hw-kafka-client-2.2.0: Kafka bindings for Haskell

Safe HaskellNone
LanguageHaskell2010

Kafka.Consumer.Types

Synopsis

Documentation

data KafkaConsumer Source #

Constructors

KafkaConsumer 

Fields

data OffsetCommit Source #

Offsets commit mode

Constructors

OffsetCommit

Forces consumer to block until the broker offsets commit is done

OffsetCommitAsync

Offsets will be committed in a non-blocking way

data OffsetStoreSync Source #

Indicates how offsets are to be synced to disk

Constructors

OffsetSyncDisable

Do not sync offsets (in Kafka: -1)

OffsetSyncImmediate

Sync immediately after each offset commit (in Kafka: 0)

OffsetSyncInterval Int

Sync after specified interval in millis

data OffsetStoreMethod Source #

Indicates the method of storing the offsets

Constructors

OffsetStoreBroker

Offsets are stored in Kafka broker (preferred)

OffsetStoreFile FilePath OffsetStoreSync

Offsets are stored in a file (and synced to disk according to the sync policy)

data ConsumerRecord k v Source #

Represents a received message from Kafka (i.e. used in a consumer)

Constructors

ConsumerRecord 

Fields

Instances

Bifunctor ConsumerRecord Source # 

Methods

bimap :: (a -> b) -> (c -> d) -> ConsumerRecord a c -> ConsumerRecord b d #

first :: (a -> b) -> ConsumerRecord a c -> ConsumerRecord b c #

second :: (b -> c) -> ConsumerRecord a b -> ConsumerRecord a c #

Bitraversable ConsumerRecord Source # 

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> ConsumerRecord a b -> f (ConsumerRecord c d) #

Bifoldable ConsumerRecord Source # 

Methods

bifold :: Monoid m => ConsumerRecord m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> ConsumerRecord a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> ConsumerRecord a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> ConsumerRecord a b -> c #

Functor (ConsumerRecord k) Source # 

Methods

fmap :: (a -> b) -> ConsumerRecord k a -> ConsumerRecord k b #

(<$) :: a -> ConsumerRecord k b -> ConsumerRecord k a #

Foldable (ConsumerRecord k) Source # 

Methods

fold :: Monoid m => ConsumerRecord k m -> m #

foldMap :: Monoid m => (a -> m) -> ConsumerRecord k a -> m #

foldr :: (a -> b -> b) -> b -> ConsumerRecord k a -> b #

foldr' :: (a -> b -> b) -> b -> ConsumerRecord k a -> b #

foldl :: (b -> a -> b) -> b -> ConsumerRecord k a -> b #

foldl' :: (b -> a -> b) -> b -> ConsumerRecord k a -> b #

foldr1 :: (a -> a -> a) -> ConsumerRecord k a -> a #

foldl1 :: (a -> a -> a) -> ConsumerRecord k a -> a #

toList :: ConsumerRecord k a -> [a] #

null :: ConsumerRecord k a -> Bool #

length :: ConsumerRecord k a -> Int #

elem :: Eq a => a -> ConsumerRecord k a -> Bool #

maximum :: Ord a => ConsumerRecord k a -> a #

minimum :: Ord a => ConsumerRecord k a -> a #

sum :: Num a => ConsumerRecord k a -> a #

product :: Num a => ConsumerRecord k a -> a #

Traversable (ConsumerRecord k) Source # 

Methods

traverse :: Applicative f => (a -> f b) -> ConsumerRecord k a -> f (ConsumerRecord k b) #

sequenceA :: Applicative f => ConsumerRecord k (f a) -> f (ConsumerRecord k a) #

mapM :: Monad m => (a -> m b) -> ConsumerRecord k a -> m (ConsumerRecord k b) #

sequence :: Monad m => ConsumerRecord k (m a) -> m (ConsumerRecord k a) #

(Eq v, Eq k) => Eq (ConsumerRecord k v) Source # 
(Read v, Read k) => Read (ConsumerRecord k v) Source # 
(Show v, Show k) => Show (ConsumerRecord k v) Source # 

crMapKey :: (k -> k') -> ConsumerRecord k v -> ConsumerRecord k' v Source #

crMapValue :: (v -> v') -> ConsumerRecord k v -> ConsumerRecord k v' Source #

crMapKV :: (k -> k') -> (v -> v') -> ConsumerRecord k v -> ConsumerRecord k' v' Source #

sequenceFirst :: (Bitraversable t, Applicative f) => t (f k) v -> f (t k v) Source #

traverseFirst :: (Bitraversable t, Applicative f) => (k -> f k') -> t k v -> f (t k' v) Source #

traverseFirstM :: (Bitraversable t, Applicative f, Monad m) => (k -> m (f k')) -> t k v -> m (f (t k' v)) Source #

traverseM :: (Traversable t, Applicative f, Monad m) => (v -> m (f v')) -> t v -> m (f (t v')) Source #

bitraverseM :: (Bitraversable t, Applicative f, Monad m) => (k -> m (f k')) -> (v -> m (f v')) -> t k v -> m (f (t k' v')) Source #