| Safe Haskell | Safe-Inferred |
|---|---|
| Language | GHC2021 |
HaskellWorks.Polysemy.Prelude
Synopsis
- data Bool
- data Char = C# Char#
- data Maybe a
- data Either a b
- type String = [Char]
- data Text
- data ByteString
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- data Integer
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- data Float
- data Double
- type FilePath = String
- data Void
- class Eq a where
- class Eq a => Ord a where
- class Num a where
- class Show a where
- class IsString a where
- fromString :: String -> a
- tshow :: Show a => a -> Text
- bool :: a -> a -> Bool -> a
- const :: a -> b -> a
- absurd :: Void -> a
- vacuous :: Functor f => f Void -> f a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- lefts :: [Either a b] -> [a]
- rights :: [Either a b] -> [b]
- isLeft :: Either a b -> Bool
- isRight :: Either a b -> Bool
- fromLeft :: a -> Either a b -> a
- fromRight :: b -> Either a b -> b
- maybe :: b -> (a -> b) -> Maybe a -> b
- isJust :: Maybe a -> Bool
- isNothing :: Maybe a -> Bool
- fromMaybe :: a -> Maybe a -> a
- listToMaybe :: [a] -> Maybe a
- maybeToList :: Maybe a -> [a]
- catMaybes :: [Maybe a] -> [a]
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- fst :: (a, b) -> a
- flip :: (a -> b -> c) -> b -> a -> c
- snd :: (a, b) -> b
- id :: a -> a
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- curry :: ((a, b) -> c) -> a -> b -> c
- uncurry :: (a -> b -> c) -> (a, b) -> c
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- (&) :: a -> (a -> b) -> b
- (.) :: (b -> c) -> (a -> b) -> a -> c
- (</>) :: FilePath -> FilePath -> FilePath
- void :: Functor f => f a -> f ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- forever :: Applicative f => f a -> f b
- join :: Monad m => m (m a) -> m a
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- replicateM_ :: Applicative m => Int -> m a -> m ()
- guard :: Alternative f => Bool -> f ()
- when :: Applicative f => Bool -> f () -> f ()
- unless :: Applicative f => Bool -> f () -> f ()
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- ap :: Monad m => m (a -> b) -> m a -> m b
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- optional :: Alternative f => f a -> f (Maybe a)
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- class Applicative m => Monad (m :: Type -> Type) where
- class Monad m => MonadFail (m :: Type -> Type) where
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- class Applicative f => Alternative (f :: Type -> Type) where
- class Contravariant (f :: Type -> Type) where
- class Contravariant f => Divisible (f :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class (forall a. Functor (p a)) => Bifunctor (p :: Type -> Type -> Type) where
- class Semigroup a where
- class Semigroup a => Monoid a where
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldMap' :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- toList :: t a -> [a]
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- data IO a
- data CallStack
- type HasCallStack = ?callStack :: CallStack
- withFrozenCallStack :: HasCallStack => (HasCallStack => a) -> a
- class Generic a
- data IOException
- data SomeException = Exception e => SomeException e
Documentation
Instances
The character type Char is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char.
To convert a Char to or from the corresponding Int value defined
by Unicode, use toEnum and fromEnum from the
Enum class respectively (or equivalently ord and
chr).
Instances
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| FromJSON1 Maybe | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON1 Maybe | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Bool) -> (a -> Value) -> ([a] -> Value) -> Maybe a -> Value # liftToJSONList :: (a -> Bool) -> (a -> Value) -> ([a] -> Value) -> [Maybe a] -> Value # liftToEncoding :: (a -> Bool) -> (a -> Encoding) -> ([a] -> Encoding) -> Maybe a -> Encoding # liftToEncodingList :: (a -> Bool) -> (a -> Encoding) -> ([a] -> Encoding) -> [Maybe a] -> Encoding # liftOmitField :: (a -> Bool) -> Maybe a -> Bool # | |
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Traversable Maybe | Since: base-2.1 |
| Alternative Maybe | Picks the leftmost Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| MonadPlus Maybe | Picks the leftmost Since: base-2.1 |
| NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| MonadThrow Maybe | |
Defined in Control.Monad.Catch Methods throwM :: (HasCallStack, Exception e) => e -> Maybe a # | |
| Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
| Generic1 Maybe | |
| Lift a => Lift (Maybe a :: Type) | |
| FromJSON a => FromJSON (Maybe a) | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON a => ToJSON (Maybe a) | |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Generic (Maybe a) | |
| SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Show a => Show (Maybe a) | Since: base-2.1 |
| NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
| SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep1 Maybe | Since: base-4.6.0.0 |
| type Eval (FoldMap f ('Just x) :: a2 -> Type) | |
| type Eval (FoldMap f ('Nothing :: Maybe a1) :: a2 -> Type) | |
| type Eval (Foldr f y ('Just x) :: a2 -> Type) | |
| type Eval (Foldr f y ('Nothing :: Maybe a1) :: a2 -> Type) | |
| type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
| type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
| data Sing (b :: Maybe a) | |
| type MEmpty | |
Defined in Fcf.Class.Monoid | |
| type (a2 :: Maybe a1) <> ('Nothing :: Maybe a1) | |
Defined in Fcf.Class.Monoid | |
| type ('Nothing :: Maybe a) <> (b :: Maybe a) | |
Defined in Fcf.Class.Monoid | |
| type Eval (Init ('[] :: [a]) :: Maybe [a] -> Type) | |
| type Eval (Tail (_a ': as) :: Maybe [a] -> Type) | |
| type Eval (Tail ('[] :: [a]) :: Maybe [a] -> Type) | |
| type Eval (Init (a2 ': (b ': as)) :: Maybe [a1] -> Type) | |
| type Eval (Init '[a2] :: Maybe [a1] -> Type) | |
| type Eval (Head ('[] :: [a]) :: Maybe a -> Type) | |
| type Eval (Last ('[] :: [a]) :: Maybe a -> Type) | |
| type Eval (Head (a2 ': _as) :: Maybe a1 -> Type) | |
| type Eval (Last (a2 ': (b ': as)) :: Maybe a1 -> Type) | |
| type Eval (Last '[a2] :: Maybe a1 -> Type) | |
| type ('Just a2 :: Maybe a1) <> ('Just b :: Maybe a1) | |
| type Eval (FindIndex _p ('[] :: [a]) :: Maybe Nat -> Type) | |
| type Eval (FindIndex p (a2 ': as) :: Maybe Nat -> Type) | |
| type Eval (NumIter a s :: Maybe (k, Nat) -> Type) | |
| type Eval (Find _p ('[] :: [a]) :: Maybe a -> Type) | |
| type Eval (Find p (a2 ': as) :: Maybe a1 -> Type) | |
| type Eval (Lookup a as :: Maybe b -> Type) | |
| type Eval (Map f ('Just a3) :: Maybe a2 -> Type) | |
| type Eval (Map f ('Nothing :: Maybe a) :: Maybe b -> Type) | |
The Either type represents values with two possibilities: a value of
type is either Either a b or Left a.Right b
The Either type is sometimes used to represent a value which is
either correct or an error; by convention, the Left constructor is
used to hold an error value and the Right constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type is the type of values which can be either
a Either String IntString or an Int. The Left constructor can be used only on
Strings, and the Right constructor can be used only on Ints:
>>>let s = Left "foo" :: Either String Int>>>sLeft "foo">>>let n = Right 3 :: Either String Int>>>nRight 3>>>:type ss :: Either String Int>>>:type nn :: Either String Int
The fmap from our Functor instance will ignore Left values, but
will apply the supplied function to values contained in a Right:
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>fmap (*2) sLeft "foo">>>fmap (*2) nRight 6
The Monad instance for Either allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int from a Char, or fail.
>>>import Data.Char ( digitToInt, isDigit )>>>:{let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>:}
The following should work, since both '1' and '2' can be
parsed as Ints.
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleRight 3
But the following should fail overall, since the first operation where
we attempt to parse 'm' as an Int will fail:
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleLeft "parse error"
Instances
| FromJSON2 Either | |
Defined in Data.Aeson.Types.FromJSON Methods liftParseJSON2 :: Maybe a -> (Value -> Parser a) -> (Value -> Parser [a]) -> Maybe b -> (Value -> Parser b) -> (Value -> Parser [b]) -> Value -> Parser (Either a b) # liftParseJSONList2 :: Maybe a -> (Value -> Parser a) -> (Value -> Parser [a]) -> Maybe b -> (Value -> Parser b) -> (Value -> Parser [b]) -> Value -> Parser [Either a b] # liftOmittedField2 :: Maybe a -> Maybe b -> Maybe (Either a b) # | |
| ToJSON2 Either | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON2 :: (a -> Bool) -> (a -> Value) -> ([a] -> Value) -> (b -> Bool) -> (b -> Value) -> ([b] -> Value) -> Either a b -> Value # liftToJSONList2 :: (a -> Bool) -> (a -> Value) -> ([a] -> Value) -> (b -> Bool) -> (b -> Value) -> ([b] -> Value) -> [Either a b] -> Value # liftToEncoding2 :: (a -> Bool) -> (a -> Encoding) -> ([a] -> Encoding) -> (b -> Bool) -> (b -> Encoding) -> ([b] -> Encoding) -> Either a b -> Encoding # liftToEncodingList2 :: (a -> Bool) -> (a -> Encoding) -> ([a] -> Encoding) -> (b -> Bool) -> (b -> Encoding) -> ([b] -> Encoding) -> [Either a b] -> Encoding # liftOmitField2 :: (a -> Bool) -> (b -> Bool) -> Either a b -> Bool # | |
| Bifunctor Either | Since: base-4.8.0.0 |
| NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Hashable2 Either | |
Defined in Data.Hashable.Class | |
| Generic1 (Either a :: Type -> Type) | |
| (Lift a, Lift b) => Lift (Either a b :: Type) | |
| FromJSON a => FromJSON1 (Either a) | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON a => ToJSON1 (Either a) | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a0 -> Bool) -> (a0 -> Value) -> ([a0] -> Value) -> Either a a0 -> Value # liftToJSONList :: (a0 -> Bool) -> (a0 -> Value) -> ([a0] -> Value) -> [Either a a0] -> Value # liftToEncoding :: (a0 -> Bool) -> (a0 -> Encoding) -> ([a0] -> Encoding) -> Either a a0 -> Encoding # liftToEncodingList :: (a0 -> Bool) -> (a0 -> Encoding) -> ([a0] -> Encoding) -> [Either a a0] -> Encoding # liftOmitField :: (a0 -> Bool) -> Either a a0 -> Bool # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Applicative (Either e) | Since: base-3.0 |
| Functor (Either a) | Since: base-3.0 |
| Monad (Either e) | Since: base-4.4.0.0 |
| NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| e ~ SomeException => MonadCatch (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch | |
| e ~ SomeException => MonadMask (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch Methods mask :: HasCallStack => ((forall a. Either e a -> Either e a) -> Either e b) -> Either e b # uninterruptibleMask :: HasCallStack => ((forall a. Either e a -> Either e a) -> Either e b) -> Either e b # generalBracket :: HasCallStack => Either e a -> (a -> ExitCase b -> Either e c) -> (a -> Either e b) -> Either e (b, c) # | |
| e ~ SomeException => MonadThrow (Either e) | |
Defined in Control.Monad.Catch Methods throwM :: (HasCallStack, Exception e0) => e0 -> Either e a # | |
| Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
| (FromJSON a, FromJSON b) => FromJSON (Either a b) | |
Defined in Data.Aeson.Types.FromJSON | |
| (ToJSON a, ToJSON b) => ToJSON (Either a b) | |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| Generic (Either a b) | |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| (Show a, Show b) => Show (Either a b) | Since: base-3.0 |
| (NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| (Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
| type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |
| type Eval (FoldMap f ('Left _a :: Either a3 a1) :: a2 -> Type) | |
| type Eval (FoldMap f ('Right x :: Either a3 a1) :: a2 -> Type) | |
| type Eval (Foldr f y ('Left _a :: Either a3 a1) :: a2 -> Type) | |
| type Eval (Foldr f y ('Right x :: Either a3 a1) :: a2 -> Type) | |
| type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) | |
| type Eval (Map f ('Left x :: Either a2 a1) :: Either a2 b -> Type) | |
| type Eval (Map f ('Right a3 :: Either a2 a1) :: Either a2 b -> Type) | |
| type Eval (Bimap f g ('Right y :: Either a b1) :: Either a' b2 -> Type) | |
| type Eval (Bimap f g ('Left x :: Either a1 b) :: Either a2 b' -> Type) | |
A space efficient, packed, unboxed Unicode text type.
