hgeometry-0.12.0.4: Geometric Algorithms, Data structures, and Data types.

Data.Geometry.Polygon.Bezier

Synopsis

# Documentation

data PathJoin r Source #

Constructors

 JoinLine JoinCurve (Point 2 r) (Point 2 r)

#### Instances

Instances details
 Eq r => Eq (PathJoin r) Source # Instance detailsDefined in Data.Geometry.Polygon.Bezier Methods(==) :: PathJoin r -> PathJoin r -> Bool #(/=) :: PathJoin r -> PathJoin r -> Bool # Ord r => Ord (PathJoin r) Source # Instance detailsDefined in Data.Geometry.Polygon.Bezier Methodscompare :: PathJoin r -> PathJoin r -> Ordering #(<) :: PathJoin r -> PathJoin r -> Bool #(<=) :: PathJoin r -> PathJoin r -> Bool #(>) :: PathJoin r -> PathJoin r -> Bool #(>=) :: PathJoin r -> PathJoin r -> Bool #max :: PathJoin r -> PathJoin r -> PathJoin r #min :: PathJoin r -> PathJoin r -> PathJoin r # Show r => Show (PathJoin r) Source # Instance detailsDefined in Data.Geometry.Polygon.Bezier MethodsshowsPrec :: Int -> PathJoin r -> ShowS #show :: PathJoin r -> String #showList :: [PathJoin r] -> ShowS #

fromBeziers :: (Eq r, Num r) => [BezierSpline 3 2 r] -> SimplePolygon (PathJoin r) r Source #

Construct a polygon from a closed set of bezier curves. Each curve must be connected to its neighbours.

approximate :: forall t r. (Ord r, Fractional r) => r -> Polygon t (PathJoin r) r -> Polygon t () r Source #