Sound.SC3.Common.Math

Description

Common math functions.

Synopsis

# Documentation

half_pi :: Floating a => a Source #

Half pi.

half_pi == 1.5707963267948966

two_pi :: Floating n => n Source #

Two pi.

two_pi == 6.283185307179586

mul_add_hs :: Num a => a -> a -> a -> a Source #

Multiply and add, ordinary haskell argument order. See also mul_add of the MulAdd class.

map (mul_add_hs 2 3) [1,2] == [5,7] && map (mul_add_hs 3 4) [1,2] == [7,10]

sc3_truncate :: RealFrac a => a -> a Source #

fromInteger of truncate.

sc3_round :: RealFrac a => a -> a Source #

fromInteger of round.

sc3_ceiling :: RealFrac a => a -> a Source #

fromInteger of ceiling.

sc3_floor :: RealFrac a => a -> a Source #

fromInteger of floor.

sc3_round_to :: RealFrac n => n -> n -> n Source #

Variant of SC3 roundTo function.

sc3_round_to (2/3) 0.25 == 0.75
let r = [0,0,0.25,0.25,0.5,0.5,0.5,0.75,0.75,1,1]
map (sc3_round_to 0.25) [0,0.1 .. 1] == r

sc3_idiv :: RealFrac n => n -> n -> n Source #

fromInteger of div of floor.

sc3_mod :: RealFrac n => n -> n -> n Source #

The SC3 % UGen operator is the mod' function.

> 1.5 % 1.2 // ~= 0.3
> -1.5 % 1.2 // ~= 0.9
> 1.5 % -1.2 // ~= -0.9
> -1.5 % -1.2 // ~= -0.3
let (%) = sc3_mod
1.5 % 1.2 ~= 0.3
(-1.5) % 1.2 ~= 0.9
1.5 % (-1.2) ~= -0.9
(-1.5) % (-1.2) ~= -0.3
> 1.2 % 1.5 // ~= 1.2
> -1.2 % 1.5 // ~= 0.3
> 1.2 % -1.5 // ~= -0.3
> -1.2 % -1.5 // ~= -1.2
1.2 % 1.5 ~= 1.2
(-1.2) % 1.5 ~= 0.3
1.2 % (-1.5) ~= -0.3
(-1.2) % (-1.5) ~= -1.2
map (\n -> sc3_mod n 12.0) [-1.0,12.25,15.0] == [11.0,0.25,3.0]

Type specialised sc3_mod.

Type specialised sc3_mod.

sc3_clip :: Ord a => a -> a -> a -> a Source #

SC3 clip function. Clip n to within range (i,j). clip is a UGen.

map (\n -> sc3_clip n 5 10) [3..12] == [5,5,5,6,7,8,9,10,10,10]

clip_hs :: Ord a => (a, a) -> a -> a Source #

Variant of sc3_clip with haskell argument structure.

map (clip_hs (5,10)) [3..12] == [5,5,5,6,7,8,9,10,10,10]

sc3_mod_alt :: RealFrac a => a -> a -> a Source #

Fractional modulo, alternate implementation.

map (\n -> sc3_mod_alt n 12.0) [-1.0,12.25,15.0] == [11.0,0.25,3.0]

sc3_wrap_ni :: RealFrac a => a -> a -> a -> a Source #

Wrap function that is non-inclusive at right edge, ie. the Wrap UGen rule.

map (sc3_wrap_ni 0 5) [4,5,6] == [4,0,1]
map (sc3_wrap_ni 5 10) [3..12] == [8,9,5,6,7,8,9,5,6,7]

wrap_hs :: RealFrac n => (n, n) -> n -> n Source #

Wrap n to within range (i,j), ie. AbstractFunction.wrap, ie. inclusive at right edge. wrap is a UGen, hence prime.

> [5,6].wrap(0,5) == [5,0]
map (wrap_hs (0,5)) [5,6] == [5,0]
> [9,10,5,6,7,8,9,10,5,6].wrap(5,10) == [9,10,5,6,7,8,9,10,5,6]
map (wrap_hs (5,10)) [3..12] == [9,10,5,6,7,8,9,10,5,6]

sc3_wrap :: RealFrac n => n -> n -> n -> n Source #

Variant of wrap_hs with SC3 argument ordering.

map (\n -> sc3_wrap n 5 10) [3..12] == map (wrap_hs (5,10)) [3..12]

generic_wrap :: (Ord a, Num a) => (a, a) -> a -> a Source #

Generic variant of wrap'.

