{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TupleSections #-}

module Haskoin.Store.Common
  ( Limits (..),
    Start (..),
    StoreReadBase (..),
    StoreReadExtra (..),
    StoreWrite (..),
    StoreEvent (..),
    PubExcept (..),
    DataMetrics (..),
    getActiveBlock,
    getActiveTxData,
    getDefaultBalance,
    getTransaction,
    getNumTransaction,
    blockAtOrAfter,
    blockAtOrBefore,
    blockAtOrAfterMTP,
    xPubSummary,
    deriveAddresses,
    deriveFunction,
    deOffset,
    applyLimits,
    applyLimitsC,
    applyLimit,
    applyLimitC,
    sortTxs,
    nub',
    microseconds,
    streamThings,
    joinDescStreams,
    createDataMetrics,
  )
where

import Conduit
  ( ConduitT,
    await,
    dropC,
    mapC,
    sealConduitT,
    takeC,
    yield,
    ($$++),
  )
import Control.DeepSeq (NFData)
import Control.Exception (Exception)
import Control.Monad (forM)
import Control.Monad.Trans (lift)
import Control.Monad.Trans.Maybe (MaybeT (..), runMaybeT)
import Control.Monad.Trans.Reader (runReaderT)
import Data.ByteString (ByteString)
import Data.Default (Default (..))
import qualified Data.Graph as G
import qualified Data.HashSet as H
import qualified Data.HashMap.Strict as M
import Data.Hashable (Hashable)
import Data.IntMap.Strict (IntMap)
import qualified Data.IntMap.Strict as I
import Data.List (sortOn)
import qualified Data.Map.Strict as Map
import Data.Maybe (catMaybes, mapMaybe)
import Data.Ord (Down (..))
import Data.Serialize (Serialize (..))
import Data.Time.Clock.System
  ( getSystemTime,
    systemNanoseconds,
    systemSeconds,
  )
import Data.Word (Word32, Word64)
import GHC.Generics (Generic)
import Haskoin
  ( Address,
    BlockHash,
    BlockHeader (..),
    BlockHeight,
    BlockNode (..),
    KeyIndex,
    Network (..),
    OutPoint (..),
    RejectCode (..),
    Tx (..),
    TxHash (..),
    TxIn (..),
    XPubKey (..),
    deriveAddr,
    deriveCompatWitnessAddr,
    deriveWitnessAddr,
    firstGreaterOrEqual,
    headerHash,
    lastSmallerOrEqual,
    mtp,
    pubSubKey,
    txHash,
  )
import Haskoin.Node (Chain, Peer)
import Haskoin.Store.Data
  ( Balance (..),
    BlockData (..),
    DeriveType (..),
    Spender,
    Transaction (..),
    TxData (..),
    TxRef (..),
    UnixTime,
    Unspent (..),
    XPubBal (..),
    XPubSpec (..),
    XPubSummary (..),
    XPubUnspent (..),
    nullBalance,
    toTransaction,
    zeroBalance,
  )
import qualified System.Metrics as Metrics
import System.Metrics.Counter (Counter)
import qualified System.Metrics.Counter as Counter
import UnliftIO (MonadIO, liftIO)

type DeriveAddr = XPubKey -> KeyIndex -> Address

type Offset = Word32

type Limit = Word32

data Start
  = AtTx {Start -> TxHash
atTxHash :: !TxHash}
  | AtBlock {Start -> Word32
atBlockHeight :: !BlockHeight}
  deriving (Start -> Start -> Bool
(Start -> Start -> Bool) -> (Start -> Start -> Bool) -> Eq Start
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Start -> Start -> Bool
$c/= :: Start -> Start -> Bool
== :: Start -> Start -> Bool
$c== :: Start -> Start -> Bool
Eq, Int -> Start -> ShowS
[Start] -> ShowS
Start -> String
(Int -> Start -> ShowS)
-> (Start -> String) -> ([Start] -> ShowS) -> Show Start
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Start] -> ShowS
$cshowList :: [Start] -> ShowS
show :: Start -> String
$cshow :: Start -> String
showsPrec :: Int -> Start -> ShowS
$cshowsPrec :: Int -> Start -> ShowS
Show)

data Limits = Limits
  { Limits -> Word32
limit :: !Word32,
    Limits -> Word32
offset :: !Word32,
    Limits -> Maybe Start
start :: !(Maybe Start)
  }
  deriving (Limits -> Limits -> Bool
(Limits -> Limits -> Bool)
-> (Limits -> Limits -> Bool) -> Eq Limits
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Limits -> Limits -> Bool
$c/= :: Limits -> Limits -> Bool
== :: Limits -> Limits -> Bool
$c== :: Limits -> Limits -> Bool
Eq, Int -> Limits -> ShowS
[Limits] -> ShowS
Limits -> String
(Int -> Limits -> ShowS)
-> (Limits -> String) -> ([Limits] -> ShowS) -> Show Limits
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Limits] -> ShowS
$cshowList :: [Limits] -> ShowS
show :: Limits -> String
$cshow :: Limits -> String
showsPrec :: Int -> Limits -> ShowS
$cshowsPrec :: Int -> Limits -> ShowS
Show)

defaultLimits :: Limits
defaultLimits :: Limits
defaultLimits = Limits :: Word32 -> Word32 -> Maybe Start -> Limits
Limits {limit :: Word32
limit = Word32
0, offset :: Word32
offset = Word32
0, start :: Maybe Start
start = Maybe Start
forall a. Maybe a
Nothing}

instance Default Limits where
  def :: Limits
def = Limits
defaultLimits

class Monad m => StoreReadBase m where
  getNetwork :: m Network
  getBestBlock :: m (Maybe BlockHash)
  getBlocksAtHeight :: BlockHeight -> m [BlockHash]
  getBlock :: BlockHash -> m (Maybe BlockData)
  getTxData :: TxHash -> m (Maybe TxData)
  getSpender :: OutPoint -> m (Maybe Spender)
  getBalance :: Address -> m (Maybe Balance)
  getUnspent :: OutPoint -> m (Maybe Unspent)
  getMempool :: m [(UnixTime, TxHash)]

