| Maintainer | Marcel Fourn (hecc@bitrot.dyndns.org |
|---|
Codec.Encryption.ECC.Base
Description
ECC Base algorithms & point formats
Documentation
class of all Elliptic Curve Points
Methods
function returning the appropriate INF in the specific ECP-Format, for generic higher-level-algorithms
getx :: a -> EC -> IntegerSource
generic getter, returning the affine x-value
gety :: a -> EC -> IntegerSource
generic getters, returning the affine y-value
add an elliptic point onto itself, base for padd a a c
padd :: a -> a -> EC -> aSource
add 2 elliptic points
class of all Elliptic Curves, has the form y^2=x^3+A*x+B mod P, the parameters being A, B and P
computing the modular inverse of a mod m
Arguments
| :: ECP a | |
| => a | the point to multiply |
| -> Integer | times to multiply the point |
| -> EC | the curve to operate on |
| -> a | the result-point |
this is a generic handle for Point Multiplication. The implementation may change.
Arguments
| :: ECP a | |
| => a | the elliptic curve point which we check |
| -> EC | the curve to test on |
| -> Bool | is the point on the curve? |
generic verify, if generic ECP is on EC via getx and gety
Arguments
| :: ECP a | |
| => a | a generator (a point on the curve which multiplied gets to be every other point on the curve) |
| -> EC | the curve |
| -> IO a | the random point which will be the key |
given a generator and a curve, generate a point randomly
Elliptic Point Affine coordinates, two parameters x and y
Elliptic Point Projective coordinates, three parameters x, y and z, like affine (xz,yz)
Elliptic Point Jacobian coordinates, three parameter x, y and z, like affine (xz^2,yz^3)