Instances
| FromJSON Text | |
Defined in Data.Aeson.Types.FromJSON | |
| FromJSONKey Text | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON Text | |
| ToJSONKey Text | |
Defined in Data.Aeson.Types.ToJSON | |
| Chunk Text | |
Defined in Data.Attoparsec.Internal.Types | |
| Hashable Text | |
Defined in Data.Hashable.Class | |
| ToString Text Source # | |
| type ChunkElem Text | |
Defined in Data.Attoparsec.Internal.Types | |
| type State Text | |
Defined in Data.Attoparsec.Internal.Types | |
| type Item Text | |
data ByteString #
A space-efficient representation of a Word8 vector, supporting many
efficient operations.
A ByteString contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range for a given implementation can be determined by using
minBound and maxBound from the Bounded class.
Instances
8-bit signed integer type
Instances
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int, the Integer type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int), IS constructor is used.
Otherwise Integer and IN constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Invariant: Integer and IN are used iff value doesn't fit in IS
Instances
| FromJSON Integer | This instance includes a bounds check to prevent maliciously
large inputs to fill up the memory of the target system. You can
newtype |
Defined in Data.Aeson.Types.FromJSON | |
| FromJSONKey Integer | |
Defined in Data.Aeson.Types.FromJSON Methods | |
| ToJSON Integer | |
| ToJSONKey Integer | |
Defined in Data.Aeson.Types.ToJSON | |
| Enum Integer | Since: base-2.1 |
| Num Integer | Since: base-2.1 |
| Read Integer | Since: base-2.1 |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
| Show Integer | Since: base-2.1 |
| NFData Integer | |
Defined in Control.DeepSeq | |
| Eq Integer | |
| Ord Integer | |
| Hashable Integer | |
Defined in Data.Hashable.Class | |
| UniformRange Integer | |
Defined in System.Random.Internal | |
| Lift Integer | |
Instances
8-bit unsigned integer type
Instances
16-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
| FromJSON Float | |
Defined in Data.Aeson.Types.FromJSON | |
| FromJSONKey Float | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON Float | |
| ToJSONKey Float | |
Defined in Data.Aeson.Types.ToJSON | |
| Floating Float | Since: base-2.1 |
| RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
| Read Float | Since: base-2.1 |
| NFData Float | |
Defined in Control.DeepSeq | |
| Eq Float | Note that due to the presence of
Also note that
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Hashable Float | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
| UniformRange Float | |
Defined in System.Random.Internal | |
| Unbox Float | |
Defined in Data.Vector.Unboxed.Base | |
| Lift Float | |
| Vector Vector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Float -> ST s (Vector Float) # basicUnsafeThaw :: Vector Float -> ST s (Mutable Vector s Float) # basicLength :: Vector Float -> Int # basicUnsafeSlice :: Int -> Int -> Vector Float -> Vector Float # basicUnsafeIndexM :: Vector Float -> Int -> Box Float # basicUnsafeCopy :: Mutable Vector s Float -> Vector Float -> ST s () # | |
| MVector MVector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Float -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Float -> MVector s Float # basicOverlaps :: MVector s Float -> MVector s Float -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Float) # basicInitialize :: MVector s Float -> ST s () # basicUnsafeReplicate :: Int -> Float -> ST s (MVector s Float) # basicUnsafeRead :: MVector s Float -> Int -> ST s Float # basicUnsafeWrite :: MVector s Float -> Int -> Float -> ST s () # basicClear :: MVector s Float -> ST s () # basicSet :: MVector s Float -> Float -> ST s () # basicUnsafeCopy :: MVector s Float -> MVector s Float -> ST s () # basicUnsafeMove :: MVector s Float -> MVector s Float -> ST s () # basicUnsafeGrow :: MVector s Float -> Int -> ST s (MVector s Float) # | |
| Generic1 (URec Float :: k -> Type) | |
| Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Float p) | |
| Show (URec Float p) | |
| Eq (URec Float p) | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| newtype Vector Float | |
| data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Float | |
| type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Float p) | |
Defined in GHC.Generics | |
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
| FromJSON Double | |
Defined in Data.Aeson.Types.FromJSON | |
| FromJSONKey Double | |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON Double | |
| ToJSONKey Double | |
Defined in Data.Aeson.Types.ToJSON | |
| Floating Double | Since: base-2.1 |
| RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
| Read Double | Since: base-2.1 |
| NFData Double | |
Defined in Control.DeepSeq | |
| Eq Double | Note that due to the presence of
Also note that
|
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
| UniformRange Double | |
Defined in System.Random.Internal | |
| Unbox Double | |
Defined in Data.Vector.Unboxed.Base | |
| Lift Double | |
| Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Double -> ST s (Vector Double) # basicUnsafeThaw :: Vector Double -> ST s (Mutable Vector s Double) # basicLength :: Vector Double -> Int # basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double # basicUnsafeIndexM :: Vector Double -> Int -> Box Double # basicUnsafeCopy :: Mutable Vector s Double -> Vector Double -> ST s () # | |
| MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Double -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double # basicOverlaps :: MVector s Double -> MVector s Double -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Double) # basicInitialize :: MVector s Double -> ST s () # basicUnsafeReplicate :: Int -> Double -> ST s (MVector s Double) # basicUnsafeRead :: MVector s Double -> Int -> ST s Double # basicUnsafeWrite :: MVector s Double -> Int -> Double -> ST s () # basicClear :: MVector s Double -> ST s () # basicSet :: MVector s Double -> Double -> ST s () # basicUnsafeCopy :: MVector s Double -> MVector s Double -> ST s () # basicUnsafeMove :: MVector s Double -> MVector s Double -> ST s () # basicUnsafeGrow :: MVector s Double -> Int -> ST s (MVector s Double) # | |
| Generic1 (URec Double :: k -> Type) | |
| Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Double p) | |
| Show (URec Double p) | Since: base-4.9.0.0 |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| newtype Vector Double | |
| data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Double | |
| type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
File and directory names are values of type String, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
Uninhabited data type
Since: base-4.8.0.0
Instances
| FromJSON Void | |
Defined in Data.Aeson.Types.FromJSON | |
| FromJSONKey Void | Since: aeson-2.1.2.0 |
Defined in Data.Aeson.Types.FromJSON | |
| ToJSON Void | |
| ToJSONKey Void | Since: aeson-2.1.2.0 |
Defined in Data.Aeson.Types.ToJSON | |
| Semigroup Void | Since: base-4.9.0.0 |
| Exception Void | Since: base-4.8.0.0 |
Defined in GHC.Exception.Type Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
| Generic Void | |
| Read Void | Reading a Since: base-4.8.0.0 |
| Show Void | Since: base-4.8.0.0 |
| NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq Void | Since: base-4.8.0.0 |
| Ord Void | Since: base-4.8.0.0 |
| Hashable Void | |
Defined in Data.Hashable.Class | |
| Lift Void | Since: template-haskell-2.15.0.0 |
| type Rep Void | Since: base-4.8.0.0 |
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
The Haskell Report defines no laws for Eq. However, instances are
encouraged to follow these properties:
Instances
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in
the data declaration determines the ordering in derived Ord instances. The
Ordering datatype allows a single comparison to determine the precise
ordering of two objects.
Ord, as defined by the Haskell report, implements a total order and has the
following properties:
- Comparability
x <= y || y <= x=True- Transitivity
- if
x <= y && y <= z=True, thenx <= z=True - Reflexivity
x <= x=True- Antisymmetry
- if
x <= y && y <= x=True, thenx == y=True
The following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y=Truemax x y == if x >= y then x else y=True
Note that (7.) and (8.) do not require min and max to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==).
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Basic numeric class.
The Haskell Report defines no laws for Num. However, ( and +)( are
customarily expected to define a ring and have the following properties:*)
- Associativity of
(+) (x + y) + z=x + (y + z)- Commutativity of
(+) x + y=y + xis the additive identityfromInteger0x + fromInteger 0=xnegategives the additive inversex + negate x=fromInteger 0- Associativity of
(*) (x * y) * z=x * (y * z)is the multiplicative identityfromInteger1x * fromInteger 1=xandfromInteger 1 * x=x- Distributivity of
(with respect to*)(+) a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)- Coherence with
toInteger - if the type also implements
Integral, thenfromIntegeris a left inverse fortoInteger, i.e.fromInteger (toInteger i) == i
Note that it isn't customarily expected that a type instance of both Num
and Ord implement an ordered ring. Indeed, in base only Integer and
Rational do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs and signum should satisfy the law:
abs x * signum x == x
For real numbers, the signum is either -1 (negative), 0 (zero)
or 1 (positive).
fromInteger :: Integer -> a #
Conversion from an Integer.
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer,
so such literals have type (.Num a) => a
Instances
Conversion of values to readable Strings.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> a | the value to be converted to a |
| -> ShowS |
Convert a value to a readable String.
showsPrec should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that showsPrec started with.
Instances
Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).
Methods
fromString :: String -> a #
Instances
| IsString Key | |
Defined in Data.Aeson.Key Methods fromString :: String -> Key # | |
| IsString Value | |
Defined in Data.Aeson.Types.Internal Methods fromString :: String -> Value # | |
| IsString ByteString | Beware: |
Defined in Data.ByteString.Internal.Type Methods fromString :: String -> ByteString # | |
| IsString ByteString | Beware: |
Defined in Data.ByteString.Lazy.Internal Methods fromString :: String -> ByteString # | |
| IsString ShortByteString | Beware: |
Defined in Data.ByteString.Short.Internal Methods fromString :: String -> ShortByteString # | |
| IsString Doc | |
Defined in Text.PrettyPrint.HughesPJ Methods fromString :: String -> Doc # | |
| IsString CmdSpec | construct a Since: process-1.2.1.0 |
Defined in System.Process.Common Methods fromString :: String -> CmdSpec # | |
| IsString ShortText | Note: Surrogate pairs ( |
Defined in Data.Text.Short.Internal Methods fromString :: String -> ShortText # | |
| IsString (Encoding' a) | Since: aeson-2.2.0.0 |
Defined in Data.Aeson.Encoding.Internal Methods fromString :: String -> Encoding' a # | |
| IsString a => IsString (Identity a) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Identity a # | |
| a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
| a ~ Char => IsString (DNonEmpty a) | |
Defined in Data.DList.DNonEmpty.Internal Methods fromString :: String -> DNonEmpty a # | |
| a ~ Char => IsString (DList a) | |
Defined in Data.DList.Internal Methods fromString :: String -> DList a # | |
| (IsString a, Hashable a) => IsString (Hashed a) | |
Defined in Data.Hashable.Class Methods fromString :: String -> Hashed a # | |
| IsString (Doc a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods fromString :: String -> Doc a # | |
| a ~ Char => IsString [a] |
Since: base-2.1 |
Defined in Data.String Methods fromString :: String -> [a] # | |
| IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
| IsString a => IsString (Tagged s a) | |
Defined in Data.Tagged Methods fromString :: String -> Tagged s a # | |
Case analysis for the Bool type. evaluates to bool x y px
when p is False, and evaluates to y when p is True.
This is equivalent to if p then y else x; that is, one can
think of it as an if-then-else construct with its arguments
reordered.
Examples
Basic usage:
>>>bool "foo" "bar" True"bar">>>bool "foo" "bar" False"foo"
Confirm that and bool x y pif p then y else x are
equivalent:
>>>let p = True; x = "bar"; y = "foo">>>bool x y p == if p then y else xTrue>>>let p = False>>>bool x y p == if p then y else xTrue
Since: base-4.7.0.0
const x y always evaluates to x, ignoring its second argument.
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
Since Void values logically don't exist, this witnesses the
logical reasoning tool of "ex falso quodlibet".
>>>let x :: Either Void Int; x = Right 5>>>:{case x of Right r -> r Left l -> absurd l :} 5
Since: base-4.8.0.0
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either type.
If the value is , apply the first function to Left aa;
if it is , apply the second function to Right bb.
Examples
We create two values of type , one using the
Either String IntLeft constructor and another using the Right constructor. Then
we apply "either" the length function (if we have a String)
or the "times-two" function (if we have an Int):
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>either length (*2) s3>>>either length (*2) n6
isLeft :: Either a b -> Bool #
Return True if the given value is a Left-value, False otherwise.
Examples
Basic usage:
>>>isLeft (Left "foo")True>>>isLeft (Right 3)False
Assuming a Left value signifies some sort of error, we can use
isLeft to write a very simple error-reporting function that does
absolutely nothing in the case of success, and outputs "ERROR" if
any error occurred.
