\x08\x00\x00\x00\x01\x00\x02\x00\x01\x00\x02\x00\x04\x00\x02\x00\x02\x00\xff\xff\x03\x00\x03\x00\x03\x00\x03\x00\xff\xff\x04\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\xff\xff\x04\x00\x04\x00\x04\x00\x04\x00\x04\x00\x03\x00\xff\xff\x04\x00\x03\x00\xff\xff\x04\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x14\x00\x1c\x00\x0c\x00\x1d\x00\x1e\x00\x0b\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x0e\x00\x02\x00\x03\x00\x0f\x00\xff\xff\x10\x00\x11\x00\x12\x00\x13\x00\x05\x00\x06\x00\x07\x00\x08\x00\x08\x00\x02\x00\x03\x00\x14\x00\x03\x00\x0a\x00\x2d\x00\x2f\x00\x00\x00\x0c\x00\x24\x00\x23\x00\x22\x00\x00\x00\x1a\x00\x19\x00\x18\x00\x17\x00\x16\x00\x15\x00\x00\x00\x2b\x00\x2a\x00\x29\x00\x28\x00\x27\x00\x26\x00\x00\x00\x25\x00\x2d\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr :: Array
  Int
  (Int#
   -> AgToken
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> P HappyAbsSyn)
happyReduceArr = forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (Int
1, Int
23) [
	(Int
1 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1),
	(Int
2 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2),
	(Int
3 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3),
	(Int
4 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4),
	(Int
5 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5),
	(Int
6 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6),
	(Int
7 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7),
	(Int
8 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8),
	(Int
9 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9),
	(Int
10 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10),
	(Int
11 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11),
	(Int
12 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12),
	(Int
13 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13),
	(Int
14 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14),
	(Int
15 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15),
	(Int
16 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16),
	(Int
17 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17),
	(Int
18 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18),
	(Int
19 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19),
	(Int
20 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20),
	(Int
21 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21),
	(Int
22 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22),
	(Int
23 , Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23)
	]

happy_n_terms :: Int
happy_n_terms = Int
11 :: Prelude.Int
happy_n_nonterms :: Int
happy_n_nonterms = Int
5 :: Prelude.Int

happyReduce_1 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_1 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
0# HappyAbsSyn -> HappyAbsSyn
happyReduction_1
happyReduction_1 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_1 HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
happy_x_1 of { (HappyWrap5 [AgRule]
happy_var_1) -> 
	[AgRule] -> HappyAbsSyn
happyIn4
		 ([AgRule]
happy_var_1
	)}

happyReduce_2 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_2 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
1# forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_2
happyReduction_2 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_2 HappyAbsSyn
happy_x_3
	p
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_1 of { (HappyWrap6 AgRule
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
happy_x_3 of { (HappyWrap5 [AgRule]
happy_var_3) -> 
	[AgRule] -> HappyAbsSyn
happyIn5
		 (AgRule
happy_var_1 forall a. a -> [a] -> [a]
: [AgRule]
happy_var_3
	)}}

happyReduce_3 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_3 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
1# HappyAbsSyn -> HappyAbsSyn
happyReduction_3
happyReduction_3 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_3 HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_1 of { (HappyWrap6 AgRule
happy_var_1) -> 
	[AgRule] -> HappyAbsSyn
happyIn5
		 (AgRule
happy_var_1 forall a. a -> [a] -> [a]
: []
	)}

happyReduce_4 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_4 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4 = Int#
-> HappyAbsSyn
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
1# HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyAbsSyn
happyReduction_4  =  [AgRule] -> HappyAbsSyn
happyIn5
		 ([]
	)

happyReduce_5 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_5 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
2# forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_5 HappyAbsSyn
happy_x_3
	p
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_3 of { (HappyWrap7 [AgToken]
happy_var_3) -> 
	AgRule -> HappyAbsSyn
happyIn6
		 (String -> [AgToken] -> AgRule
SelfAssign (AgToken -> String
selfRefVal AgToken
happy_var_1) [AgToken]
happy_var_3
	)}}

happyReduce_6 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_6 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
2# forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6
happyReduction_6 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6 HappyAbsSyn
happy_x_3
	p
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_3 of { (HappyWrap7 [AgToken]
happy_var_3) -> 
	AgRule -> HappyAbsSyn
happyIn6
		 ((Int, String) -> [AgToken] -> AgRule
SubAssign (AgToken -> (Int, String)
subRefVal AgToken
happy_var_1) [AgToken]
happy_var_3
	)}}

