|
| Numeric.GSL.ODE | | Portability | uses ffi | | Stability | provisional | | Maintainer | Alberto Ruiz (aruiz at um dot es) |
|
|
|
| Description |
Solution of ordinary differential equation (ODE) initial value problems.
http://www.gnu.org/software/gsl/manual/html_node/Ordinary-Differential-Equations.html
A simple example:
import Numeric.GSL
import Numeric.LinearAlgebra
import Graphics.Plot
xdot t [x,v] = [v, -0.95*x - 0.1*v]
ts = linspace 100 (0,20)
sol = odeSolve xdot [10,0] ts
main = mplot (ts : toColumns sol) |
|
| Synopsis |
|
|
|
| Documentation |
|
|
|
|
|
|
|
|
| Stepping functions
| | Constructors | | RK2 | Embedded Runge-Kutta (2, 3) method.
| | RK4 | 4th order (classical) Runge-Kutta. The error estimate is obtained by halving the step-size. For more efficient estimate of the error, use RKf45.
| | RKf45 | Embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good general-purpose integrator.
| | RKck | Embedded Runge-Kutta Cash-Karp (4, 5) method.
| | RK8pd | Embedded Runge-Kutta Prince-Dormand (8,9) method.
| | RK2imp | Implicit 2nd order Runge-Kutta at Gaussian points.
| | RK4imp | Implicit 4th order Runge-Kutta at Gaussian points.
| | BSimp | Implicit Bulirsch-Stoer method of Bader and Deuflhard. This algorithm requires the Jacobian.
| | Gear1 | M=1 implicit Gear method.
| | Gear2 | M=2 implicit Gear method.
|
| Instances | |
|
|
| Produced by Haddock version 2.6.1 |