This example shows how isLeft might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>import Control.Monad ( when )>>>let report e = when (isLeft e) $ putStrLn "ERROR">>>report (Right 1)>>>report (Left "parse error")ERROR
Since: base-4.7.0.0
isRight :: Either a b -> Bool #
Return True if the given value is a Right-value, False otherwise.
Examples
Basic usage:
>>>isRight (Left "foo")False>>>isRight (Right 3)True
Assuming a Left value signifies some sort of error, we can use
isRight to write a very simple reporting function that only
outputs "SUCCESS" when a computation has succeeded.
This example shows how isRight might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>import Control.Monad ( when )>>>let report e = when (isRight e) $ putStrLn "SUCCESS">>>report (Left "parse error")>>>report (Right 1)SUCCESS
Since: base-4.7.0.0
fromLeft :: a -> Either a b -> a #
Return the contents of a Left-value or a default value otherwise.
Examples
Basic usage:
>>>fromLeft 1 (Left 3)3>>>fromLeft 1 (Right "foo")1
Since: base-4.10.0.0
fromRight :: b -> Either a b -> b #
Return the contents of a Right-value or a default value otherwise.
Examples
Basic usage:
>>>fromRight 1 (Right 3)3>>>fromRight 1 (Left "foo")1
Since: base-4.10.0.0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
fromMaybe :: a -> Maybe a -> a #
The fromMaybe function takes a default value and a Maybe
value. If the Maybe is Nothing, it returns the default value;
otherwise, it returns the value contained in the Maybe.
Examples
Basic usage:
>>>fromMaybe "" (Just "Hello, World!")"Hello, World!"
>>>fromMaybe "" Nothing""
Read an integer from a string using readMaybe. If we fail to
parse an integer, we want to return 0 by default:
>>>import Text.Read ( readMaybe )>>>fromMaybe 0 (readMaybe "5")5>>>fromMaybe 0 (readMaybe "")0
listToMaybe :: [a] -> Maybe a #
The listToMaybe function returns Nothing on an empty list
or where Just aa is the first element of the list.
Examples
Basic usage:
>>>listToMaybe []Nothing
>>>listToMaybe [9]Just 9
>>>listToMaybe [1,2,3]Just 1
Composing maybeToList with listToMaybe should be the identity
on singleton/empty lists:
>>>maybeToList $ listToMaybe [5][5]>>>maybeToList $ listToMaybe [][]
But not on lists with more than one element:
>>>maybeToList $ listToMaybe [1,2,3][1]
maybeToList :: Maybe a -> [a] #
The maybeToList function returns an empty list when given
Nothing or a singleton list when given Just.
Examples
Basic usage:
>>>maybeToList (Just 7)[7]
>>>maybeToList Nothing[]
One can use maybeToList to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>import Text.Read ( readMaybe )>>>sum $ maybeToList (readMaybe "3")3>>>sum $ maybeToList (readMaybe "")0
catMaybes :: [Maybe a] -> [a] #
The catMaybes function takes a list of Maybes and returns
a list of all the Just values.
Examples
Basic usage:
>>>catMaybes [Just 1, Nothing, Just 3][1,3]
When constructing a list of Maybe values, catMaybes can be used
to return all of the "success" results (if the list is the result
of a map, then mapMaybe would be more appropriate):
>>>import Text.Read ( readMaybe )>>>[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][Just 1,Nothing,Just 3]>>>catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][1,3]
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe function is a version of map which can throw
out elements. In particular, the functional argument returns
something of type . If this is Maybe bNothing, no element
is added on to the result list. If it is , then Just bb is
included in the result list.
Examples
Using is a shortcut for mapMaybe f x
in most cases:catMaybes $ map f x
>>>import Text.Read ( readMaybe )>>>let readMaybeInt = readMaybe :: String -> Maybe Int>>>mapMaybe readMaybeInt ["1", "Foo", "3"][1,3]>>>catMaybes $ map readMaybeInt ["1", "Foo", "3"][1,3]
If we map the Just constructor, the entire list should be returned:
>>>mapMaybe Just [1,2,3][1,2,3]
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip ff.
>>>flip (++) "hello" "world""worldhello"
seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 #
The value of is bottom if seq a ba is bottom, and
otherwise equal to b. In other words, it evaluates the first
argument a to weak head normal form (WHNF). seq is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression does
not guarantee that seq a ba will be evaluated before b.
The only guarantee given by seq is that the both a
and b will be evaluated before seq returns a value.
In particular, this means that b may be evaluated before
a. If you need to guarantee a specific order of evaluation,
you must use the function pseq from the "parallel" package.
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry converts a curried function to a function on pairs.
Examples
>>>uncurry (+) (1,2)3
>>>uncurry ($) (show, 1)"1"
>>>map (uncurry max) [(1,2), (3,4), (6,8)][2,4,8]
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.zipWith ($) fs xs
Note that ( is representation-polymorphic in its result type, so that
$)foo where $ Truefoo :: Bool -> Int# is well-typed.
(</>) :: FilePath -> FilePath -> FilePath infixr 5 #
Combine two paths with a path separator.
If the second path starts with a path separator or a drive letter, then it returns the second.
The intention is that readFile (dir will access the same file as
</> file)setCurrentDirectory dir; readFile file.
Posix: "/directory" </> "file.ext" == "/directory/file.ext"
Windows: "/directory" </> "file.ext" == "/directory\\file.ext"
"directory" </> "/file.ext" == "/file.ext"
Valid x => (takeDirectory x </> takeFileName x) `equalFilePath` xCombined:
Posix: "/" </> "test" == "/test" Posix: "home" </> "bob" == "home/bob" Posix: "x:" </> "foo" == "x:/foo" Windows: "C:\\foo" </> "bar" == "C:\\foo\\bar" Windows: "home" </> "bob" == "home\\bob"
Not combined:
Posix: "home" </> "/bob" == "/bob" Windows: "home" </> "C:\\bob" == "C:\\bob"
Not combined (tricky):
On Windows, if a filepath starts with a single slash, it is relative to the
root of the current drive. In [1], this is (confusingly) referred to as an
absolute path.
The current behavior of </> is to never combine these forms.
Windows: "home" </> "/bob" == "/bob" Windows: "home" </> "\\bob" == "\\bob" Windows: "C:\\home" </> "\\bob" == "\\bob"
On Windows, from [1]: "If a file name begins with only a disk designator
but not the backslash after the colon, it is interpreted as a relative path
to the current directory on the drive with the specified letter."
The current behavior of </> is to never combine these forms.
Windows: "D:\\foo" </> "C:bar" == "C:bar" Windows: "C:\\foo" </> "C:bar" == "C:bar"
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void valueIO action.
Examples
Replace the contents of a with unit:Maybe Int
>>>void NothingNothing>>>void (Just 3)Just ()
Replace the contents of an
with unit, resulting in an Either Int Int:Either Int ()
>>>void (Left 8675309)Left 8675309>>>void (Right 8675309)Right ()
Replace every element of a list with unit:
>>>void [1,2,3][(),(),()]
Replace the second element of a pair with unit:
>>>void (1,2)(1,())
Discard the result of an IO action:
>>>mapM print [1,2]1 2 [(),()]>>>void $ mapM print [1,2]1 2
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence.
sequence_ is just like sequenceA_, but specialised to monadic
actions.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
'(bs ' can be understood as the >=> cs) ado expression
do b <- bs a cs b
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Examples
A common use of forever is to process input from network sockets,
Handles, and channels
(e.g. MVar and
Chan).
For example, here is how we might implement an echo
server, using
forever both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever$ do client <- accept socketforkFinally(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever$ hGetLine client >>= hPutStrLn client
Note that "forever" isn't necessarily non-terminating.
If the action is in a and short-circuits after some number of iterations.
then MonadPlus actually returns forevermzero, effectively short-circuiting its caller.
join :: Monad m => m (m a) -> m a #
The join function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'' can be understood as the join bssdo expression
do bs <- bss bs
Examples
A common use of join is to run an IO computation returned from
an STM transaction, since STM transactions
can't perform IO directly. Recall that
atomically :: STM a -> IO a
is used to run STM transactions atomically. So, by
specializing the types of atomically and join to
atomically:: STM (IO b) -> IO (IO b)join:: IO (IO b) -> IO b
we can compose them as
join.atomically:: STM (IO b) -> IO b
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter function.
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM function is analogous to foldl, except that its result is
encapsulated in a monad. Note that foldM works from left-to-right over
the list arguments. This could be an issue where ( and the `folded
function' are not commutative.>>)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #
Like foldM, but discards the result.
replicateM :: Applicative m => Int -> m a -> m [a] #
performs the action replicateM n actact n times,
and then returns the list of results:
Examples
>>>import Control.Monad.State>>>runState (replicateM 3 $ state $ \s -> (s, s + 1)) 1([1,2,3],4)
replicateM_ :: Applicative m => Int -> m a -> m () #
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative computations. Defined by
guard True =pure() guard False =empty
Examples
Common uses of guard include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative-based parser.
As an example of signaling an error in the error monad Maybe,
consider a safe division function safeDiv x y that returns
Nothing when the denominator y is zero and otherwise. For example:Just (x `div`
y)
>>>safeDiv 4 0Nothing
>>>safeDiv 4 2Just 2
A definition of safeDiv using guards, but not guard:
safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0 = Just (x `div` y)
| otherwise = Nothing
A definition of safeDiv using guard and Monad do-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging if the Boolean value debug
is True, and otherwise do nothing.
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when.
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe
Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an
Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
A variant of <*> with the arguments reversed.
liftA :: Applicative f => (a -> b) -> f a -> f b #
Lift a function to actions.
Equivalent to Functor's fmap but implemented using only Applicative's methods:
liftA f a = pure f <*> a
As such this function may be used to implement a Functor instance from an Applicative one.
Examples
Using the Applicative instance for Lists:
>>>liftA (+1) [1, 2][2,3]
Or the Applicative instance for Maybe
>>>liftA (+1) (Just 3)Just 4
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
It is useful for modelling any computation that is allowed to fail.
Examples
Using the Alternative instance of Control.Monad.Except, the following functions:
>>>import Control.Monad.Except
>>>canFail = throwError "it failed" :: Except String Int>>>final = return 42 :: Except String Int
Can be combined by allowing the first function to fail:
>>>runExcept $ canFail *> finalLeft "it failed">>>runExcept $ optional canFail *> finalRight 42
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
The sum of a collection of actions using (<|>), generalizing concat.
asum is just like msum, but generalised to Alternative.
Examples
Basic usage:
>>>asum [Just "Hello", Nothing, Just "World"]Just "Hello"
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
for_ is traverse_ with its arguments flipped. For a version
that doesn't ignore the results see for. This
is forM_ generalised to Applicative actions.
for_ is just like forM_, but generalised to Applicative actions.
Examples
Basic usage:
>>>for_ [1..4] print1 2 3 4
class Applicative m => Monad (m :: Type -> Type) where #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following:
- Left identity
returna>>=k = k a- Right identity
m>>=return= m- Associativity
m>>=(\x -> k x>>=h) = (m>>=k)>>=h
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as ' can be understood as the >>= bsdo expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as ' can be understood as the >> bsdo expression
do as bs
Inject a value into the monadic type.
