module Language.Haskellish where
import Language.Haskell.Exts
import Control.Applicative
import Control.Monad
import Data.Either (isRight)
import Data.Maybe (catMaybes)
data Haskellish a = Haskellish { runHaskellish :: Exp SrcSpanInfo -> Either String a }
instance Functor Haskellish where
fmap f x = Haskellish (fmap f . runHaskellish x)
instance Applicative Haskellish where
pure x = Haskellish (const (Right x))
f <*> x = Haskellish (\e -> do
(e1,e2) <- applicationExpressions e
f' <- runHaskellish f e1
x' <- runHaskellish x e2
return (f' x')
)
applicationExpressions :: Exp SrcSpanInfo -> Either String (Exp SrcSpanInfo,Exp SrcSpanInfo)
applicationExpressions (Paren _ x) = applicationExpressions x
applicationExpressions (App _ e1 e2) = Right (e1,e2)
applicationExpressions (InfixApp _ e1 (QVarOp _ (UnQual _ (Symbol _ "$"))) e2) = Right (e1,e2)
applicationExpressions (InfixApp l e1 (QVarOp _ (UnQual _ (Symbol _ x))) e2) = Right (App l x' e1,e2)
where x' = (Var l (UnQual l (Ident l x)))
applicationExpressions (LeftSection l e1 (QVarOp _ (UnQual _ (Symbol _ x)))) = Right (x',e1)
where x' = (Var l (UnQual l (Ident l x)))
applicationExpressions _ = Left ""
instance Alternative Haskellish where
empty = Haskellish (const (Left ""))
a <|> b = Haskellish (\e -> do
let a' = runHaskellish a e
if isRight a' then a' else runHaskellish b e
)
instance Monad Haskellish where
x >>= f = Haskellish (\e -> do
x' <- runHaskellish x e
runHaskellish (f x') e
)
instance MonadPlus Haskellish where
mzero = empty
mplus = (<|>)
identifier :: Haskellish String
identifier = Haskellish f
where f (Paren _ x) = f x
f (Var _ (UnQual _ (Ident _ x))) = Right x
f (Var _ (UnQual _ (Symbol _ x))) = Right x
f _ = Left ""
reserved :: String -> Haskellish ()
reserved x = Haskellish (\e -> do
e' <- runHaskellish identifier e
if e' == x then Right () else Left ""
)
string :: Haskellish String
string = Haskellish f
where f (Paren _ x) = f x
f (Lit _ (String _ x _)) = Right x
f _ = Left ""
integer :: Haskellish Integer
integer = Haskellish f
where f (Paren _ x) = f x
f (NegApp _ (Lit _ (Int _ x _))) = Right (x * (-1))
f (Lit _ (Int _ x _)) = Right x
f _ = Left ""
rational :: Haskellish Rational
rational = Haskellish f
where f (Paren _ x) = f x
f (NegApp _ (Lit _ (Frac _ x _))) = Right (x * (-1))
f (Lit _ (Frac _ x _)) = Right x
f _ = Left ""
rationalOrInteger :: Haskellish Rational
rationalOrInteger = Haskellish f
where f (Paren _ x) = f x
f (NegApp _ (Lit _ (Frac _ x _))) = Right (x * (-1))
f (Lit _ (Frac _ x _)) = Right x
f (NegApp _ (Lit _ (Int _ x _))) = Right (fromIntegral $ x * (-1))
f (Lit _ (Int _ x _)) = Right $ fromIntegral x
f _ = Left ""
list :: Haskellish a -> Haskellish [a]
list p = Haskellish (\e -> f e >>= mapM (runHaskellish p))
where
f (Paren _ x) = f x
f (List _ xs) = Right xs
f _ = Left ""
tuple :: Haskellish a -> Haskellish b -> Haskellish (a,b)
tuple p1 p2 = Haskellish (\e -> do
(a,b) <- f e
a' <- runHaskellish p1 a
b' <- runHaskellish p2 b
return (a',b')
)
where
f (Paren _ x) = f x
f (Tuple _ Boxed (a:b:[])) = Right (a,b)
f _ = Left ""
asRightSection :: Haskellish (a -> b -> c) -> Haskellish b -> Haskellish (a -> c)
asRightSection opP bP = Haskellish (\e -> do
(opExp,bExp) <- f e
op' <- runHaskellish opP opExp
b <- runHaskellish bP bExp
return $ flip op' b
)
where
f (Paren _ x) = f x
f (RightSection _ (QVarOp l (UnQual _ (Symbol _ x))) e1) = Right (g l x,e1)
f _ = Left ""
g l x = (Var l (UnQual l (Ident l x)))
collectDoStatements :: Exp SrcSpanInfo -> [Exp SrcSpanInfo]
collectDoStatements (Do _ xs) = catMaybes $ fmap f xs
where
f (Qualifier _ e) = Just e
f _ = Nothing
collectDoStatements _ = []
listOfDoStatements :: Haskellish a -> Haskellish [a]
listOfDoStatements p = Haskellish (\e -> mapM (runHaskellish p) $ collectDoStatements e)
type Span = ((Int,Int),(Int,Int))
askSpan :: Haskellish Span
askSpan = Haskellish $ return . expToSpan
expToSpan :: Exp SrcSpanInfo -> Span
expToSpan (Var x _) = srcSpanInfoToSpan x
expToSpan (Paren x _) = srcSpanInfoToSpan x
expToSpan (App x _ _) = srcSpanInfoToSpan x
expToSpan (InfixApp x _ _ _) = srcSpanInfoToSpan x
expToSpan (LeftSection x _ _) = srcSpanInfoToSpan x
expToSpan (NegApp x _) = srcSpanInfoToSpan x
expToSpan (Lit x _) = srcSpanInfoToSpan x
expToSpan (List x _) = srcSpanInfoToSpan x
expToSpan (RightSection x _ _) = srcSpanInfoToSpan x
expToSpan (Tuple x _ _) = srcSpanInfoToSpan x
expToSpan (Do x _) = srcSpanInfoToSpan x
expToSpan _ = ((0,0),(0,0))
srcSpanInfoToSpan :: SrcSpanInfo -> Span
srcSpanInfoToSpan x = ((bx,by),(ex,ey))
where
bx = srcSpanStartColumn $ srcInfoSpan x
by = srcSpanStartLine $ srcInfoSpan x
ex = srcSpanEndColumn $ srcInfoSpan x
ey = srcSpanEndLine $ srcInfoSpan x
reverseApplication :: Haskellish a -> Haskellish (a -> b) -> Haskellish b
reverseApplication x f = Haskellish (\e -> do
(e1,e2) <- applicationExpressions e
x' <- runHaskellish x e1
f' <- runHaskellish f e2
return (f' x')
)