class StoreReadBase m => StoreReadExtra m where
  getAddressesTxs :: [Address] -> Limits -> m [TxRef]
  getAddressesUnspents :: [Address] -> Limits -> m [Unspent]
  getInitialGap :: m Word32
  getMaxGap :: m Word32
  getNumTxData :: Word64 -> m [TxData]
  getBalances :: [Address] -> m [Balance]
  getAddressTxs :: Address -> Limits -> m [TxRef]
  getAddressUnspents :: Address -> Limits -> m [Unspent]
  xPubBals :: XPubSpec -> m [XPubBal]
  xPubUnspents :: XPubSpec -> [XPubBal] -> Limits -> m [XPubUnspent]
  xPubTxs :: XPubSpec -> [XPubBal] -> Limits -> m [TxRef]
  xPubTxCount :: XPubSpec -> [XPubBal] -> m Word32

class StoreWrite m where
  setBest :: BlockHash -> m ()
  insertBlock :: BlockData -> m ()
  setBlocksAtHeight :: [BlockHash] -> BlockHeight -> m ()
  insertTx :: TxData -> m ()
  insertAddrTx :: Address -> TxRef -> m ()
  deleteAddrTx :: Address -> TxRef -> m ()
  insertAddrUnspent :: Address -> Unspent -> m ()
  deleteAddrUnspent :: Address -> Unspent -> m ()
  addToMempool :: TxHash -> UnixTime -> m ()
  deleteFromMempool :: TxHash -> m ()
  setBalance :: Balance -> m ()
  insertUnspent :: Unspent -> m ()
  deleteUnspent :: OutPoint -> m ()

getActiveBlock :: StoreReadExtra m => BlockHash -> m (Maybe BlockData)
getActiveBlock :: forall (m :: * -> *).
StoreReadExtra m =>
BlockHash -> m (Maybe BlockData)
getActiveBlock BlockHash
bh =
  BlockHash -> m (Maybe BlockData)
forall (m :: * -> *).
StoreReadBase m =>
BlockHash -> m (Maybe BlockData)
getBlock BlockHash
bh m (Maybe BlockData)
-> (Maybe BlockData -> m (Maybe BlockData)) -> m (Maybe BlockData)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
    Just BlockData
b | BlockData -> Bool
blockDataMainChain BlockData
b -> Maybe BlockData -> m (Maybe BlockData)
forall (m :: * -> *) a. Monad m => a -> m a
return (BlockData -> Maybe BlockData
forall a. a -> Maybe a
Just BlockData
b)
    Maybe BlockData
_ -> Maybe BlockData -> m (Maybe BlockData)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe BlockData
forall a. Maybe a
Nothing

getActiveTxData :: StoreReadBase m => TxHash -> m (Maybe TxData)
getActiveTxData :: forall (m :: * -> *). StoreReadBase m => TxHash -> m (Maybe TxData)
getActiveTxData TxHash
th =
  TxHash -> m (Maybe TxData)
forall (m :: * -> *). StoreReadBase m => TxHash -> m (Maybe TxData)
getTxData TxHash
th m (Maybe TxData)
-> (Maybe TxData -> m (Maybe TxData)) -> m (Maybe TxData)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
    Just TxData
td | Bool -> Bool
not (TxData -> Bool
txDataDeleted TxData
td) -> Maybe TxData -> m (Maybe TxData)
forall (m :: * -> *) a. Monad m => a -> m a
return (TxData -> Maybe TxData
forall a. a -> Maybe a
Just TxData
td)
    Maybe TxData
_ -> Maybe TxData -> m (Maybe TxData)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe TxData
forall a. Maybe a
Nothing

getDefaultBalance :: StoreReadBase m => Address -> m Balance
getDefaultBalance :: forall (m :: * -> *). StoreReadBase m => Address -> m Balance
getDefaultBalance Address
a =
  Address -> m (Maybe Balance)
forall (m :: * -> *).
StoreReadBase m =>
Address -> m (Maybe Balance)
getBalance Address
a m (Maybe Balance) -> (Maybe Balance -> m Balance) -> m Balance
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
    Maybe Balance
Nothing -> Balance -> m Balance
forall (m :: * -> *) a. Monad m => a -> m a
return (Balance -> m Balance) -> Balance -> m Balance
forall a b. (a -> b) -> a -> b
$ Address -> Balance
zeroBalance Address
a
    Just Balance
b -> Balance -> m Balance
forall (m :: * -> *) a. Monad m => a -> m a
return Balance
b

deriveAddresses :: DeriveAddr -> XPubKey -> Word32 -> [(Word32, Address)]
deriveAddresses :: DeriveAddr -> XPubKey -> Word32 -> [(Word32, Address)]
deriveAddresses DeriveAddr
derive XPubKey
xpub Word32
start = (Word32 -> (Word32, Address)) -> [Word32] -> [(Word32, Address)]
forall a b. (a -> b) -> [a] -> [b]
map (\Word32
i -> (Word32
i, DeriveAddr
derive XPubKey
xpub Word32
i)) [Word32
start ..]

deriveFunction :: DeriveType -> DeriveAddr
deriveFunction :: DeriveType -> DeriveAddr
deriveFunction DeriveType
DeriveNormal XPubKey
i = (Address, PubKey) -> Address
forall a b. (a, b) -> a
fst ((Address, PubKey) -> Address)
-> (Word32 -> (Address, PubKey)) -> Word32 -> Address
forall b c a. (b -> c) -> (a -> b) -> a -> c
. XPubKey -> Word32 -> (Address, PubKey)
deriveAddr XPubKey
i
deriveFunction DeriveType
DeriveP2SH XPubKey
i = (Address, PubKey) -> Address
forall a b. (a, b) -> a
fst ((Address, PubKey) -> Address)
-> (Word32 -> (Address, PubKey)) -> Word32 -> Address
forall b c a. (b -> c) -> (a -> b) -> a -> c
. XPubKey -> Word32 -> (Address, PubKey)
deriveCompatWitnessAddr XPubKey
i
deriveFunction DeriveType
DeriveP2WPKH XPubKey
i = (Address, PubKey) -> Address
forall a b. (a, b) -> a
fst ((Address, PubKey) -> Address)
-> (Word32 -> (Address, PubKey)) -> Word32 -> Address
forall b c a. (b -> c) -> (a -> b) -> a -> c
. XPubKey -> Word32 -> (Address, PubKey)
deriveWitnessAddr XPubKey
i