Instances
| Monad IResult | |
| Monad Parser | |
| Monad Result | |
| Monad Complex | Since: base-4.9.0.0 |
| Monad Identity | Since: base-4.8.0.0 |
| Monad First | Since: base-4.8.0.0 |
| Monad Last | Since: base-4.8.0.0 |
| Monad Down | Since: base-4.11.0.0 |
| Monad First | Since: base-4.9.0.0 |
| Monad Last | Since: base-4.9.0.0 |
| Monad Max | Since: base-4.9.0.0 |
| Monad Min | Since: base-4.9.0.0 |
| Monad Dual | Since: base-4.8.0.0 |
| Monad Product | Since: base-4.8.0.0 |
| Monad Sum | Since: base-4.8.0.0 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad STM | Since: base-4.3.0.0 |
| Monad Par1 | Since: base-4.9.0.0 |
| Monad P | Since: base-2.1 |
| Monad ReadP | Since: base-2.1 |
| Monad ReadPrec | Since: base-2.1 |
| Monad Seq | |
| Monad Tree | |
| Monad DNonEmpty | |
| Monad DList | |
| Monad IO | Since: base-2.1 |
| Monad Array | |
| Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # | |
| Monad Q | |
| Monad Vector | |
| Monad Maybe | Since: base-2.1 |
| Monad Solo | Since: base-4.15 |
| Monad List | Since: base-2.1 |
| Monad (Parser i) | |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
| ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monad (Sem f) | |
| Monad m => Monad (ResourceT m) | |
| Semigroup a => Monad (These a) | |
| Semigroup a => Monad (These a) | |
| Monad m => Monad (MaybeT m) | |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
| Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
| Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
| Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
| Monad (Tagged s) | |
| (Monoid w, Functor m, Monad m) => Monad (AccumT w m) | |
| Monad m => Monad (ExceptT e m) | |
| Monad m => Monad (IdentityT m) | |
| Monad m => Monad (ReaderT r m) | |
| Monad m => Monad (SelectT r m) | |
| Monad m => Monad (StateT s m) | |
| Monad m => Monad (StateT s m) | |
| Monad m => Monad (WriterT w m) | |
| (Monoid w, Monad m) => Monad (WriterT w m) | |
| (Monoid w, Monad m) => Monad (WriterT w m) | |
| Monad m => Monad (Reverse m) | Derived instance. |
| (Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
| (Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
| (Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
| Monad (ConduitT i o m) | |
| (Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
| Monad (ContT r m) | |
| (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
| Monad ((->) r) | Since: base-2.1 |
| Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
| Monad m => Monad (RWST r w s m) | |
| (Monoid w, Monad m) => Monad (RWST r w s m) | |
| (Monoid w, Monad m) => Monad (RWST r w s m) | |
| Monad m => Monad (Pipe l i o u m) | |
class Monad m => MonadFail (m :: Type -> Type) where #
When a value is bound in do-notation, the pattern on the left
hand side of <- might not match. In this case, this class
provides a function to recover.
A Monad without a MonadFail instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat).
Instances of MonadFail should satisfy the following law: fail s should
be a left zero for >>=,
fail s >>= f = fail s
If your Monad is also MonadPlus, a popular definition is
fail _ = mzero
fail s should be an action that runs in the monad itself, not an
exception (except in instances of MonadIO). In particular,
fail should not be implemented in terms of error.
Since: base-4.9.0.0
Instances
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>)
Instances
| MonadPlus IResult | |
| MonadPlus Parser | |
| MonadPlus Result | |
| MonadPlus STM | Takes the first non- Since: base-4.3.0.0 |
| MonadPlus P | Since: base-2.1 |
Defined in Text.ParserCombinators.ReadP | |
| MonadPlus ReadP | Since: base-2.1 |
| MonadPlus ReadPrec | Since: base-2.1 |
| MonadPlus Seq | |
| MonadPlus DList | |
| MonadPlus IO | Takes the first non-throwing Since: base-4.9.0.0 |
| MonadPlus Array | |
| MonadPlus SmallArray | |
Defined in Data.Primitive.SmallArray | |
| MonadPlus Vector | |
| MonadPlus Maybe | Picks the leftmost Since: base-2.1 |
| MonadPlus List | Combines lists by concatenation, starting from the empty list. Since: base-2.1 |
| MonadPlus (Parser i) | |
| (ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow | |
| MonadPlus (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Member NonDet r => MonadPlus (Sem r) | Since: polysemy-0.2.1.0 |
| MonadPlus m => MonadPlus (ResourceT m) | Since 1.1.5 |
| Monad m => MonadPlus (MaybeT m) | |
| MonadPlus m => MonadPlus (Kleisli m a) | Since: base-4.14.0.0 |
| MonadPlus f => MonadPlus (Ap f) | Since: base-4.12.0.0 |
| MonadPlus f => MonadPlus (Alt f) | Since: base-4.8.0.0 |
| MonadPlus f => MonadPlus (Rec1 f) | Since: base-4.9.0.0 |
| (Monoid w, Functor m, MonadPlus m) => MonadPlus (AccumT w m) | |
| (Monad m, Monoid e) => MonadPlus (ExceptT e m) | |
| MonadPlus m => MonadPlus (IdentityT m) | |
| MonadPlus m => MonadPlus (ReaderT r m) | |
| MonadPlus m => MonadPlus (SelectT r m) | |
| MonadPlus m => MonadPlus (StateT s m) | |
| MonadPlus m => MonadPlus (StateT s m) | |
| (Functor m, MonadPlus m) => MonadPlus (WriterT w m) | |
| (Monoid w, MonadPlus m) => MonadPlus (WriterT w m) | |
| (Monoid w, MonadPlus m) => MonadPlus (WriterT w m) | |
| MonadPlus m => MonadPlus (Reverse m) | Derived instance. |
| (MonadPlus f, MonadPlus g) => MonadPlus (Product f g) | Since: base-4.9.0.0 |
| (MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) | Since: base-4.9.0.0 |
| MonadPlus f => MonadPlus (M1 i c f) | Since: base-4.9.0.0 |
| (Functor m, MonadPlus m) => MonadPlus (RWST r w s m) | |
| (Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) | |
| (Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) | |
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- Identity
pureid<*>v = v- Composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- Homomorphism
puref<*>purex =pure(f x)- Interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
Example
Used in combination with (, <$>)( can be used to build a record.<*>)
>>>data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>produceFoo :: Applicative f => f Foo
>>>produceBar :: Applicative f => f Bar>>>produceBaz :: Applicative f => f Baz
>>>mkState :: Applicative f => f MyState>>>mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2 that is more
efficient than the default one. In particular, if fmap is an
expensive operation, it is likely better to use liftA2 than to
fmap over the structure and then use <*>.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*> and fmap.
Example
>>>liftA2 (,) (Just 3) (Just 5)Just (3,5)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe,
you can chain Maybe computations, with a possible "early return"
in case of Nothing.
>>>Just 2 *> Just 3Just 3
>>>Nothing *> Just 3Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>import Data.Char>>>import Text.ParserCombinators.ReadP>>>let p = string "my name is " *> munch1 isAlpha <* eof>>>readP_to_S p "my name is Simon"[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
| Applicative IResult | |
| Applicative Parser | |
| Applicative Result | |
| Applicative Concurrently | |
Defined in Control.Concurrent.Async.Internal Methods pure :: a -> Concurrently a # (<*>) :: Concurrently (a -> b) -> Concurrently a -> Concurrently b # liftA2 :: (a -> b -> c) -> Concurrently a -> Concurrently b -> Concurrently c # (*>) :: Concurrently a -> Concurrently b -> Concurrently b # (<*) :: Concurrently a -> Concurrently b -> Concurrently a # | |
| Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN
= ZipList (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Applicative Complex | Since: base-4.9.0.0 |
| Applicative Identity | Since: base-4.8.0.0 |
| Applicative First | Since: base-4.8.0.0 |
| Applicative Last | Since: base-4.8.0.0 |
| Applicative Down | Since: base-4.11.0.0 |
| Applicative First | Since: base-4.9.0.0 |
| Applicative Last | Since: base-4.9.0.0 |
| Applicative Max | Since: base-4.9.0.0 |
| Applicative Min | Since: base-4.9.0.0 |
| Applicative Dual | Since: base-4.8.0.0 |
| Applicative Product | Since: base-4.8.0.0 |
| Applicative Sum | Since: base-4.8.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Applicative STM | Since: base-4.8.0.0 |
| Applicative Par1 | Since: base-4.9.0.0 |
| Applicative P | Since: base-4.5.0.0 |
| Applicative ReadP | Since: base-4.6.0.0 |
| Applicative ReadPrec | Since: base-4.6.0.0 |
| Applicative Seq | Since: containers-0.5.4 |
| Applicative Tree | |
| Applicative DNonEmpty | |
Defined in Data.DList.DNonEmpty.Internal | |
| Applicative DList | |
| Applicative IO | Since: base-2.1 |
| Applicative Array | |
| Applicative SmallArray | |
Defined in Data.Primitive.SmallArray Methods pure :: a -> SmallArray a # (<*>) :: SmallArray (a -> b) -> SmallArray a -> SmallArray b # liftA2 :: (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c # (*>) :: SmallArray a -> SmallArray b -> SmallArray b # (<*) :: SmallArray a -> SmallArray b -> SmallArray a # | |
| Applicative Q | |
| Applicative Vector | |
| Applicative Maybe | Since: base-2.1 |
| Applicative Solo | Since: base-4.15 |
| Applicative List | Since: base-2.1 |
| Applicative (ConcurrentlyE e) | |
Defined in Control.Concurrent.Async.Internal Methods pure :: a -> ConcurrentlyE e a # (<*>) :: ConcurrentlyE e (a -> b) -> ConcurrentlyE e a -> ConcurrentlyE e b # liftA2 :: (a -> b -> c) -> ConcurrentlyE e a -> ConcurrentlyE e b -> ConcurrentlyE e c # (*>) :: ConcurrentlyE e a -> ConcurrentlyE e b -> ConcurrentlyE e b # (<*) :: ConcurrentlyE e a -> ConcurrentlyE e b -> ConcurrentlyE e a # | |
| Applicative (Parser i) | |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Applicative (Either e) | Since: base-3.0 |
| Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monad m => Applicative (ZipSource m) | |
Defined in Data.Conduit.Internal.Conduit | |
| Applicative (Sem f) | |
| Applicative m => Applicative (ResourceT m) | |
Defined in Control.Monad.Trans.Resource.Internal | |
| Semigroup a => Applicative (These a) | |
| Semigroup a => Applicative (These a) | |
| (Functor m, Monad m) => Applicative (MaybeT m) | |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
| Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
| (Generic1 f, Applicative (Rep1 f)) => Applicative (Generically1 f) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods pure :: a -> Generically1 f a # (<*>) :: Generically1 f (a -> b) -> Generically1 f a -> Generically1 f b # liftA2 :: (a -> b -> c) -> Generically1 f a -> Generically1 f b -> Generically1 f c # (*>) :: Generically1 f a -> Generically1 f b -> Generically1 f b # (<*) :: Generically1 f a -> Generically1 f b -> Generically1 f a # | |
| Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
| Monad m => Applicative (ZipSink i m) | |
Defined in Data.Conduit.Internal.Conduit | |
| (Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
| Applicative (Tagged s) | |
| Applicative f => Applicative (Backwards f) | Apply |
Defined in Control.Applicative.Backwards | |
| (Monoid w, Functor m, Monad m) => Applicative (AccumT w m) | |
Defined in Control.Monad.Trans.Accum | |
| (Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
| Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
| Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
| (Functor m, Monad m) => Applicative (SelectT r m) | |
Defined in Control.Monad.Trans.Select | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
| (Functor m, Monad m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.CPS | |
| (Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
| (Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
| Monoid a => Applicative (Constant a :: Type -> Type) | |
Defined in Data.Functor.Constant | |
| Applicative f => Applicative (Reverse f) | Derived instance. |
| (Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
| (Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
| (Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
| Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
| Applicative (ConduitT i o m) | |
Defined in Data.Conduit.Internal.Conduit Methods pure :: a -> ConduitT i o m a # (<*>) :: ConduitT i o m (a -> b) -> ConduitT i o m a -> ConduitT i o m b # liftA2 :: (a -> b -> c) -> ConduitT i o m a -> ConduitT i o m b -> ConduitT i o m c # (*>) :: ConduitT i o m a -> ConduitT i o m b -> ConduitT i o m b # (<*) :: ConduitT i o m a -> ConduitT i o m b -> ConduitT i o m a # | |
| Monad m => Applicative (ZipConduit i o m) | |
Defined in Data.Conduit.Internal.Conduit Methods pure :: a -> ZipConduit i o m a # (<*>) :: ZipConduit i o m (a -> b) -> ZipConduit i o m a -> ZipConduit i o m b # liftA2 :: (a -> b -> c) -> ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m c # (*>) :: ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m b # (<*) :: ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m a # | |
| (Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
| Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
| (Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
| Applicative ((->) r) | Since: base-2.1 |
| (Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
| Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
| (Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.CPS | |
| (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
| (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict | |
| Monad m => Applicative (Pipe l i o u m) | |
Defined in Data.Conduit.Internal.Pipe Methods pure :: a -> Pipe l i o u m a # (<*>) :: Pipe l i o u m (a -> b) -> Pipe l i o u m a -> Pipe l i o u m b # liftA2 :: (a -> b -> c) -> Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m c # (*>) :: Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m b # (<*) :: Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m a # | |
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some and many should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
class Contravariant (f :: Type -> Type) where #
The class of contravariant functors.
Whereas in Haskell, one can think of a Functor as containing or producing
values, a contravariant functor is a functor that can be thought of as
consuming values.