> [5,6].wrap(0,5) == [5,0]
map (generic_wrap (0,5)) [5,6] == [5,0]
> [9,10,5,6,7,8,9,10,5,6].wrap(5,10) == [9,10,5,6,7,8,9,10,5,6]
map (generic_wrap (5::Integer,10)) [3..12] == [9,10,5,6,7,8,9,10,5,6]

bin_to_freq :: (Fractional n, Integral i) => n -> i -> i -> n Source #

Given sample-rate sr and bin-count n calculate frequency of ith bin.

bin_to_freq 44100 2048 32 == 689.0625

midi_to_cps :: Floating a => a -> a Source #

Midi note number to cycles per second.

map (floor . midi_to_cps) [0,24,69,120,127] == [8,32,440,8372,12543]
map (floor . midi_to_cps) [-36,138] == [1,23679]

cps_to_midi :: Floating a => a -> a Source #

Cycles per second to fractional midi note number.

map (round . cps_to_midi) [8,32,440,8372,12543] == [0,24,69,120,127]
map (round . cps_to_midi) [1,24000] == [-36,138]

cps_to_oct :: Floating a => a -> a Source #

Cycles per second to linear octave (4.75 = A4 = 440).

map (cps_to_oct . midi_to_cps) [60,63,69] == [4.0,4.25,4.75]

oct_to_cps :: Floating a => a -> a Source #

Linear octave to cycles per second.

map (cps_to_midi . oct_to_cps) [4.0,4.25,4.75] == [60,63,69]

degree_to_key :: RealFrac a => [a] -> a -> a -> a Source #

Degree, scale and steps per octave to key.

amp_to_db :: Floating a => a -> a Source #

Linear amplitude to decibels.

map (round . amp_to_db) [0.01,0.05,0.0625,0.125,0.25,0.5] == [-40,-26,-24,-18,-12,-6]

db_to_amp :: Floating a => a -> a Source #

Decibels to linear amplitude.

map (floor . (* 100). db_to_amp) [-40,-26,-24,-18,-12,-6] == [01,05,06,12,25,50]

midi_to_ratio :: Floating a => a -> a Source #

Fractional midi note interval to frequency multiplier.

map midi_to_ratio [0,7,12] == [1,1.4983070768766815,2]

ratio_to_midi :: Floating a => a -> a Source #

Inverse of midi_to_ratio.

map ratio_to_midi [3/2,2] == [7.019550008653875,12]

cps_to_incr :: Fractional a => a -> a -> a -> a Source #

sr = sample rate, r = cycle (two-pi), cps = frequency

cps_to_incr 48000 128 375 == 1
cps_to_incr 48000 two_pi 458.3662361046586 == 6e-2

incr_to_cps :: Fractional a => a -> a -> a -> a Source #

Inverse of cps_to_incr.

incr_to_cps 48000 128 1 == 375

pan2_f :: Fractional t => (t -> t) -> t -> t -> (t, t) Source #

Pan2 function, identity is linear, sqrt is equal power.

lin_pan2 :: Fractional t => t -> t -> (t, t) Source #

Linear pan.

map (lin_pan2 1) [-1,-0.5,0,0.5,1] == [(1,0),(0.75,0.25),(0.5,0.5),(0.25,0.75),(0,1)]

eq_pan2 :: Floating t => t -> t -> (t, t) Source #

Equal power pan.

map (eq_pan2 1) [-1,-0.5,0,0.5,1]

sc3_properFraction :: RealFrac t => t -> (t, t) Source #

fromInteger of properFraction.

sc3_dif_sqr :: Num a => a -> a -> a Source #

a^2 - b^2.

sc3_hypot :: Floating a => a -> a -> a Source #

Euclidean distance function (sqrt of sum of squares).

sc3_hypotx :: (Ord a, Floating a) => a -> a -> a Source #

SC3 hypotenuse approximation function.

foldToRange :: (Ord a, Num a) => a -> a -> a -> a Source #

Fold k to within range (i,j), ie. AbstractFunction.fold

map (foldToRange 5 10) [3..12] == [7,6,5,6,7,8,9,10,9,8]

sc3_fold :: (Ord a, Num a) => a -> a -> a -> a Source #

Variant of foldToRange with SC3 argument ordering.

sc3_distort :: Fractional n => n -> n Source #

SC3 distort operator.

sc3_softclip :: (Ord n, Fractional n) => n -> n Source #

SC3 softclip operator.