xPubSummary :: XPubSpec -> [XPubBal] -> XPubSummary
xPubSummary :: XPubSpec -> [XPubBal] -> XPubSummary
xPubSummary XPubSpec
_xspec [XPubBal]
xbals =
  XPubSummary :: Word64
-> Word64 -> Word64 -> Word64 -> Word32 -> Word32 -> XPubSummary
XPubSummary
    { xPubSummaryConfirmed :: Word64
xPubSummaryConfirmed = [Word64] -> Word64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ((XPubBal -> Word64) -> [XPubBal] -> [Word64]
forall a b. (a -> b) -> [a] -> [b]
map (Balance -> Word64
balanceAmount (Balance -> Word64) -> (XPubBal -> Balance) -> XPubBal -> Word64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. XPubBal -> Balance
xPubBal) [XPubBal]
bs),
      xPubSummaryZero :: Word64
xPubSummaryZero = [Word64] -> Word64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ((XPubBal -> Word64) -> [XPubBal] -> [Word64]
forall a b. (a -> b) -> [a] -> [b]
map (Balance -> Word64
balanceZero (Balance -> Word64) -> (XPubBal -> Balance) -> XPubBal -> Word64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. XPubBal -> Balance
xPubBal) [XPubBal]
bs),
      xPubSummaryReceived :: Word64
xPubSummaryReceived = Word64
rx,
      xPubUnspentCount :: Word64
xPubUnspentCount = Word64
uc,
      xPubChangeIndex :: Word32
xPubChangeIndex = Word32
ch,
      xPubExternalIndex :: Word32
xPubExternalIndex = Word32
ex
    }
  where
    bs :: [XPubBal]
bs = (XPubBal -> Bool) -> [XPubBal] -> [XPubBal]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool) -> (XPubBal -> Bool) -> XPubBal -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Balance -> Bool
nullBalance (Balance -> Bool) -> (XPubBal -> Balance) -> XPubBal -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. XPubBal -> Balance
xPubBal) [XPubBal]
xbals
    ex :: Word32
ex = (Word32 -> Word32 -> Word32) -> Word32 -> [Word32] -> Word32
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Word32 -> Word32 -> Word32
forall a. Ord a => a -> a -> a
max Word32
0 [Word32
i | XPubBal {xPubBalPath :: XPubBal -> [Word32]
xPubBalPath = [Word32
0, Word32
i]} <- [XPubBal]
bs]
    ch :: Word32
ch = (Word32 -> Word32 -> Word32) -> Word32 -> [Word32] -> Word32
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Word32 -> Word32 -> Word32
forall a. Ord a => a -> a -> a
max Word32
0 [Word32
i | XPubBal {xPubBalPath :: XPubBal -> [Word32]
xPubBalPath = [Word32
1, Word32
i]} <- [XPubBal]
bs]
    uc :: Word64
uc = [Word64] -> Word64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Balance -> Word64
balanceUnspentCount (XPubBal -> Balance
xPubBal XPubBal
b) | XPubBal
b <- [XPubBal]
bs]
    xt :: [XPubBal]
xt = [XPubBal
b | b :: XPubBal
b@XPubBal {xPubBalPath :: XPubBal -> [Word32]
xPubBalPath = [Word32
0, Word32
_]} <- [XPubBal]
bs]
    rx :: Word64
rx = [Word64] -> Word64
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Balance -> Word64
balanceTotalReceived (XPubBal -> Balance
xPubBal XPubBal
b) | XPubBal
b <- [XPubBal]
xt]

getTransaction ::
  (Monad m, StoreReadBase m) => TxHash -> m (Maybe Transaction)
getTransaction :: forall (m :: * -> *).
(Monad m, StoreReadBase m) =>
TxHash -> m (Maybe Transaction)
getTransaction TxHash
h = (TxData -> Transaction) -> Maybe TxData -> Maybe Transaction
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap TxData -> Transaction
toTransaction (Maybe TxData -> Maybe Transaction)
-> m (Maybe TxData) -> m (Maybe Transaction)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TxHash -> m (Maybe TxData)
forall (m :: * -> *). StoreReadBase m => TxHash -> m (Maybe TxData)
getTxData TxHash
h

getNumTransaction ::
  (Monad m, StoreReadExtra m) => Word64 -> m [Transaction]
getNumTransaction :: forall (m :: * -> *).
(Monad m, StoreReadExtra m) =>
Word64 -> m [Transaction]
getNumTransaction Word64
i = (TxData -> Transaction) -> [TxData] -> [Transaction]
forall a b. (a -> b) -> [a] -> [b]
map TxData -> Transaction
toTransaction ([TxData] -> [Transaction]) -> m [TxData] -> m [Transaction]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Word64 -> m [TxData]
forall (m :: * -> *). StoreReadExtra m => Word64 -> m [TxData]
getNumTxData Word64
i

blockAtOrAfter ::
  (MonadIO m, StoreReadExtra m) =>
  Chain ->
  UnixTime ->
  m (Maybe BlockData)
blockAtOrAfter :: forall (m :: * -> *).
(MonadIO m, StoreReadExtra m) =>
Chain -> Word64 -> m (Maybe BlockData)
blockAtOrAfter Chain
ch Word64
q = MaybeT m BlockData -> m (Maybe BlockData)
forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT (MaybeT m BlockData -> m (Maybe BlockData))
-> MaybeT m BlockData -> m (Maybe BlockData)
forall a b. (a -> b) -> a -> b
$ do
  Network
net <- m Network -> MaybeT m Network
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift m Network
forall (m :: * -> *). StoreReadBase m => m Network
getNetwork
  BlockNode
x <- m (Maybe BlockNode) -> MaybeT m BlockNode
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe BlockNode) -> MaybeT m BlockNode)
-> m (Maybe BlockNode) -> MaybeT m BlockNode
forall a b. (a -> b) -> a -> b
$ IO (Maybe BlockNode) -> m (Maybe BlockNode)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Maybe BlockNode) -> m (Maybe BlockNode))
-> IO (Maybe BlockNode) -> m (Maybe BlockNode)
forall a b. (a -> b) -> a -> b
$ ReaderT Chain IO (Maybe BlockNode) -> Chain -> IO (Maybe BlockNode)
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT (Network
-> (BlockNode -> ReaderT Chain IO Ordering)
-> ReaderT Chain IO (Maybe BlockNode)
forall (m :: * -> *).
BlockHeaders m =>
Network -> (BlockNode -> m Ordering) -> m (Maybe BlockNode)
firstGreaterOrEqual Network
net BlockNode -> ReaderT Chain IO Ordering
forall {m :: * -> *}. Monad m => BlockNode -> m Ordering
f) Chain
ch
  m (Maybe BlockData) -> MaybeT m BlockData
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe BlockData) -> MaybeT m BlockData)
-> m (Maybe BlockData) -> MaybeT m BlockData
forall a b. (a -> b) -> a -> b
$ BlockHash -> m (Maybe BlockData)
forall (m :: * -> *).
StoreReadBase m =>
BlockHash -> m (Maybe BlockData)
getBlock (BlockHeader -> BlockHash
headerHash (BlockNode -> BlockHeader
nodeHeader BlockNode
x))
  where
    f :: BlockNode -> m Ordering
f BlockNode
x =
      let t :: Word64
t = Word32 -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (BlockHeader -> Word32
blockTimestamp (BlockNode -> BlockHeader
nodeHeader BlockNode
x))
       in Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Ordering -> m Ordering) -> Ordering -> m Ordering
forall a b. (a -> b) -> a -> b
$ Word64
t Word64 -> Word64 -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Word64
q