As an example, consider the type of predicate functions a -> Bool. One
such predicate might be negative x = x < 0, which
classifies integers as to whether they are negative. However, given this
predicate, we can re-use it in other situations, providing we have a way to
map values to integers. For instance, we can use the negative predicate
on a person's bank balance to work out if they are currently overdrawn:
newtype Predicate a = Predicate { getPredicate :: a -> Bool }
instance Contravariant Predicate where
contramap :: (a' -> a) -> (Predicate a -> Predicate a')
contramap f (Predicate p) = Predicate (p . f)
| `- First, map the input...
`----- then apply the predicate.
overdrawn :: Predicate Person
overdrawn = contramap personBankBalance negative
Any instance should be subject to the following laws:
Note, that the second law follows from the free theorem of the type of
contramap and the first law, so you need only check that the former
condition holds.
Minimal complete definition
Instances
class Contravariant f => Divisible (f :: Type -> Type) where #
A Divisible contravariant functor is the contravariant analogue of Applicative.
Continuing the intuition that Contravariant functors consume input, a Divisible
contravariant functor also has the ability to be composed "beside" another contravariant
functor.
Serializers provide a good example of Divisible contravariant functors. To begin
let's start with the type of serializers for specific types:
newtype Serializer a = Serializer { runSerializer :: a -> ByteString }
This is a contravariant functor:
instance Contravariant Serializer where contramap f s = Serializer (runSerializer s . f)
That is, given a serializer for a (s :: Serializer a), and a way to turn
bs into as (a mapping f :: b -> a), we have a serializer for b:
contramap f s :: Serializer b.
Divisible gives us a way to combine two serializers that focus on different
parts of a structure. If we postulate the existance of two primitive
serializers - string :: Serializer String and int :: Serializer Int, we
would like to be able to combine these into a serializer for pairs of
Strings and Ints. How can we do this? Simply run both serializers and
combine their output!
data StringAndInt = StringAndInt String Int
stringAndInt :: Serializer StringAndInt
stringAndInt = Serializer $ \(StringAndInt s i) ->
let sBytes = runSerializer string s
iBytes = runSerializer int i
in sBytes <> iBytes
divide is a generalization by also taking a contramap like function to
split any a into a pair. This conveniently allows you to target fields of
a record, for instance, by extracting the values under two fields and
combining them into a tuple.
To complete the example, here is how to write stringAndInt using a
Divisible instance:
instance Divisible Serializer where
conquer = Serializer (const mempty)
divide toBC bSerializer cSerializer = Serializer $ \a ->
case toBC a of
(b, c) ->
let bBytes = runSerializer bSerializer b
cBytes = runSerializer cSerializer c
in bBytes <> cBytes
stringAndInt :: Serializer StringAndInt
stringAndInt =
divide (\(StringAndInt s i) -> (s, i)) string int
Methods
divide :: (a -> (b, c)) -> f b -> f c -> f a #
Conquer acts as an identity for combining Divisible functors.
Instances
class Functor (f :: Type -> Type) where #
A type f is a Functor if it provides a function fmap which, given any types a and b
lets you apply any function from (a -> b) to turn an f a into an f b, preserving the
structure of f. Furthermore f needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap and
the first law, so you need only check that the former condition holds.
See https://www.schoolofhaskell.com/user/edwardk/snippets/fmap or
https://github.com/quchen/articles/blob/master/second_functor_law.md
for an explanation.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
fmap is used to apply a function of type (a -> b) to a value of type f a,
where f is a functor, to produce a value of type f b.
Note that for any type constructor with more than one parameter (e.g., Either),
only the last type parameter can be modified with fmap (e.g., b in `Either a b`).
Some type constructors with two parameters or more have a instance that allows
both the last and the penultimate parameters to be mapped over.Bifunctor
Examples
Convert from a to a Maybe IntMaybe String
using show:
>>>fmap show NothingNothing>>>fmap show (Just 3)Just "3"
Convert from an to an
Either Int IntEither Int String using show:
>>>fmap show (Left 17)Left 17>>>fmap show (Right 17)Right "17"
Double each element of a list:
>>>fmap (*2) [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>fmap even (2,2)(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements (a,b,c) can also be written (,,) a b c and its Functor instance
is defined for Functor ((,,) a b) (i.e., only the third parameter is free to be mapped over
with fmap).
It explains why fmap can be used with tuples containing values of different types as in the
following example:
>>>fmap even ("hello", 1.0, 4)("hello",1.0,True)
Instances
| Functor KeyMap | |
| Functor FromJSONKeyFunction | Only law abiding up to interpretation |
Defined in Data.Aeson.Types.FromJSON Methods fmap :: (a -> b) -> FromJSONKeyFunction a -> FromJSONKeyFunction b # (<$) :: a -> FromJSONKeyFunction b -> FromJSONKeyFunction a # | |
| Functor IResult | |
| Functor Parser | |
| Functor Result | |
| Functor Async | |
| Functor Concurrently | |
Defined in Control.Concurrent.Async.Internal Methods fmap :: (a -> b) -> Concurrently a -> Concurrently b # (<$) :: a -> Concurrently b -> Concurrently a # | |
| Functor ZipList | Since: base-2.1 |
| Functor Handler | Since: base-4.6.0.0 |
| Functor Complex | Since: base-4.9.0.0 |
| Functor Identity | Since: base-4.8.0.0 |
| Functor First | Since: base-4.8.0.0 |
| Functor Last | Since: base-4.8.0.0 |
| Functor Down | Since: base-4.11.0.0 |
| Functor First | Since: base-4.9.0.0 |
| Functor Last | Since: base-4.9.0.0 |
| Functor Max | Since: base-4.9.0.0 |
| Functor Min | Since: base-4.9.0.0 |
| Functor Dual | Since: base-4.8.0.0 |
| Functor Product | Since: base-4.8.0.0 |
| Functor Sum | Since: base-4.8.0.0 |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Functor STM | Since: base-4.3.0.0 |
| Functor Par1 | Since: base-4.9.0.0 |
| Functor P | Since: base-4.8.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| Functor ReadP | Since: base-2.1 |
| Functor ReadPrec | Since: base-2.1 |
| Functor Flush | |
| Functor IntMap | |
| Functor Digit | |
| Functor Elem | |
| Functor FingerTree | |
Defined in Data.Sequence.Internal Methods fmap :: (a -> b) -> FingerTree a -> FingerTree b # (<$) :: a -> FingerTree b -> FingerTree a # | |
| Functor Node | |
| Functor Seq | |
| Functor ViewL | |
| Functor ViewR | |
| Functor Tree | |
| Functor DNonEmpty | |
| Functor DList | |
| Functor IO | Since: base-2.1 |
| Functor QueueResult | |
Defined in Polysemy.Conc.Data.QueueResult Methods fmap :: (a -> b) -> QueueResult a -> QueueResult b # (<$) :: a -> QueueResult b -> QueueResult a # | |
| Functor AnnotDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods fmap :: (a -> b) -> AnnotDetails a -> AnnotDetails b # (<$) :: a -> AnnotDetails b -> AnnotDetails a # | |
| Functor Doc | |
| Functor Span | |
| Functor Array | |
| Functor SmallArray | |
Defined in Data.Primitive.SmallArray Methods fmap :: (a -> b) -> SmallArray a -> SmallArray b # (<$) :: a -> SmallArray b -> SmallArray a # | |
| Functor Maybe | |
| Functor Q | |
| Functor TyVarBndr | |
| Functor Vector | |
| Functor Maybe | Since: base-2.1 |
| Functor Solo | Since: base-4.15 |
| Functor List | Since: base-2.1 |
| Functor (Tagged2 s) | |
Defined in Data.Aeson.Types.Generic | |
| Functor (ConcurrentlyE e) | |
Defined in Control.Concurrent.Async.Internal Methods fmap :: (a -> b) -> ConcurrentlyE e a -> ConcurrentlyE e b # (<$) :: a -> ConcurrentlyE e b -> ConcurrentlyE e a # | |
| Functor (IResult i) | |
| Functor (Parser i) | |
| Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Functor (Either a) | Since: base-3.0 |
| Functor (Arg a) | Since: base-4.9.0.0 |
| Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monad m => Functor (ZipSource m) | |
| Functor (Map k) | |
| Monad m => Functor (Handler m) | |
| Functor (Sem f) | |
| Functor m => Functor (ResourceT m) | |
| Functor (Either a) | |
| Functor (These a) | |
| Functor (Pair e) | |
| Functor (These a) | |
| Functor m => Functor (MaybeT m) | |
| Functor (HashMap k) | |
| Functor ((,) a) | Since: base-2.1 |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Functor m => Functor (Kleisli m a) | Since: base-4.14.0.0 |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
| Functor f => Functor (Alt f) | Since: base-4.8.0.0 |
| (Generic1 f, Functor (Rep1 f)) => Functor (Generically1 f) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods fmap :: (a -> b) -> Generically1 f a -> Generically1 f b # (<$) :: a -> Generically1 f b -> Generically1 f a # | |
| Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
| Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| Monad m => Functor (ZipSink i m) | |
| (Applicative f, Monad f) => Functor (WhenMissing f x) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b # (<$) :: a -> WhenMissing f x b -> WhenMissing f x a # | |
| Functor (Union r mWoven) | |
| Functor (Weaving e m) | |
| Functor (Tagged s) | |
| (Functor f, Functor g) => Functor (These1 f g) | |
| Functor f => Functor (Backwards f) | Derived instance. |
| Functor m => Functor (AccumT w m) | |
| Functor m => Functor (ExceptT e m) | |
| Functor m => Functor (IdentityT m) | |
| Functor m => Functor (ReaderT r m) | |
| Functor m => Functor (SelectT r m) | |
| Functor m => Functor (StateT s m) | |
| Functor m => Functor (StateT s m) | |
| Functor m => Functor (WriterT w m) | |
| Functor m => Functor (WriterT w m) | |
| Functor m => Functor (WriterT w m) | |
| Functor (Constant a :: Type -> Type) | |
| Functor f => Functor (Reverse f) | Derived instance. |
| Functor ((,,) a b) | Since: base-4.14.0.0 |
| (Functor f, Functor g) => Functor (Product f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (Sum f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
| Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (ConduitT i o m) | |
| Functor (ZipConduit i o m) | |
Defined in Data.Conduit.Internal.Conduit Methods fmap :: (a -> b) -> ZipConduit i o m a -> ZipConduit i o m b # (<$) :: a -> ZipConduit i o m b -> ZipConduit i o m a # | |
| Functor f => Functor (WhenMatched f x y) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # (<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Functor (WhenMissing f k x) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # (<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a # | |
| Functor (ContT r m) | |
| Functor ((,,,) a b c) | Since: base-4.14.0.0 |
| Functor ((->) r) | Since: base-2.1 |
| (Functor f, Functor g) => Functor (Compose f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
| Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
| Functor f => Functor (WhenMatched f k x y) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # (<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
| Functor m => Functor (RWST r w s m) | |
| Functor m => Functor (RWST r w s m) | |
| Functor m => Functor (RWST r w s m) | |
| Functor ((,,,,) a b c d) | Since: base-4.18.0.0 |
| Monad m => Functor (Pipe l i o u m) | |
| Functor ((,,,,,) a b c d e) | Since: base-4.18.0.0 |
| Functor ((,,,,,,) a b c d e f) | Since: base-4.18.0.0 |
class (forall a. Functor (p a)) => Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left value or the Right value,
or both at the same time.
Formally, the class Bifunctor represents a bifunctor
from Hask -> Hask.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor by either defining bimap or by
defining both first and second. A partially applied Bifunctor
must be a Functor and the second method must agree with fmap.
From this it follows that:
secondid=id
If you supply bimap, you should ensure that:
bimapidid≡id
If you supply first and second, ensure:
firstid≡idsecondid≡id
If you supply both, you should also ensure:
bimapf g ≡firstf.secondg
These ensure by parametricity:
bimap(f.g) (h.i) ≡bimapf h.bimapg ifirst(f.g) ≡firstf.firstgsecond(f.g) ≡secondf.secondg
Since 4.18.0.0 Functor is a superclass of 'Bifunctor.