happyReduce_7 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_7 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
2# forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7
happyReduction_7 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7 HappyAbsSyn
happy_x_3
	p
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_3 of { (HappyWrap7 [AgToken]
happy_var_3) -> 
	AgRule -> HappyAbsSyn
happyIn6
		 (String -> [AgToken] -> AgRule
RightmostAssign (AgToken -> String
rightRefVal AgToken
happy_var_1) [AgToken]
happy_var_3
	)}}

happyReduce_8 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_8 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
2# forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_8
happyReduction_8 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_8 HappyAbsSyn
happy_x_2
	p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 [AgToken]
happy_var_2) -> 
	AgRule -> HappyAbsSyn
happyIn6
		 ([AgToken] -> AgRule
Conditional [AgToken]
happy_var_2
	)}

happyReduce_9 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_9 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_9 (HappyAbsSyn
happy_x_4 `HappyStk`
	HappyAbsSyn
happy_x_3 `HappyStk`
	HappyAbsSyn
happy_x_2 `HappyStk`
	HappyAbsSyn
happy_x_1 `HappyStk`
	HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 [AgToken]
happy_var_2) -> 
	case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_3 of { AgToken
happy_var_3 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_4 of { (HappyWrap7 [AgToken]
happy_var_4) -> 
	[AgToken] -> HappyAbsSyn
happyIn7
		 ([AgToken
happy_var_1] forall a. [a] -> [a] -> [a]
++ [AgToken]
happy_var_2 forall a. [a] -> [a] -> [a]
++ [AgToken
happy_var_3] forall a. [a] -> [a] -> [a]
++ [AgToken]
happy_var_4
	) forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_10 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_10 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
3# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_10 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn7
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_11 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_11 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
3# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_11 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn7
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_12 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_12 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
3# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_12 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn7
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_13 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_13 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
3# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_13 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn7
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_14 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_14 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
3# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_14 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn7
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_15 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_15 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15 = Int#
-> HappyAbsSyn
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
3# HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyAbsSyn
happyReduction_15  =  [AgToken] -> HappyAbsSyn
happyIn7
		 ([]
	)

happyReduce_16 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_16 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
4# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_16 (HappyAbsSyn
happy_x_4 `HappyStk`
	HappyAbsSyn
happy_x_3 `HappyStk`
	HappyAbsSyn
happy_x_2 `HappyStk`
	HappyAbsSyn
happy_x_1 `HappyStk`
	HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 [AgToken]
happy_var_2) -> 
	case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_3 of { AgToken
happy_var_3 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_4 of { (HappyWrap8 [AgToken]
happy_var_4) -> 
	[AgToken] -> HappyAbsSyn
happyIn8
		 ([AgToken
happy_var_1] forall a. [a] -> [a] -> [a]
++ [AgToken]
happy_var_2 forall a. [a] -> [a] -> [a]
++ [AgToken
happy_var_3] forall a. [a] -> [a] -> [a]
++ [AgToken]
happy_var_4
	) forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_17 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_17 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_17 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn8
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_18 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_18 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_18 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn8
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_19 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_19 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_19 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn8
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_20 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_20 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_20
happyReduction_20 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_20 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn8
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_21 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_21 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn8
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_22 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_22 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_22 HappyAbsSyn
happy_x_2
	HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> AgToken
happyOutTok HappyAbsSyn
happy_x_1 of { AgToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 [AgToken]
happy_var_2) -> 
	[AgToken] -> HappyAbsSyn
happyIn8
		 (AgToken
happy_var_1 forall a. a -> [a] -> [a]
: [AgToken]
happy_var_2
	)}}

happyReduce_23 :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_23 :: Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23 = Int#
-> HappyAbsSyn
-> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
4# HappyAbsSyn
happyReduction_23
happyReduction_23 :: HappyAbsSyn
happyReduction_23  =  [AgToken] -> HappyAbsSyn
happyIn8
		 ([]
	)