blockAtOrBefore ::
  (MonadIO m, StoreReadExtra m) =>
  Chain ->
  UnixTime ->
  m (Maybe BlockData)
blockAtOrBefore :: forall (m :: * -> *).
(MonadIO m, StoreReadExtra m) =>
Chain -> Word64 -> m (Maybe BlockData)
blockAtOrBefore Chain
ch Word64
q = MaybeT m BlockData -> m (Maybe BlockData)
forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT (MaybeT m BlockData -> m (Maybe BlockData))
-> MaybeT m BlockData -> m (Maybe BlockData)
forall a b. (a -> b) -> a -> b
$ do
  Network
net <- m Network -> MaybeT m Network
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift m Network
forall (m :: * -> *). StoreReadBase m => m Network
getNetwork
  BlockNode
x <- m (Maybe BlockNode) -> MaybeT m BlockNode
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe BlockNode) -> MaybeT m BlockNode)
-> m (Maybe BlockNode) -> MaybeT m BlockNode
forall a b. (a -> b) -> a -> b
$ IO (Maybe BlockNode) -> m (Maybe BlockNode)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Maybe BlockNode) -> m (Maybe BlockNode))
-> IO (Maybe BlockNode) -> m (Maybe BlockNode)
forall a b. (a -> b) -> a -> b
$ ReaderT Chain IO (Maybe BlockNode) -> Chain -> IO (Maybe BlockNode)
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT (Network
-> (BlockNode -> ReaderT Chain IO Ordering)
-> ReaderT Chain IO (Maybe BlockNode)
forall (m :: * -> *).
BlockHeaders m =>
Network -> (BlockNode -> m Ordering) -> m (Maybe BlockNode)
lastSmallerOrEqual Network
net BlockNode -> ReaderT Chain IO Ordering
forall {m :: * -> *}. Monad m => BlockNode -> m Ordering
f) Chain
ch
  m (Maybe BlockData) -> MaybeT m BlockData
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe BlockData) -> MaybeT m BlockData)
-> m (Maybe BlockData) -> MaybeT m BlockData
forall a b. (a -> b) -> a -> b
$ BlockHash -> m (Maybe BlockData)
forall (m :: * -> *).
StoreReadBase m =>
BlockHash -> m (Maybe BlockData)
getBlock (BlockHeader -> BlockHash
headerHash (BlockNode -> BlockHeader
nodeHeader BlockNode
x))
  where
    f :: BlockNode -> m Ordering
f BlockNode
x =
      let t :: Word64
t = Word32 -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (BlockHeader -> Word32
blockTimestamp (BlockNode -> BlockHeader
nodeHeader BlockNode
x))
       in Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Ordering -> m Ordering) -> Ordering -> m Ordering
forall a b. (a -> b) -> a -> b
$ Word64
t Word64 -> Word64 -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Word64
q

blockAtOrAfterMTP ::
  (MonadIO m, StoreReadExtra m) =>
  Chain ->
  UnixTime ->
  m (Maybe BlockData)
blockAtOrAfterMTP :: forall (m :: * -> *).
(MonadIO m, StoreReadExtra m) =>
Chain -> Word64 -> m (Maybe BlockData)
blockAtOrAfterMTP Chain
ch Word64
q = MaybeT m BlockData -> m (Maybe BlockData)
forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT (MaybeT m BlockData -> m (Maybe BlockData))
-> MaybeT m BlockData -> m (Maybe BlockData)
forall a b. (a -> b) -> a -> b
$ do
  Network
net <- m Network -> MaybeT m Network
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift m Network
forall (m :: * -> *). StoreReadBase m => m Network
getNetwork
  BlockNode
x <- m (Maybe BlockNode) -> MaybeT m BlockNode
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe BlockNode) -> MaybeT m BlockNode)
-> m (Maybe BlockNode) -> MaybeT m BlockNode
forall a b. (a -> b) -> a -> b
$ IO (Maybe BlockNode) -> m (Maybe BlockNode)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Maybe BlockNode) -> m (Maybe BlockNode))
-> IO (Maybe BlockNode) -> m (Maybe BlockNode)
forall a b. (a -> b) -> a -> b
$ ReaderT Chain IO (Maybe BlockNode) -> Chain -> IO (Maybe BlockNode)
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT (Network
-> (BlockNode -> ReaderT Chain IO Ordering)
-> ReaderT Chain IO (Maybe BlockNode)
forall (m :: * -> *).
BlockHeaders m =>
Network -> (BlockNode -> m Ordering) -> m (Maybe BlockNode)
firstGreaterOrEqual Network
net BlockNode -> ReaderT Chain IO Ordering
forall {m :: * -> *}. BlockHeaders m => BlockNode -> m Ordering
f) Chain
ch
  m (Maybe BlockData) -> MaybeT m BlockData
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe BlockData) -> MaybeT m BlockData)
-> m (Maybe BlockData) -> MaybeT m BlockData
forall a b. (a -> b) -> a -> b
$ BlockHash -> m (Maybe BlockData)
forall (m :: * -> *).
StoreReadBase m =>
BlockHash -> m (Maybe BlockData)
getBlock (BlockHeader -> BlockHash
headerHash (BlockNode -> BlockHeader
nodeHeader BlockNode
x))
  where
    f :: BlockNode -> m Ordering
f BlockNode
x = do
      Word64
t <- Word32 -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word32 -> Word64) -> m Word32 -> m Word64
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> BlockNode -> m Word32
forall (m :: * -> *). BlockHeaders m => BlockNode -> m Word32
mtp BlockNode
x
      Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Ordering -> m Ordering) -> Ordering -> m Ordering
forall a b. (a -> b) -> a -> b
$ Word64
t Word64 -> Word64 -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Word64
q