Since: base-4.8.0.0
Methods
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #
Map over both arguments at the same time.
bimapf g ≡firstf.secondg
Examples
>>>bimap toUpper (+1) ('j', 3)('J',4)
>>>bimap toUpper (+1) (Left 'j')Left 'J'
>>>bimap toUpper (+1) (Right 3)Right 4
Instances
| Bifunctor ConcurrentlyE | |
Defined in Control.Concurrent.Async.Internal Methods bimap :: (a -> b) -> (c -> d) -> ConcurrentlyE a c -> ConcurrentlyE b d # first :: (a -> b) -> ConcurrentlyE a c -> ConcurrentlyE b c # second :: (b -> c) -> ConcurrentlyE a b -> ConcurrentlyE a c # | |
| Bifunctor Either | Since: base-4.8.0.0 |
| Bifunctor Arg | Since: base-4.9.0.0 |
| Bifunctor Either | |
| Bifunctor These | |
| Bifunctor Pair | |
| Bifunctor These | |
| Bifunctor (,) | Class laws for tuples hold only up to laziness. Both
Since: base-4.8.0.0 |
| Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
| Bifunctor (Tagged :: Type -> Type -> Type) | |
| Bifunctor (Constant :: Type -> Type -> Type) | |
| Bifunctor ((,,) x1) | Since: base-4.8.0.0 |
| Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
| Bifunctor ((,,,) x1 x2) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,) x1 x2 x3) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,,) x1 x2 x3 x4) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) | Since: base-4.8.0.0 |
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
You can alternatively define sconcat instead of (<>), in which case the
laws are:
Since: base-4.9.0.0
Methods
(<>) :: a -> a -> a infixr 6 #
An associative operation.
>>>[1,2,3] <> [4,5,6][1,2,3,4,5,6]
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
>>>import Data.List.NonEmpty (NonEmpty (..))>>>sconcat $ "Hello" :| [" ", "Haskell", "!"]"Hello Haskell!"
stimes :: Integral b => b -> a -> a #
Repeat a value n times.
Given that this works on a Semigroup it is allowed to fail if
you request 0 or fewer repetitions, and the default definition
will do so.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by
picking stimes = or stimesIdempotentstimes =
respectively.stimesIdempotentMonoid
>>>stimes 4 [1][1,1,1,1]
Instances
| Semigroup Series | |
| Semigroup Key | |
| Semigroup More | |
| Semigroup ByteArray | Since: base-4.17.0.0 |
| Semigroup All | Since: base-4.9.0.0 |
| Semigroup Any | Since: base-4.9.0.0 |
| Semigroup Void | Since: base-4.9.0.0 |
| Semigroup ByteString | |
Defined in Data.ByteString.Internal.Type Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
| Semigroup ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
| Semigroup ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (<>) :: ShortByteString -> ShortByteString -> ShortByteString # sconcat :: NonEmpty ShortByteString -> ShortByteString # stimes :: Integral b => b -> ShortByteString -> ShortByteString # | |
| Semigroup IntSet | Since: containers-0.5.7 |
| Semigroup OsString | |
| Semigroup PosixString | |
Defined in System.OsString.Internal.Types Methods (<>) :: PosixString -> PosixString -> PosixString # sconcat :: NonEmpty PosixString -> PosixString # stimes :: Integral b => b -> PosixString -> PosixString # | |
| Semigroup WindowsString | |
Defined in System.OsString.Internal.Types Methods (<>) :: WindowsString -> WindowsString -> WindowsString # sconcat :: NonEmpty WindowsString -> WindowsString # stimes :: Integral b => b -> WindowsString -> WindowsString # | |
| Semigroup PluginRecompile | |
Defined in GHC.Driver.Plugins Methods (<>) :: PluginRecompile -> PluginRecompile -> PluginRecompile # sconcat :: NonEmpty PluginRecompile -> PluginRecompile # stimes :: Integral b => b -> PluginRecompile -> PluginRecompile # | |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Semigroup MsgFlag | |
| Semigroup OsString | |
| Semigroup PosixString | |
Defined in System.OsString.Internal.Types Methods (<>) :: PosixString -> PosixString -> PosixString # sconcat :: NonEmpty PosixString -> PosixString # stimes :: Integral b => b -> PosixString -> PosixString # | |
| Semigroup WindowsString | |
Defined in System.OsString.Internal.Types Methods (<>) :: WindowsString -> WindowsString -> WindowsString # sconcat :: NonEmpty WindowsString -> WindowsString # stimes :: Integral b => b -> WindowsString -> WindowsString # | |
| Semigroup Doc | |
| Semigroup ShortText | |
| Semigroup () | Since: base-4.9.0.0 |
| Semigroup (KeyMap v) | |
| Semigroup (IResult a) | |
| Semigroup (Parser a) | |
| Semigroup (Result a) | |
| Semigroup a => Semigroup (Concurrently a) | Only defined by Since: async-2.1.0 |
Defined in Control.Concurrent.Async.Internal Methods (<>) :: Concurrently a -> Concurrently a -> Concurrently a # sconcat :: NonEmpty (Concurrently a) -> Concurrently a # stimes :: Integral b => b -> Concurrently a -> Concurrently a # | |
| Semigroup (Comparison a) |
(<>) :: Comparison a -> Comparison a -> Comparison a Comparison cmp <> Comparison cmp' = Comparison a a' -> cmp a a' <> cmp a a' |
Defined in Data.Functor.Contravariant Methods (<>) :: Comparison a -> Comparison a -> Comparison a # sconcat :: NonEmpty (Comparison a) -> Comparison a # stimes :: Integral b => b -> Comparison a -> Comparison a # | |
| Semigroup (Equivalence a) |
(<>) :: Equivalence a -> Equivalence a -> Equivalence a Equivalence equiv <> Equivalence equiv' = Equivalence a b -> equiv a b && equiv' a b |
Defined in Data.Functor.Contravariant Methods (<>) :: Equivalence a -> Equivalence a -> Equivalence a # sconcat :: NonEmpty (Equivalence a) -> Equivalence a # stimes :: Integral b => b -> Equivalence a -> Equivalence a # | |
| Semigroup (Predicate a) |
(<>) :: Predicate a -> Predicate a -> Predicate a Predicate pred <> Predicate pred' = Predicate a -> pred a && pred' a |
| Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
| Semigroup (First a) | Since: base-4.9.0.0 |
| Semigroup (Last a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
| Semigroup (First a) | Since: base-4.9.0.0 |
| Semigroup (Last a) | Since: base-4.9.0.0 |
| Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
| Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
| Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
| Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
| Semigroup (Endo a) | Since: base-4.9.0.0 |
| Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
| Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
| Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (STM a) | Since: base-4.17.0.0 |
| (Generic a, Semigroup (Rep a ())) => Semigroup (Generically a) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods (<>) :: Generically a -> Generically a -> Generically a # sconcat :: NonEmpty (Generically a) -> Generically a # stimes :: Integral b => b -> Generically a -> Generically a # | |
| Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
| Semigroup (IntMap a) | Since: containers-0.5.7 |
| Semigroup (Seq a) | Since: containers-0.5.7 |
| Ord a => Semigroup (Intersection a) | |
Defined in Data.Set.Internal Methods (<>) :: Intersection a -> Intersection a -> Intersection a # sconcat :: NonEmpty (Intersection a) -> Intersection a # stimes :: Integral b => b -> Intersection a -> Intersection a # | |
| Semigroup (MergeSet a) | |
| Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
| Semigroup (DNonEmpty a) | |
| Semigroup (DList a) | |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
| Semigroup d => Semigroup (QueueResult d) | |
Defined in Polysemy.Conc.Data.QueueResult Methods (<>) :: QueueResult d -> QueueResult d -> QueueResult d # sconcat :: NonEmpty (QueueResult d) -> QueueResult d # stimes :: Integral b => b -> QueueResult d -> QueueResult d # | |
| Semigroup (Doc a) | |
| Semigroup (Array a) | Since: primitive-0.6.3.0 |
| Semigroup (PrimArray a) | Since: primitive-0.6.4.0 |
| Semigroup (SmallArray a) | Since: primitive-0.6.3.0 |
Defined in Data.Primitive.SmallArray Methods (<>) :: SmallArray a -> SmallArray a -> SmallArray a # sconcat :: NonEmpty (SmallArray a) -> SmallArray a # stimes :: Integral b => b -> SmallArray a -> SmallArray a # | |
| Semigroup a => Semigroup (Maybe a) | |
| Semigroup a => Semigroup (Q a) | Since: template-haskell-2.17.0.0 |
| (Hashable a, Eq a) => Semigroup (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
| Semigroup (Vector a) | |
| Prim a => Semigroup (Vector a) | |
| Storable a => Semigroup (Vector a) | |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (a) | Since: base-4.15 |
| Semigroup [a] | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (ConcurrentlyE e a) | Either the combination of the successful results, or the first failure. |
Defined in Control.Concurrent.Async.Internal Methods (<>) :: ConcurrentlyE e a -> ConcurrentlyE e a -> ConcurrentlyE e a # sconcat :: NonEmpty (ConcurrentlyE e a) -> ConcurrentlyE e a # stimes :: Integral b => b -> ConcurrentlyE e a -> ConcurrentlyE e a # | |
| Semigroup (Parser i a) | |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Op a b) |
(<>) :: Op a b -> Op a b -> Op a b Op f <> Op g = Op a -> f a <> g a |
| Semigroup (U1 p) | Since: base-4.12.0.0 |
| Semigroup (V1 p) | Since: base-4.12.0.0 |
| Ord k => Semigroup (Map k v) | |
| Semigroup a => Semigroup (Sem f a) | Since: polysemy-1.6.0.0 |
| Semigroup (Either a b) | |
| (Semigroup a, Semigroup b) => Semigroup (These a b) | |
| (Semigroup a, Semigroup b) => Semigroup (Pair a b) | |
| (Semigroup a, Semigroup b) => Semigroup (These a b) | |
| (Eq k, Hashable k) => Semigroup (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
| (Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
| Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
| Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
| Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
| Semigroup a => Semigroup (Tagged s a) | |
| Semigroup a => Semigroup (Constant a b) | |
| (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
| (Semigroup (f a), Semigroup (g a)) => Semigroup (Product f g a) | Since: base-4.16.0.0 |
| (Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
| Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
| Monad m => Semigroup (ConduitT i o m ()) | |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
| Semigroup (f (g a)) => Semigroup (Compose f g a) | Since: base-4.16.0.0 |
| Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
| Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
| Monad m => Semigroup (Pipe l i o u m ()) | |
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x<>mempty= x- Left identity
mempty<>x = x- Associativity
x(<>(y<>z) = (x<>y)<>zSemigrouplaw)- Concatenation
mconcat=foldr(<>)mempty
You can alternatively define mconcat instead of mempty, in which case the
laws are:
- Unit
mconcat(purex) = x- Multiplication
mconcat(joinxss) =mconcat(fmapmconcatxss)- Subclass
mconcat(toListxs) =sconcatxs
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Methods
Identity of mappend
>>>"Hello world" <> mempty"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation since base-4.11.0.0.
Should it be implemented manually, since mappend = (<>)mappend is a synonym for
(<>), it is expected that the two functions are defined the same
way. In a future GHC release mappend will be removed from Monoid.
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>mconcat ["Hello", " ", "Haskell", "!"]"Hello Haskell!"