happyNewToken :: Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk
	= forall a. (AgToken -> P a) -> P a
agLexer(\AgToken
tk -> 
	let cont :: Int# -> P HappyAbsSyn
cont Int#
i = Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i AgToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk in
	case AgToken
tk of {
	AgToken
AgTok_EOF -> Int#
-> AgToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
10# AgToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk;
	AgToken
AgTok_LBrace -> Int# -> P HappyAbsSyn
cont Int#
1#;
	AgToken
AgTok_RBrace -> Int# -> P HappyAbsSyn
cont Int#
2#;
	AgToken
AgTok_Semicolon -> Int# -> P HappyAbsSyn
cont Int#
3#;
	AgToken
AgTok_Eq -> Int# -> P HappyAbsSyn
cont Int#
4#;
	AgToken
AgTok_Where -> Int# -> P HappyAbsSyn
cont Int#
5#;
	AgTok_SelfRef String
_ -> Int# -> P HappyAbsSyn
cont Int#
6#;
	AgTok_SubRef (Int, String)
_ -> Int# -> P HappyAbsSyn
cont Int#
7#;
	AgTok_RightmostRef String
_ -> Int# -> P HappyAbsSyn
cont Int#
8#;
	AgTok_Unknown String
_ -> Int# -> P HappyAbsSyn
cont Int#
9#;
	AgToken
_ -> forall a. (AgToken, [String]) -> P a
happyError' (AgToken
tk, [])
	})

happyError_ :: [String] -> Int# -> AgToken -> P a
happyError_ [String]
explist Int#
10# AgToken
tk = forall a. (AgToken, [String]) -> P a
happyError' (AgToken
tk, [String]
explist)
happyError_ [String]
explist Int#
_ AgToken
tk = forall a. (AgToken, [String]) -> P a
happyError' (AgToken
tk, [String]
explist)

happyThen :: () => P a -> (a -> P b) -> P b
happyThen :: forall a b. P a -> (a -> P b) -> P b
happyThen = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(Prelude.>>=)
happyReturn :: () => a -> P a
happyReturn :: forall a. a -> P a
happyReturn = (forall (m :: * -> *) a. Monad m => a -> m a
Prelude.return)
happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn )

happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )

happyDoAction :: () => Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )

happyReduceArr :: () => Happy_Data_Array.Array Prelude.Int (Happy_GHC_Exts.Int# -> AgToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ))

happyThen1 :: () => P a -> (a -> P b) -> P b
happyThen1 :: forall a b. P a -> (a -> P b) -> P b
happyThen1 = forall a b. P a -> (a -> P b) -> P b
happyThen
happyReturn1 :: () => a -> P a
happyReturn1 :: forall a. a -> P a
happyReturn1 = forall a. a -> P a
happyReturn
happyError' :: () => ((AgToken), [Prelude.String]) -> P a
happyError' :: forall a. (AgToken, [String]) -> P a
happyError' (AgToken, [String])
tk = (\(AgToken
tokens, [String]
explist) -> forall a. P a
happyError) (AgToken, [String])
tk
agParser :: P [AgRule]
agParser = P [AgRule]
happySomeParser where
 happySomeParser :: P [AgRule]
happySomeParser = forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse Int#
0#) (\HappyAbsSyn
x -> forall a. a -> P a
happyReturn (let {(HappyWrap4 [AgRule]
x') = HappyAbsSyn -> HappyWrap4
happyOut4 HappyAbsSyn
x} in [AgRule]
x'))

happySeq :: a -> b -> b
happySeq = forall a b. a -> b -> b
happyDontSeq


happyError :: P a
happyError :: forall a. P a
happyError = forall (m :: * -> *) a. MonadFail m => String -> m a
fail (String
"Parse error\n")
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- $Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp $













-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Prelude.Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Prelude.Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Prelude.Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif



















data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList








































infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is ERROR_TOK, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}
          case action of
                0#           -> {- nothing -}
                                     happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Prelude.Int)) i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}
                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}
                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
         off_i  = (off Happy_GHC_Exts.+# i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else Prelude.False
         action
          | check     = indexShortOffAddr happyTable off_i
          | Prelude.otherwise = indexShortOffAddr happyDefActions st




indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#




{-# INLINE happyLt #-}
happyLt x y = LT(x,y)


readArrayBit arr bit =
    Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `Prelude.mod` 16)
  where unbox_int (Happy_GHC_Exts.I# x) = x






data HappyAddr = HappyA# Happy_GHC_Exts.Addr#


-----------------------------------------------------------------------------
-- HappyState data type (not arrays)













-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
             off_i = (off Happy_GHC_Exts.+# nt)
             new_state = indexShortOffAddr happyTable off_i




          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
         off_i = (off Happy_GHC_Exts.+# nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (ERROR_TOK is the error token)

-- parse error if we are in recovery and we fail again
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ explist i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  ERROR_TOK tk old_st CONS(HAPPYSTATE(action),sts) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        DO_ACTION(action,ERROR_TOK,tk,sts,(saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail explist i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ((Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = Prelude.error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `Prelude.seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.