-- | Events that the store can generate.
data StoreEvent
  = StoreBestBlock !BlockHash
  | StoreMempoolNew !TxHash
  | StoreMempoolDelete !TxHash
  | StorePeerConnected !Peer
  | StorePeerDisconnected !Peer
  | StorePeerPong !Peer !Word64
  | StoreTxAnnounce !Peer ![TxHash]
  | StoreTxReject !Peer !TxHash !RejectCode !ByteString

data PubExcept
  = PubNoPeers
  | PubReject RejectCode
  | PubTimeout
  | PubPeerDisconnected
  deriving (PubExcept -> PubExcept -> Bool
(PubExcept -> PubExcept -> Bool)
-> (PubExcept -> PubExcept -> Bool) -> Eq PubExcept
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: PubExcept -> PubExcept -> Bool
$c/= :: PubExcept -> PubExcept -> Bool
== :: PubExcept -> PubExcept -> Bool
$c== :: PubExcept -> PubExcept -> Bool
Eq, PubExcept -> ()
(PubExcept -> ()) -> NFData PubExcept
forall a. (a -> ()) -> NFData a
rnf :: PubExcept -> ()
$crnf :: PubExcept -> ()
NFData, (forall x. PubExcept -> Rep PubExcept x)
-> (forall x. Rep PubExcept x -> PubExcept) -> Generic PubExcept
forall x. Rep PubExcept x -> PubExcept
forall x. PubExcept -> Rep PubExcept x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep PubExcept x -> PubExcept
$cfrom :: forall x. PubExcept -> Rep PubExcept x
Generic, Get PubExcept
Putter PubExcept
Putter PubExcept -> Get PubExcept -> Serialize PubExcept
forall t. Putter t -> Get t -> Serialize t
get :: Get PubExcept
$cget :: Get PubExcept
put :: Putter PubExcept
$cput :: Putter PubExcept
Serialize)

instance Show PubExcept where
  show :: PubExcept -> String
show PubExcept
PubNoPeers = String
"no peers"
  show (PubReject RejectCode
c) =
    String
"rejected: "
      String -> ShowS
forall a. Semigroup a => a -> a -> a
<> case RejectCode
c of
        RejectCode
RejectMalformed -> String
"malformed"
        RejectCode
RejectInvalid -> String
"invalid"
        RejectCode
RejectObsolete -> String
"obsolete"
        RejectCode
RejectDuplicate -> String
"duplicate"
        RejectCode
RejectNonStandard -> String
"not standard"
        RejectCode
RejectDust -> String
"dust"
        RejectCode
RejectInsufficientFee -> String
"insufficient fee"
        RejectCode
RejectCheckpoint -> String
"checkpoint"
  show PubExcept
PubTimeout = String
"peer timeout or silent rejection"
  show PubExcept
PubPeerDisconnected = String
"peer disconnected"

instance Exception PubExcept

applyLimits :: Limits -> [a] -> [a]
applyLimits :: forall a. Limits -> [a] -> [a]
applyLimits Limits {Maybe Start
Word32
start :: Maybe Start
offset :: Word32
limit :: Word32
start :: Limits -> Maybe Start
offset :: Limits -> Word32
limit :: Limits -> Word32
..} = Word32 -> [a] -> [a]
forall a. Word32 -> [a] -> [a]
applyLimit Word32
limit ([a] -> [a]) -> ([a] -> [a]) -> [a] -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> [a] -> [a]
forall a. Word32 -> [a] -> [a]
applyOffset Word32
offset

applyOffset :: Offset -> [a] -> [a]
applyOffset :: forall a. Word32 -> [a] -> [a]
applyOffset = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
drop (Int -> [a] -> [a]) -> (Word32 -> Int) -> Word32 -> [a] -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral

applyLimit :: Limit -> [a] -> [a]
applyLimit :: forall a. Word32 -> [a] -> [a]
applyLimit Word32
0 = [a] -> [a]
forall a. a -> a
id
applyLimit Word32
l = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
take (Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word32
l)

deOffset :: Limits -> Limits
deOffset :: Limits -> Limits
deOffset Limits
l = case Limits -> Word32
limit Limits
l of
  Word32
0 -> Limits
l {offset :: Word32
offset = Word32
0}
  Word32
_ -> Limits
l {limit :: Word32
limit = Limits -> Word32
limit Limits
l Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
+ Limits -> Word32
offset Limits
l, offset :: Word32
offset = Word32
0}

applyLimitsC :: Monad m => Limits -> ConduitT i i m ()
applyLimitsC :: forall (m :: * -> *) i. Monad m => Limits -> ConduitT i i m ()
applyLimitsC Limits {Maybe Start
Word32
start :: Maybe Start
offset :: Word32
limit :: Word32
start :: Limits -> Maybe Start
offset :: Limits -> Word32
limit :: Limits -> Word32
..} = Word32 -> ConduitT i i m ()
forall (m :: * -> *) i. Monad m => Word32 -> ConduitT i i m ()
applyOffsetC Word32
offset ConduitT i i m () -> ConduitT i i m () -> ConduitT i i m ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Word32 -> ConduitT i i m ()
forall (m :: * -> *) i. Monad m => Word32 -> ConduitT i i m ()
applyLimitC Word32
limit

applyOffsetC :: Monad m => Offset -> ConduitT i i m ()
applyOffsetC :: forall (m :: * -> *) i. Monad m => Word32 -> ConduitT i i m ()
applyOffsetC = Int -> ConduitT i i m ()
forall (m :: * -> *) a o. Monad m => Int -> ConduitT a o m ()
dropC (Int -> ConduitT i i m ())
-> (Word32 -> Int) -> Word32 -> ConduitT i i m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral

applyLimitC :: Monad m => Limit -> ConduitT i i m ()
applyLimitC :: forall (m :: * -> *) i. Monad m => Word32 -> ConduitT i i m ()
applyLimitC Word32
0 = (i -> i) -> ConduitT i i m ()
forall (m :: * -> *) a b. Monad m => (a -> b) -> ConduitT a b m ()
mapC i -> i
forall a. a -> a
id
applyLimitC Word32
l = Int -> ConduitT i i m ()
forall (m :: * -> *) a. Monad m => Int -> ConduitT a a m ()
takeC (Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word32
l)

sortTxs :: [Tx] -> [(Word32, Tx)]
sortTxs :: [Tx] -> [(Word32, Tx)]
sortTxs [Tx]
txs = [(Word32, Tx)]
ts
  where
    hm :: M.HashMap TxHash Int
    hm :: HashMap TxHash Int
hm = [(TxHash, Int)] -> HashMap TxHash Int
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
M.fromList ([(TxHash, Int)] -> HashMap TxHash Int)
-> [(TxHash, Int)] -> HashMap TxHash Int
forall a b. (a -> b) -> a -> b
$ [TxHash] -> [Int] -> [(TxHash, Int)]
forall a b. [a] -> [b] -> [(a, b)]
zip ((Tx -> TxHash) -> [Tx] -> [TxHash]
forall a b. (a -> b) -> [a] -> [b]
map Tx -> TxHash
txHash [Tx]
txs) [Int
0 ..]
    ns :: [(Tx, Int, [Int])]
    ns :: [(Tx, Int, [Int])]
ns =
      let is :: Tx -> [TxHash]
is Tx
tx = [TxHash] -> [TxHash]
forall a. (Eq a, Hashable a) => [a] -> [a]
nub' ([TxHash] -> [TxHash]) -> [TxHash] -> [TxHash]
forall a b. (a -> b) -> a -> b
$ (TxIn -> TxHash) -> [TxIn] -> [TxHash]
forall a b. (a -> b) -> [a] -> [b]
map (OutPoint -> TxHash
outPointHash (OutPoint -> TxHash) -> (TxIn -> OutPoint) -> TxIn -> TxHash
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TxIn -> OutPoint
prevOutput) (Tx -> [TxIn]
txIn Tx
tx)
          hs :: Tx -> [Int]
hs Tx
tx = (TxHash -> Maybe Int) -> [TxHash] -> [Int]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (TxHash -> HashMap TxHash Int -> Maybe Int
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
`M.lookup` HashMap TxHash Int
hm) (Tx -> [TxHash]
is Tx
tx)
          tp :: b -> Tx -> (Tx, b, [Int])
tp b
i Tx
tx = (Tx
tx, b
i, Tx -> [Int]
hs Tx
tx)
       in (Int -> Tx -> (Tx, Int, [Int]))
-> [Int] -> [Tx] -> [(Tx, Int, [Int])]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Int -> Tx -> (Tx, Int, [Int])
forall {b}. b -> Tx -> (Tx, b, [Int])
tp [Int
0 ..] [Tx]
txs
    (Graph
g, Int -> (Tx, Int, [Int])
n, Int -> Maybe Int
_) = [(Tx, Int, [Int])]
-> (Graph, Int -> (Tx, Int, [Int]), Int -> Maybe Int)
forall key node.
Ord key =>
[(node, key, [key])]
-> (Graph, Int -> (node, key, [key]), key -> Maybe Int)
G.graphFromEdges [(Tx, Int, [Int])]
ns
    vs :: [Int]
vs = Graph -> [Int]
G.reverseTopSort Graph
g
    ts :: [(Word32, Tx)]
ts =
      let f :: (b, a, c) -> (a, b)
f (b
tx, a
i, c
_) = (a -> a
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
i, b
tx)
       in (Int -> (Word32, Tx)) -> [Int] -> [(Word32, Tx)]
forall a b. (a -> b) -> [a] -> [b]
map ((Tx, Int, [Int]) -> (Word32, Tx)
forall {a} {a} {b} {c}. (Integral a, Num a) => (b, a, c) -> (a, b)
f ((Tx, Int, [Int]) -> (Word32, Tx))
-> (Int -> (Tx, Int, [Int])) -> Int -> (Word32, Tx)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> (Tx, Int, [Int])
n) [Int]
vs

nub' :: (Eq a, Hashable a) => [a] -> [a]
nub' :: forall a. (Eq a, Hashable a) => [a] -> [a]
nub' = HashSet a -> [a]
forall a. HashSet a -> [a]
H.toList (HashSet a -> [a]) -> ([a] -> HashSet a) -> [a] -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> HashSet a
forall a. (Eq a, Hashable a) => [a] -> HashSet a
H.fromList

microseconds :: MonadIO m => m Integer
microseconds :: forall (m :: * -> *). MonadIO m => m Integer
microseconds =
  let f :: SystemTime -> Integer
f SystemTime
t =
        Int64 -> Integer
forall a. Integral a => a -> Integer
toInteger (SystemTime -> Int64
systemSeconds SystemTime
t) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
1000000
          Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Word32 -> Integer
forall a. Integral a => a -> Integer
toInteger (SystemTime -> Word32
systemNanoseconds SystemTime
t) Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Integer
1000
   in IO Integer -> m Integer
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO Integer -> m Integer) -> IO Integer -> m Integer
forall a b. (a -> b) -> a -> b
$ SystemTime -> Integer
f (SystemTime -> Integer) -> IO SystemTime -> IO Integer
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> IO SystemTime
getSystemTime