Instances
| Monoid Series | |
| Monoid Key | |
| Monoid More | |
| Monoid ByteArray | Since: base-4.17.0.0 |
| Monoid All | Since: base-2.1 |
| Monoid Any | Since: base-2.1 |
| Monoid ByteString | |
Defined in Data.ByteString.Internal.Type Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods mappend :: ShortByteString -> ShortByteString -> ShortByteString # mconcat :: [ShortByteString] -> ShortByteString # | |
| Monoid IntSet | |
| Monoid OsString | "String-Concatenation" for |
| Monoid PosixString | |
Defined in System.OsString.Internal.Types Methods mempty :: PosixString # mappend :: PosixString -> PosixString -> PosixString # mconcat :: [PosixString] -> PosixString # | |
| Monoid WindowsString | |
Defined in System.OsString.Internal.Types Methods mempty :: WindowsString # mappend :: WindowsString -> WindowsString -> WindowsString # mconcat :: [WindowsString] -> WindowsString # | |
| Monoid PluginRecompile | |
Defined in GHC.Driver.Plugins Methods mappend :: PluginRecompile -> PluginRecompile -> PluginRecompile # mconcat :: [PluginRecompile] -> PluginRecompile # | |
| Monoid Ordering | Since: base-2.1 |
| Monoid MsgFlag | |
| Monoid OsString | "String-Concatenation" for |
| Monoid PosixString | |
Defined in System.OsString.Internal.Types Methods mempty :: PosixString # mappend :: PosixString -> PosixString -> PosixString # mconcat :: [PosixString] -> PosixString # | |
| Monoid WindowsString | |
Defined in System.OsString.Internal.Types Methods mempty :: WindowsString # mappend :: WindowsString -> WindowsString -> WindowsString # mconcat :: [WindowsString] -> WindowsString # | |
| Monoid Doc | |
| Monoid ShortText | |
| Monoid () | Since: base-2.1 |
| Monoid (KeyMap v) | |
| Monoid (IResult a) | |
| Monoid (Parser a) | |
| Monoid (Result a) | |
| (Semigroup a, Monoid a) => Monoid (Concurrently a) | Since: async-2.1.0 |
Defined in Control.Concurrent.Async.Internal Methods mempty :: Concurrently a # mappend :: Concurrently a -> Concurrently a -> Concurrently a # mconcat :: [Concurrently a] -> Concurrently a # | |
| Monoid (Comparison a) |
mempty :: Comparison a mempty = Comparison _ _ -> EQ |
Defined in Data.Functor.Contravariant Methods mempty :: Comparison a # mappend :: Comparison a -> Comparison a -> Comparison a # mconcat :: [Comparison a] -> Comparison a # | |
| Monoid (Equivalence a) |
mempty :: Equivalence a mempty = Equivalence _ _ -> True |
Defined in Data.Functor.Contravariant Methods mempty :: Equivalence a # mappend :: Equivalence a -> Equivalence a -> Equivalence a # mconcat :: [Equivalence a] -> Equivalence a # | |
| Monoid (Predicate a) |
mempty :: Predicate a mempty = _ -> True |
| Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
| Monoid (First a) | Since: base-2.1 |
| Monoid (Last a) | Since: base-2.1 |
| Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
| (Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
| (Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
| Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
| Monoid a => Monoid (Dual a) | Since: base-2.1 |
| Monoid (Endo a) | Since: base-2.1 |
| Num a => Monoid (Product a) | Since: base-2.1 |
| Num a => Monoid (Sum a) | Since: base-2.1 |
| Monoid a => Monoid (STM a) | Since: base-4.17.0.0 |
| (Generic a, Monoid (Rep a ())) => Monoid (Generically a) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods mempty :: Generically a # mappend :: Generically a -> Generically a -> Generically a # mconcat :: [Generically a] -> Generically a # | |
| Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
| Monoid (IntMap a) | |
| Monoid (Seq a) | |
| Monoid (MergeSet a) | |
| Ord a => Monoid (Set a) | |
| Monoid (DList a) | |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Monoid d => Monoid (QueueResult d) | |
Defined in Polysemy.Conc.Data.QueueResult Methods mempty :: QueueResult d # mappend :: QueueResult d -> QueueResult d -> QueueResult d # mconcat :: [QueueResult d] -> QueueResult d # | |
| Monoid (Doc a) | |
| Monoid (Array a) | |
| Monoid (PrimArray a) | Since: primitive-0.6.4.0 |
| Monoid (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods mempty :: SmallArray a # mappend :: SmallArray a -> SmallArray a -> SmallArray a # mconcat :: [SmallArray a] -> SmallArray a # | |
| Semigroup a => Monoid (Maybe a) | |
| Monoid a => Monoid (Q a) | Since: template-haskell-2.17.0.0 |
| (Hashable a, Eq a) => Monoid (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
| Monoid (Vector a) | |
| Prim a => Monoid (Vector a) | |
| Storable a => Monoid (Vector a) | |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Monoid a => Monoid (a) | Since: base-4.15 |
| Monoid [a] | Since: base-2.1 |
| (Semigroup a, Monoid a) => Monoid (ConcurrentlyE e a) | |
Defined in Control.Concurrent.Async.Internal Methods mempty :: ConcurrentlyE e a # mappend :: ConcurrentlyE e a -> ConcurrentlyE e a -> ConcurrentlyE e a # mconcat :: [ConcurrentlyE e a] -> ConcurrentlyE e a # | |
| Monoid (Parser i a) | |
| Monoid a => Monoid (Op a b) |
mempty :: Op a b mempty = Op _ -> mempty |
| Monoid (U1 p) | Since: base-4.12.0.0 |
| Ord k => Monoid (Map k v) | |
| Monoid a => Monoid (Sem f a) | Since: polysemy-1.6.0.0 |
| (Monoid a, Monoid b) => Monoid (Pair a b) | |
| (Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
| (Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
| Monoid b => Monoid (a -> b) | Since: base-2.1 |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
| Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
| Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
| (Semigroup a, Monoid a) => Monoid (Tagged s a) | |
| Monoid a => Monoid (Constant a b) | |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
| (Monoid (f a), Monoid (g a)) => Monoid (Product f g a) | Since: base-4.16.0.0 |
| (Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
| Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
| Monad m => Monoid (ConduitT i o m ()) | |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
| Monoid (f (g a)) => Monoid (Compose f g a) | Since: base-4.16.0.0 |
| Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
| Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
| Monad m => Monoid (Pipe l i o u m ()) | |
class Foldable (t :: Type -> Type) where #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
| Leaf a
| Node (Tree a) a (Tree a)
deriving FoldableA more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Methods
fold :: Monoid m => t m -> m #
Given a structure with elements whose type is a Monoid, combine them
via the monoid's ( operator. This fold is right-associative and
lazy in the accumulator. When you need a strict left-associative fold,
use <>)foldMap' instead, with id as the map.
Examples
Basic usage:
>>>fold [[1, 2, 3], [4, 5], [6], []][1,2,3,4,5,6]
>>>fold $ Node (Leaf (Sum 1)) (Sum 3) (Leaf (Sum 5))Sum {getSum = 9}
Folds of unbounded structures do not terminate when the monoid's
( operator is strict:<>)
>>>fold (repeat Nothing)* Hangs forever *
Lazy corecursive folds of unbounded structures are fine:
>>>take 12 $ fold $ map (\i -> [i..i+2]) [0..][0,1,2,1,2,3,2,3,4,3,4,5]>>>sum $ take 4000000 $ fold $ map (\i -> [i..i+2]) [0..]2666668666666
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>)foldMap'
instead.
Examples
Basic usage:
>>>foldMap Sum [1, 3, 5]Sum {getSum = 9}
>>>foldMap Product [1, 3, 5]Product {getProduct = 15}
>>>foldMap (replicate 3) [1, 2, 3][1,1,1,2,2,2,3,3,3]
When a Monoid's ( is lazy in its second argument, <>)foldMap can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>import qualified Data.ByteString.Lazy as L>>>import qualified Data.ByteString.Builder as B>>>let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20>>>let lbs = B.toLazyByteString $ foldMap bld [0..]>>>L.take 64 lbs"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldMap' :: Monoid m => (a -> m) -> t a -> m #
A left-associative variant of foldMap that is strict in the
accumulator. Use this method for strict reduction when partial
results are merged via (.<>)
Examples
Define a Monoid over finite bit strings under xor. Use it to
strictly compute the xor of a list of Int values.
>>>:set -XGeneralizedNewtypeDeriving>>>import Data.Bits (Bits, FiniteBits, xor, zeroBits)>>>import Data.Foldable (foldMap')>>>import Numeric (showHex)>>>>>>newtype X a = X a deriving (Eq, Bounded, Enum, Bits, FiniteBits)>>>instance Bits a => Semigroup (X a) where X a <> X b = X (a `xor` b)>>>instance Bits a => Monoid (X a) where mempty = X zeroBits>>>>>>let bits :: [Int]; bits = [0xcafe, 0xfeed, 0xdeaf, 0xbeef, 0x5411]>>>(\ (X a) -> showString "0x" . showHex a $ "") $ foldMap' X bits"0x42"
Since: base-4.13.0.0
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr can produce a terminating
expression from an unbounded list.
For a general Foldable structure this should be semantically identical
to,
foldr f z =foldrf z .toList
Examples
Basic usage:
>>>foldr (||) False [False, True, False]True
>>>foldr (||) False []False
>>>foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']"foodcba"
Infinite structures
⚠️ Applying foldr to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
( short-circuits on ||)True values, so the following terminates
because there is a True value finitely far from the left side:
>>>foldr (||) False (True : repeat False)True
But the following doesn't terminate:
>>>foldr (||) False (repeat False ++ [True])* Hangs forever *
Laziness in the second argument
Applying foldr to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined, but [] is more clear):
>>>take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)[1,4,7,10,13]
foldr' :: (a -> b -> b) -> b -> t a -> b #
foldr' is a variant of foldr that performs strict reduction from
right to left, i.e. starting with the right-most element. The input
structure must be finite, otherwise foldr' runs out of space
(diverges).
If you want a strict right fold in constant space, you need a structure
that supports faster than O(n) access to the right-most element, such
as Seq from the containers package.
This method does not run in constant space for structures such as lists
that don't support efficient right-to-left iteration and so require
O(n) space to perform right-to-left reduction. Use of this method
with such a structure is a hint that the chosen structure may be a poor
fit for the task at hand. If the order in which the elements are
combined is not important, use foldl' instead.
Since: base-4.6.0.0
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.
In the case of lists, foldl, when applied to a binary operator, a
starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. Like all left-associative folds,
foldl will diverge if given an infinite list.
If you want an efficient strict left-fold, you probably want to use
foldl' instead of foldl. The reason for this is that the latter
does not force the inner results (e.g. z `f` x1 in the above
example) before applying them to the operator (e.g. to (`f` x2)).
This results in a thunk chain O(n) elements long, which then must be
evaluated from the outside-in.
For a general Foldable structure this should be semantically identical
to:
foldl f z =foldlf z .toList
Examples
The first example is a strict fold, which in practice is best performed
with foldl'.
>>>foldl (+) 42 [1,2,3,4]52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.
>>>foldl (\acc c -> c : acc) "abcd" "efgh""hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:
>>>foldl (\a _ -> a) 0 $ repeat 1* Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl' or foldr instead.
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum).
For a general Foldable structure this should be semantically identical
to,
foldl' f z =foldl'f z .toList
Since: base-4.6.0.0
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
Examples
Basic usage:
>>>foldr1 (+) [1..4]10
>>>foldr1 (+) []Exception: Prelude.foldr1: empty list
>>>foldr1 (+) Nothing*** Exception: foldr1: empty structure
>>>foldr1 (-) [1..4]-2
>>>foldr1 (&&) [True, False, True, True]False
>>>foldr1 (||) [False, False, True, True]True
>>>foldr1 (+) [1..]* Hangs forever *
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
foldl1f =foldl1f .toList
Examples
Basic usage:
>>>foldl1 (+) [1..4]10
>>>foldl1 (+) []*** Exception: Prelude.foldl1: empty list
>>>foldl1 (+) Nothing*** Exception: foldl1: empty structure
>>>foldl1 (-) [1..4]-8
>>>foldl1 (&&) [True, False, True, True]False
>>>foldl1 (||) [False, False, True, True]True
>>>foldl1 (+) [1..]* Hangs forever *
List of elements of a structure, from left to right. If the entire list is intended to be reduced via a fold, just fold the structure directly bypassing the list.
Examples
Basic usage:
>>>toList Nothing[]
>>>toList (Just 42)[42]
>>>toList (Left "foo")[]
>>>toList (Node (Leaf 5) 17 (Node Empty 12 (Leaf 8)))[5,17,12,8]
For lists, toList is the identity:
>>>toList [1, 2, 3][1,2,3]
Since: base-4.8.0.0
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>null []True
>>>null [1]False
null is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>null [1..]False
Since: base-4.8.0.0
Returns the size/length of a finite structure as an Int. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>length []0
>>>length ['a', 'b', 'c']3>>>length [1..]* Hangs forever *
Since: base-4.8.0.0
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem is often used in infix form.