# Bool

sc3_true :: Num n => n Source #

True is conventionally 1. The test to determine true is > 0.

sc3_false :: Num n => n Source #

False is conventionally 0. The test to determine true is <= 0.

sc3_not :: (Ord n, Num n) => n -> n Source #

Lifted not.

sc3_not sc3_true == sc3_false
sc3_not sc3_false == sc3_true

sc3_bool :: Num n => Bool -> n Source #

Translate Bool to sc3_true and sc3_false.

sc3_comparison :: Num n => (n -> n -> Bool) -> n -> n -> n Source #

Lift comparison function.

# Eq

sc3_eq :: (Num n, Eq n) => n -> n -> n Source #

Lifted ==.

sc3_neq :: (Num n, Eq n) => n -> n -> n Source #

Lifted /=.

# Ord

sc3_lt :: (Num n, Ord n) => n -> n -> n Source #

Lifted <.

sc3_lte :: (Num n, Ord n) => n -> n -> n Source #

Lifted <=.

sc3_gt :: (Num n, Ord n) => n -> n -> n Source #

Lifted >.

sc3_gte :: (Num n, Ord n) => n -> n -> n Source #

Lifted >=.

# Clip Rule

data Clip_Rule Source #

Enumeration of clipping rules.

Constructors

 Clip_None Clip_Left Clip_Right Clip_Both
Instances
 Source # Instance detailsDefined in Sound.SC3.Common.Math Methods Source # Instance detailsDefined in Sound.SC3.Common.Math MethodsenumFrom :: Clip_Rule -> [Clip_Rule] #

apply_clip_rule :: Ord n => Clip_Rule -> n -> n -> n -> n -> n -> Maybe n Source #

Clip a value that is expected to be within an input range to an output range, according to a rule.

let f r = map (\x -> apply_clip_rule r 0 1 (-1) 1 x) [-1,0,0.5,1,2]
in map f [minBound .. maxBound]

# LinLin

urange :: Fractional a => a -> a -> a -> a Source #

Scale uni-polar (0,1) input to linear (l,r) range

map (urange 3 4) [0,0.5,1] == [3,3.5,4]

range_muladd :: Fractional t => t -> t -> (t, t) Source #

Calculate multiplier and add values for range transform.

range_muladd 3 4 == (0.5,3.5)

range :: Fractional a => a -> a -> a -> a Source #

Scale bi-polar (-1,1) input to linear (l,r) range. Note that the argument order is not the same as linlin.

map (range 3 4) [-1,0,1] == [3,3.5,4]
map (\x -> let (m,a) = linlin_muladd (-1) 1 3 4 in x * m + a) [-1,0,1] == [3,3.5,4]

range_hs :: Fractional a => (a, a) -> a -> a Source #

Tuple variant of range.

linlin_muladd :: Fractional t => t -> t -> t -> t -> (t, t) Source #

Calculate multiplier and add values for linlin transform.

range_muladd 3 4 == (0.5,3.5)
linlin_muladd (-1) 1 3 4 == (0.5,3.5)
linlin_muladd 0 1 3 4 == (1,3)
linlin_muladd (-1) 1 0 1 == (0.5,0.5)
linlin_muladd (-0.3) 1 (-1) 1

linlin_hs :: Fractional a => (a, a) -> (a, a) -> a -> a Source #

sc3_linlin with a more typical haskell argument structure, ranges as pairs and input last.

map (linlin_hs (0,127) (-0.5,0.5)) [0,63.5,127]

sc3_linlin :: Fractional a => a -> a -> a -> a -> a -> a Source #

Map from one linear range to another linear range.

r = [0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1]
map (\i -> sc3_linlin i (-1) 1 0 1) [-1,-0.75 .. 1] == r

linlin_enum_plain :: (Enum t, Enum u) => t -> u -> t -> u Source #

Given enumeration from dst that is in the same relation as n is from src.

linlin _enum_plain 'a' 'A' 'e' == 'E'
linlin_enum_plain 0 (-50) 16 == -34
linlin_enum_plain 0 (-50) (-1) == -51

linlin_enum :: (Enum t, Enum u) => (t, t) -> (u, u) -> t -> Maybe u Source #

Variant of linlin_enum_plain that requires src and dst ranges to be of equal size, and for n to lie in src.