streamThings ::
  Monad m =>
  (Limits -> m [a]) ->
  Maybe (a -> TxHash) ->
  Limits ->
  ConduitT () a m ()
streamThings :: forall (m :: * -> *) a.
Monad m =>
(Limits -> m [a])
-> Maybe (a -> TxHash) -> Limits -> ConduitT () a m ()
streamThings Limits -> m [a]
getit Maybe (a -> TxHash)
gettx Limits
limits =
  m [a] -> ConduitT () a m [a]
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Limits -> m [a]
getit Limits
limits) ConduitT () a m [a]
-> ([a] -> ConduitT () a m ()) -> ConduitT () a m ()
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
    [] -> () -> ConduitT () a m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    [a]
ls -> (a -> ConduitT () a m ()) -> [a] -> ConduitT () a m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ a -> ConduitT () a m ()
forall (m :: * -> *) o i. Monad m => o -> ConduitT i o m ()
yield [a]
ls ConduitT () a m () -> ConduitT () a m () -> ConduitT () a m ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Limits -> a -> ConduitT () a m ()
forall {i}. Limits -> a -> ConduitT i a m ()
go Limits
limits ([a] -> a
forall a. [a] -> a
last [a]
ls)
  where
    h :: Limits -> a -> Maybe Limits
h Limits
l a
x = case Maybe (a -> TxHash)
gettx of
      Just a -> TxHash
g -> Limits -> Maybe Limits
forall a. a -> Maybe a
Just Limits
l {offset :: Word32
offset = Word32
1, start :: Maybe Start
start = Start -> Maybe Start
forall a. a -> Maybe a
Just (TxHash -> Start
AtTx (a -> TxHash
g a
x))}
      Maybe (a -> TxHash)
Nothing -> case Limits -> Word32
limit Limits
l of
        Word32
0 -> Maybe Limits
forall a. Maybe a
Nothing
        Word32
_ -> Limits -> Maybe Limits
forall a. a -> Maybe a
Just Limits
l {offset :: Word32
offset = Limits -> Word32
offset Limits
l Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
+ Limits -> Word32
limit Limits
l}
    go :: Limits -> a -> ConduitT i a m ()
go Limits
l a
x = case Limits -> a -> Maybe Limits
h Limits
l a
x of
      Maybe Limits
Nothing -> () -> ConduitT i a m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
      Just Limits
l' ->
        m [a] -> ConduitT i a m [a]
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Limits -> m [a]
getit Limits
l') ConduitT i a m [a]
-> ([a] -> ConduitT i a m ()) -> ConduitT i a m ()
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
          [] -> () -> ConduitT i a m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
          [a]
ls -> (a -> ConduitT i a m ()) -> [a] -> ConduitT i a m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ a -> ConduitT i a m ()
forall (m :: * -> *) o i. Monad m => o -> ConduitT i o m ()
yield [a]
ls ConduitT i a m () -> ConduitT i a m () -> ConduitT i a m ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Limits -> a -> ConduitT i a m ()
go Limits
l' ([a] -> a
forall a. [a] -> a
last [a]
ls)

joinDescStreams ::
  (Monad m, Ord a) =>
  [ConduitT () a m ()] ->
  ConduitT () a m ()
joinDescStreams :: forall (m :: * -> *) a.
(Monad m, Ord a) =>
[ConduitT () a m ()] -> ConduitT () a m ()
joinDescStreams [ConduitT () a m ()]
xs = do
  let ss :: [SealedConduitT () a m ()]
ss = (ConduitT () a m () -> SealedConduitT () a m ())
-> [ConduitT () a m ()] -> [SealedConduitT () a m ()]
forall a b. (a -> b) -> [a] -> [b]
map ConduitT () a m () -> SealedConduitT () a m ()
forall i o (m :: * -> *) r.
ConduitT i o m r -> SealedConduitT i o m r
sealConduitT [ConduitT () a m ()]
xs
  Maybe a -> Map a [SealedConduitT () a m ()] -> ConduitT () a m ()
forall {m :: * -> *} {k} {i}.
(Monad m, Ord k) =>
Maybe k -> Map k [SealedConduitT () k m ()] -> ConduitT i k m ()
go Maybe a
forall a. Maybe a
Nothing (Map a [SealedConduitT () a m ()] -> ConduitT () a m ())
-> ConduitT () a m (Map a [SealedConduitT () a m ()])
-> ConduitT () a m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< [SealedConduitT () a m ()]
-> ConduitT () a m (Map a [SealedConduitT () a m ()])
forall {t :: (* -> *) -> * -> *} {m :: * -> *} {k}.
(Ord k, MonadTrans t, Monad m, Functor (t m)) =>
[SealedConduitT () k m ()]
-> t m (Map k [SealedConduitT () k m ()])
g [SealedConduitT () a m ()]
ss
  where
    j :: (a, f a) -> f (a, [a])
j (a
x, f a
y) = (,[a
x]) (a -> (a, [a])) -> f a -> f (a, [a])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
y
    g :: [SealedConduitT () k m ()]
-> t m (Map k [SealedConduitT () k m ()])
g [SealedConduitT () k m ()]
ss =
      let l :: t m [(k, [SealedConduitT () k m ()])]
l = ((SealedConduitT () k m (), Maybe k)
 -> Maybe (k, [SealedConduitT () k m ()]))
-> [(SealedConduitT () k m (), Maybe k)]
-> [(k, [SealedConduitT () k m ()])]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (SealedConduitT () k m (), Maybe k)
-> Maybe (k, [SealedConduitT () k m ()])
forall {f :: * -> *} {a} {a}. Functor f => (a, f a) -> f (a, [a])
j ([(SealedConduitT () k m (), Maybe k)]
 -> [(k, [SealedConduitT () k m ()])])
-> t m [(SealedConduitT () k m (), Maybe k)]
-> t m [(k, [SealedConduitT () k m ()])]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m [(SealedConduitT () k m (), Maybe k)]
-> t m [(SealedConduitT () k m (), Maybe k)]
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift ((SealedConduitT () k m () -> m (SealedConduitT () k m (), Maybe k))
-> [SealedConduitT () k m ()]
-> m [(SealedConduitT () k m (), Maybe k)]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (SealedConduitT () k m ()
-> Sink k m (Maybe k) -> m (SealedConduitT () k m (), Maybe k)
forall (m :: * -> *) a b.
Monad m =>
SealedConduitT () a m ()
-> Sink a m b -> m (SealedConduitT () a m (), b)
$$++ Sink k m (Maybe k)
forall (m :: * -> *) i. Monad m => Consumer i m (Maybe i)
await) [SealedConduitT () k m ()]
ss)
       in ([SealedConduitT () k m ()]
 -> [SealedConduitT () k m ()] -> [SealedConduitT () k m ()])
-> [(k, [SealedConduitT () k m ()])]
-> Map k [SealedConduitT () k m ()]
forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
Map.fromListWith [SealedConduitT () k m ()]
-> [SealedConduitT () k m ()] -> [SealedConduitT () k m ()]
forall a. [a] -> [a] -> [a]
(++) ([(k, [SealedConduitT () k m ()])]
 -> Map k [SealedConduitT () k m ()])
-> t m [(k, [SealedConduitT () k m ()])]
-> t m (Map k [SealedConduitT () k m ()])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> t m [(k, [SealedConduitT () k m ()])]
l
    go :: Maybe k -> Map k [SealedConduitT () k m ()] -> ConduitT i k m ()
go Maybe k
m Map k [SealedConduitT () k m ()]
mp = case Map k [SealedConduitT () k m ()]
-> Maybe (k, [SealedConduitT () k m ()])
forall k a. Map k a -> Maybe (k, a)
Map.lookupMax Map k [SealedConduitT () k m ()]
mp of
      Maybe (k, [SealedConduitT () k m ()])
Nothing -> () -> ConduitT i k m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
      Just (k
x, [SealedConduitT () k m ()]
ss) -> do
        case Maybe k
m of
          Maybe k
Nothing -> k -> ConduitT i k m ()
forall (m :: * -> *) o i. Monad m => o -> ConduitT i o m ()
yield k
x
          Just k
x'
            | k
x k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
x' -> () -> ConduitT i k m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
            | Bool
otherwise -> k -> ConduitT i k m ()
forall (m :: * -> *) o i. Monad m => o -> ConduitT i o m ()
yield k
x
        Map k [SealedConduitT () k m ()]
mp1 <- [SealedConduitT () k m ()]
-> ConduitT i k m (Map k [SealedConduitT () k m ()])
forall {t :: (* -> *) -> * -> *} {m :: * -> *} {k}.
(Ord k, MonadTrans t, Monad m, Functor (t m)) =>
[SealedConduitT () k m ()]
-> t m (Map k [SealedConduitT () k m ()])
g [SealedConduitT () k m ()]
ss
        let mp2 :: Map k [SealedConduitT () k m ()]
mp2 = Map k [SealedConduitT () k m ()]
-> Map k [SealedConduitT () k m ()]
forall k a. Map k a -> Map k a
Map.deleteMax Map k [SealedConduitT () k m ()]
mp
            mp' :: Map k [SealedConduitT () k m ()]
mp' = ([SealedConduitT () k m ()]
 -> [SealedConduitT () k m ()] -> [SealedConduitT () k m ()])
-> Map k [SealedConduitT () k m ()]
-> Map k [SealedConduitT () k m ()]
-> Map k [SealedConduitT () k m ()]
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
Map.unionWith [SealedConduitT () k m ()]
-> [SealedConduitT () k m ()] -> [SealedConduitT () k m ()]
forall a. [a] -> [a] -> [a]
(++) Map k [SealedConduitT () k m ()]
mp1 Map k [SealedConduitT () k m ()]
mp2
        Maybe k -> Map k [SealedConduitT () k m ()] -> ConduitT i k m ()
go (k -> Maybe k
forall a. a -> Maybe a
Just k
x) Map k [SealedConduitT () k m ()]
mp'