linlin_enum (0,100) (-50,50) 0x10 == Just (-34)
linlin_enum (-50,50) (0,100) (-34) == Just 0x10
linlin_enum (0,100) (-50,50) (-1) == Nothing

linlin_enum_err :: (Enum t, Enum u) => (t, t) -> (u, u) -> t -> u Source #

Erroring variant.

linlin_eq :: (Eq a, Num a) => (a, a) -> (a, a) -> a -> Maybe a Source #

Variant of linlin that requires src and dst ranges to be of equal size, thus with constraint of Num and Eq instead of Fractional.

linlin_eq (0,100) (-50,50) 0x10 == Just (-34)
linlin_eq (-50,50) (0,100) (-34) == Just 0x10

linlin_eq_err :: (Eq a, Num a) => (a, a) -> (a, a) -> a -> a Source #

Erroring variant.

# LinExp

linexp_hs :: Floating a => (a, a) -> (a, a) -> a -> a Source #

Linear to exponential range conversion. Rule is as at linExp UGen, haskell manner argument ordering. Destination values must be nonzero and have the same sign.

map (floor . linexp_hs (1,2) (10,100)) [0,1,1.5,2,3] == [1,10,31,100,1000]
map (floor . linexp_hs (-2,2) (1,100)) [-3,-2,-1,0,1,2,3] == [0,1,3,10,31,100,316]

lin_exp :: Floating a => a -> a -> a -> a -> a -> a Source #

Variant of linexp_hs with argument ordering as at linExp UGen.

map (\i -> lin_exp i 1 2 1 3) [1,1.1 .. 2]
map (\i -> floor (lin_exp i 1 2 10 100)) [0,1,1.5,2,3]

sc3_linexp :: (Ord a, Floating a) => a -> a -> a -> a -> a -> a Source #

SimpleNumber.linexp shifts from linear to exponential ranges.

map (sc3_linexp 1 2 1 3) [1,1.1 .. 2]
> [1,1.5,2].collect({|i| i.linexp(1,2,10,100).floor}) == [10,31,100]
map (floor . sc3_linexp 1 2 10 100) [0,1,1.5,2,3] == [10,10,31,100,100]

sc3_explin :: (Ord a, Floating a) => a -> a -> a -> a -> a -> a Source #

SimpleNumber.explin is the inverse of linexp.

map (sc3_explin 10 100 1 2) [10,10,31,100,100]

# ExpExp

sc3_expexp :: (Ord a, Floating a) => a -> a -> a -> a -> a -> a Source #

Translate from one exponential range to another.

map (sc3_expexp 0.1 10 4.3 100) [1.. 10]

# LinCurve

sc3_lincurve :: (Ord a, Floating a) => a -> a -> a -> a -> a -> a -> a Source #

Map x from an assumed linear input range (src_l,src_r) to an exponential curve output range (dst_l,dst_r). curve is like the parameter in Env. Unlike with linexp, the output range may include zero.

> (0..10).lincurve(0,10,-4.3,100,-3).round == [-4,24,45,61,72,81,87,92,96,98,100]
let f = round . sc3_lincurve (-3) 0 10 (-4.3) 100
in map f [0 .. 10] == [-4,24,45,61,72,81,87,92,96,98,100]
import Sound.SC3.Plot
plotTable (map (\c-> map (sc3_lincurve c 0 1 (-1) 1) [0,0.01 .. 1]) [-6,-4 .. 6])

sc3_curvelin :: (Ord a, Floating a) => a -> a -> a -> a -> a -> a -> a Source #

Inverse of sc3_lincurve.

let f = round . sc3_curvelin (-3) (-4.3) 100 0 10
in map f [-4,24,45,61,72,81,87,92,96,98,100] == [0..10]

# PP

The default show is odd, 0.05 shows as 5.0e-2.

unwords (map (double_pp 4) [0.0001,0.001,0.01,0.1,1.0]) == "0.0001 0.001 0.01 0.1 1.0"

Print as integer if integral, else as real.

unwords (map real_pp [0.0001,0.001,0.01,0.1,1.0]) == "0.0001 0.001 0.01 0.1 1"

# Parser

Type-specialised readMaybe.