data DataMetrics = DataMetrics
  { DataMetrics -> Counter
dataBestCount :: !Counter,
    DataMetrics -> Counter
dataBlockCount :: !Counter,
    DataMetrics -> Counter
dataTxCount :: !Counter,
    DataMetrics -> Counter
dataMempoolCount :: !Counter,
    DataMetrics -> Counter
dataBalanceCount :: !Counter,
    DataMetrics -> Counter
dataUnspentCount :: !Counter,
    DataMetrics -> Counter
dataAddrTxCount :: !Counter,
    DataMetrics -> Counter
dataXPubBals :: !Counter,
    DataMetrics -> Counter
dataXPubUnspents :: !Counter,
    DataMetrics -> Counter
dataXPubTxs :: !Counter,
    DataMetrics -> Counter
dataXPubTxCount :: !Counter
  }

createDataMetrics :: MonadIO m => Metrics.Store -> m DataMetrics
createDataMetrics :: forall (m :: * -> *). MonadIO m => Store -> m DataMetrics
createDataMetrics Store
s = IO DataMetrics -> m DataMetrics
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO DataMetrics -> m DataMetrics)
-> IO DataMetrics -> m DataMetrics
forall a b. (a -> b) -> a -> b
$ do
  Counter
dataBestCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.best_block" Store
s
  Counter
dataBlockCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.blocks" Store
s
  Counter
dataTxCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.txs" Store
s
  Counter
dataMempoolCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.mempool" Store
s
  Counter
dataBalanceCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.balances" Store
s
  Counter
dataUnspentCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.unspents" Store
s
  Counter
dataAddrTxCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.address_txs" Store
s
  Counter
dataXPubBals <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.xpub_balances" Store
s
  Counter
dataXPubUnspents <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.xpub_unspents" Store
s
  Counter
dataXPubTxs <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.xpub_txs" Store
s
  Counter
dataXPubTxCount <- Text -> Store -> IO Counter
Metrics.createCounter Text
"data.xpub_tx_count" Store
s
  DataMetrics -> IO DataMetrics
forall (m :: * -> *) a. Monad m => a -> m a
return DataMetrics :: Counter
-> Counter
-> Counter
-> Counter
-> Counter
-> Counter
-> Counter
-> Counter
-> Counter
-> Counter
-> Counter
-> DataMetrics
DataMetrics {Counter
dataXPubTxCount :: Counter
dataXPubTxs :: Counter
dataXPubUnspents :: Counter
dataXPubBals :: Counter
dataAddrTxCount :: Counter
dataUnspentCount :: Counter
dataBalanceCount :: Counter
dataMempoolCount :: Counter
dataTxCount :: Counter
dataBlockCount :: Counter
dataBestCount :: Counter
dataXPubTxCount :: Counter
dataXPubTxs :: Counter
dataXPubUnspents :: Counter
dataXPubBals :: Counter
dataAddrTxCount :: Counter
dataUnspentCount :: Counter
dataBalanceCount :: Counter
dataMempoolCount :: Counter
dataTxCount :: Counter
dataBlockCount :: Counter
dataBestCount :: Counter
..}