Examples
Basic usage:
>>>3 `elem` []False
>>>3 `elem` [1,2]False
>>>3 `elem` [1,2,3,4,5]True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>3 `elem` [1..]True
>>>3 `elem` ([4..] ++ [3])* Hangs forever *
Since: base-4.8.0.0
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>maximum [1..10]10
>>>maximum []*** Exception: Prelude.maximum: empty list
>>>maximum Nothing*** Exception: maximum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>minimum [1..10]1
>>>minimum []*** Exception: Prelude.minimum: empty list
>>>minimum Nothing*** Exception: minimum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
The sum function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>sum []0
>>>sum [42]42
>>>sum [1..10]55
>>>sum [4.1, 2.0, 1.7]7.8
>>>sum [1..]* Hangs forever *
Since: base-4.8.0.0
product :: Num a => t a -> a #
The product function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>product []1
>>>product [42]42
>>>product [1..10]3628800
>>>product [4.1, 2.0, 1.7]13.939999999999998
>>>product [1..]* Hangs forever *
Since: base-4.8.0.0
Instances
| Foldable KeyMap | |
Defined in Data.Aeson.KeyMap Methods fold :: Monoid m => KeyMap m -> m # foldMap :: Monoid m => (a -> m) -> KeyMap a -> m # foldMap' :: Monoid m => (a -> m) -> KeyMap a -> m # foldr :: (a -> b -> b) -> b -> KeyMap a -> b # foldr' :: (a -> b -> b) -> b -> KeyMap a -> b # foldl :: (b -> a -> b) -> b -> KeyMap a -> b # foldl' :: (b -> a -> b) -> b -> KeyMap a -> b # foldr1 :: (a -> a -> a) -> KeyMap a -> a # foldl1 :: (a -> a -> a) -> KeyMap a -> a # elem :: Eq a => a -> KeyMap a -> Bool # maximum :: Ord a => KeyMap a -> a # minimum :: Ord a => KeyMap a -> a # | |
| Foldable IResult | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => IResult m -> m # foldMap :: Monoid m => (a -> m) -> IResult a -> m # foldMap' :: Monoid m => (a -> m) -> IResult a -> m # foldr :: (a -> b -> b) -> b -> IResult a -> b # foldr' :: (a -> b -> b) -> b -> IResult a -> b # foldl :: (b -> a -> b) -> b -> IResult a -> b # foldl' :: (b -> a -> b) -> b -> IResult a -> b # foldr1 :: (a -> a -> a) -> IResult a -> a # foldl1 :: (a -> a -> a) -> IResult a -> a # elem :: Eq a => a -> IResult a -> Bool # maximum :: Ord a => IResult a -> a # minimum :: Ord a => IResult a -> a # | |
| Foldable Result | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => Result m -> m # foldMap :: Monoid m => (a -> m) -> Result a -> m # foldMap' :: Monoid m => (a -> m) -> Result a -> m # foldr :: (a -> b -> b) -> b -> Result a -> b # foldr' :: (a -> b -> b) -> b -> Result a -> b # foldl :: (b -> a -> b) -> b -> Result a -> b # foldl' :: (b -> a -> b) -> b -> Result a -> b # foldr1 :: (a -> a -> a) -> Result a -> a # foldl1 :: (a -> a -> a) -> Result a -> a # elem :: Eq a => a -> Result a -> Bool # maximum :: Ord a => Result a -> a # minimum :: Ord a => Result a -> a # | |
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
| Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
| Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
| Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
| Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
| Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
| Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
| Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
| Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
| Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
| Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
| Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
| Foldable Tree | Folds in preorder |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
| Foldable DNonEmpty | |
Defined in Data.DList.DNonEmpty.Internal Methods fold :: Monoid m => DNonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> DNonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> DNonEmpty a -> m # foldr :: (a -> b -> b) -> b -> DNonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> DNonEmpty a -> b # foldl :: (b -> a -> b) -> b -> DNonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> DNonEmpty a -> b # foldr1 :: (a -> a -> a) -> DNonEmpty a -> a # foldl1 :: (a -> a -> a) -> DNonEmpty a -> a # toList :: DNonEmpty a -> [a] # length :: DNonEmpty a -> Int # elem :: Eq a => a -> DNonEmpty a -> Bool # maximum :: Ord a => DNonEmpty a -> a # minimum :: Ord a => DNonEmpty a -> a # | |
| Foldable DList | |
Defined in Data.DList.Internal Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldMap' :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
| Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldMap' :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
| Foldable Array | |
Defined in Data.Primitive.Array Methods fold :: Monoid m => Array m -> m # foldMap :: Monoid m => (a -> m) -> Array a -> m # foldMap' :: Monoid m => (a -> m) -> Array a -> m # foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # minimum :: Ord a => Array a -> a # | |
| Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldMap' :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
| Foldable Maybe | |
Defined in Data.Strict.Maybe Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldMap' :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
| Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldMap' :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
| Foldable List | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
| Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
| Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
| Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
| Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
| Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
| Foldable (Either e) | |
Defined in Data.Strict.Either Methods fold :: Monoid m => Either e m -> m # foldMap :: Monoid m => (a -> m) -> Either e a -> m # foldMap' :: Monoid m => (a -> m) -> Either e a -> m # foldr :: (a -> b -> b) -> b -> Either e a -> b # foldr' :: (a -> b -> b) -> b -> Either e a -> b # foldl :: (b -> a -> b) -> b -> Either e a -> b # foldl' :: (b -> a -> b) -> b -> Either e a -> b # foldr1 :: (a -> a -> a) -> Either e a -> a # foldl1 :: (a -> a -> a) -> Either e a -> a # elem :: Eq a => a -> Either e a -> Bool # maximum :: Ord a => Either e a -> a # minimum :: Ord a => Either e a -> a # | |
| Foldable (These a) | |
Defined in Data.Strict.These Methods fold :: Monoid m => These a m -> m # foldMap :: Monoid m => (a0 -> m) -> These a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> These a a0 -> m # foldr :: (a0 -> b -> b) -> b -> These a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> These a a0 -> b # foldl :: (b -> a0 -> b) -> b -> These a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> These a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # toList :: These a a0 -> [a0] # elem :: Eq a0 => a0 -> These a a0 -> Bool # maximum :: Ord a0 => These a a0 -> a0 # minimum :: Ord a0 => These a a0 -> a0 # | |
| Foldable (Pair e) | |
Defined in Data.Strict.Tuple Methods fold :: Monoid m => Pair e m -> m # foldMap :: Monoid m => (a -> m) -> Pair e a -> m # foldMap' :: Monoid m => (a -> m) -> Pair e a -> m # foldr :: (a -> b -> b) -> b -> Pair e a -> b # foldr' :: (a -> b -> b) -> b -> Pair e a -> b # foldl :: (b -> a -> b) -> b -> Pair e a -> b # foldl' :: (b -> a -> b) -> b -> Pair e a -> b # foldr1 :: (a -> a -> a) -> Pair e a -> a # foldl1 :: (a -> a -> a) -> Pair e a -> a # elem :: Eq a => a -> Pair e a -> Bool # maximum :: Ord a => Pair e a -> a # minimum :: Ord a => Pair e a -> a # | |
| Foldable (These a) | |
Defined in Data.These Methods fold :: Monoid m => These a m -> m # foldMap :: Monoid m => (a0 -> m) -> These a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> These a a0 -> m # foldr :: (a0 -> b -> b) -> b -> These a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> These a a0 -> b # foldl :: (b -> a0 -> b) -> b -> These a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> These a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # toList :: These a a0 -> [a0] # elem :: Eq a0 => a0 -> These a a0 -> Bool # maximum :: Ord a0 => These a a0 -> a0 # minimum :: Ord a0 => These a a0 -> a0 # | |
| Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
| Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldMap' :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
| Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
| Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldMap' :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
| (Foldable f, Foldable g) => Foldable (These1 f g) | |
Defined in Data.Functor.These Methods fold :: Monoid m => These1 f g m -> m # foldMap :: Monoid m => (a -> m) -> These1 f g a -> m # foldMap' :: Monoid m => (a -> m) -> These1 f g a -> m # foldr :: (a -> b -> b) -> b -> These1 f g a -> b # foldr' :: (a -> b -> b) -> b -> These1 f g a -> b # foldl :: (b -> a -> b) -> b -> These1 f g a -> b # foldl' :: (b -> a -> b) -> b -> These1 f g a -> b # foldr1 :: (a -> a -> a) -> These1 f g a -> a # foldl1 :: (a -> a -> a) -> These1 f g a -> a # toList :: These1 f g a -> [a] # null :: These1 f g a -> Bool # length :: These1 f g a -> Int # elem :: Eq a => a -> These1 f g a -> Bool # maximum :: Ord a => These1 f g a -> a # minimum :: Ord a => These1 f g a -> a # | |
| Foldable f => Foldable (Backwards f) | Derived instance. |
Defined in Control.Applicative.Backwards Methods fold :: Monoid m => Backwards f m -> m # foldMap :: Monoid m => (a -> m) -> Backwards f a -> m # foldMap' :: Monoid m => (a -> m) -> Backwards f a -> m # foldr :: (a -> b -> b) -> b -> Backwards f a -> b # foldr' :: (a -> b -> b) -> b -> Backwards f a -> b # foldl :: (b -> a -> b) -> b -> Backwards f a -> b # foldl' :: (b -> a -> b) -> b -> Backwards f a -> b # foldr1 :: (a -> a -> a) -> Backwards f a -> a # foldl1 :: (a -> a -> a) -> Backwards f a -> a # toList :: Backwards f a -> [a] # null :: Backwards f a -> Bool # length :: Backwards f a -> Int # elem :: Eq a => a -> Backwards f a -> Bool # maximum :: Ord a => Backwards f a -> a # minimum :: Ord a => Backwards f a -> a # | |
| Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
| Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
| Foldable (Constant a :: Type -> Type) | |
Defined in Data.Functor.Constant Methods fold :: Monoid m => Constant a m -> m # foldMap :: Monoid m => (a0 -> m) -> Constant a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Constant a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # toList :: Constant a a0 -> [a0] # null :: Constant a a0 -> Bool # length :: Constant a a0 -> Int # elem :: Eq a0 => a0 -> Constant a a0 -> Bool # maximum :: Ord a0 => Constant a a0 -> a0 # minimum :: Ord a0 => Constant a a0 -> a0 # | |
| Foldable f => Foldable (Reverse f) | Fold from right to left. |
Defined in Data.Functor.Reverse Methods fold :: Monoid m => Reverse f m -> m # foldMap :: Monoid m => (a -> m) -> Reverse f a -> m # foldMap' :: Monoid m => (a -> m) -> Reverse f a -> m # foldr :: (a -> b -> b) -> b -> Reverse f a -> b # foldr' :: (a -> b -> b) -> b -> Reverse f a -> b # foldl :: (b -> a -> b) -> b -> Reverse f a -> b # foldl' :: (b -> a -> b) -> b -> Reverse f a -> b # foldr1 :: (a -> a -> a) -> Reverse f a -> a # foldl1 :: (a -> a -> a) -> Reverse f a -> a # toList :: Reverse f a -> [a] # length :: Reverse f a -> Int # elem :: Eq a => a -> Reverse f a -> Bool # maximum :: Ord a => Reverse f a -> a # minimum :: Ord a => Reverse f a -> a # | |
| (Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
| Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
| Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative (or,
therefore, Monad) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>traverse Just [1,2,3,4]Just [1,2,3,4]
>>>traverse id [Right 1, Right 2, Right 3, Right 4]Right [1,2,3,4]
In the next examples, we show that Nothing and Left values short
circuit the created structure.
>>>traverse (const Nothing) [1,2,3,4]Nothing
>>>traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]Nothing
>>>traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]Left 0
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_.
Examples
Basic usage:
For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>>sequenceA [Just 1, Just 2, Just 3]Just [1,2,3]
>>>sequenceA [Right 1, Right 2, Right 3]Right [1,2,3]
The next two example show Nothing and Just will short circuit
the resulting structure if present in the input. For more context,
check the Traversable instances for Either and Maybe.
>>>sequenceA [Just 1, Just 2, Just 3, Nothing]Nothing
>>>sequenceA [Right 1, Right 2, Right 3, Left 4]Left 4
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_.
Examples
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_.
Examples
Basic usage:
The first two examples are instances where the input and
and output of sequence are isomorphic.
>>>sequence $ Right [1,2,3,4][Right 1,Right 2,Right 3,Right 4]
>>>sequence $ [Right 1,Right 2,Right 3,Right 4]Right [1,2,3,4]
The following examples demonstrate short circuit behavior
for sequence.
>>>sequence $ Left [1,2,3,4]Left [1,2,3,4]
>>>sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]Left 0
Instances
A value of type is a computation which, when performed,
does some I/O before returning a value of type IO aa.
There is really only one way to "perform" an I/O action: bind it to
Main.main in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO monad and called
at some point, directly or indirectly, from Main.main.
IO is a monad, so IO actions can be combined using either the do-notation
or the >> and >>= operations from the Monad
class.
Instances
CallStacks are a lightweight method of obtaining a
partial call-stack at any point in the program.
A function can request its call-site with the HasCallStack constraint.
For example, we can define
putStrLnWithCallStack :: HasCallStack => String -> IO ()
as a variant of putStrLn that will get its call-site and print it,
along with the string given as argument. We can access the
call-stack inside putStrLnWithCallStack with callStack.
>>>:{putStrLnWithCallStack :: HasCallStack => String -> IO () putStrLnWithCallStack msg = do putStrLn msg putStrLn (prettyCallStack callStack) :}
Thus, if we call putStrLnWithCallStack we will get a formatted call-stack
alongside our string.
>>>putStrLnWithCallStack "hello"hello CallStack (from HasCallStack): putStrLnWithCallStack, called at <interactive>:... in interactive:Ghci...
GHC solves HasCallStack constraints in three steps:
- If there is a
CallStackin scope -- i.e. the enclosing function has aHasCallStackconstraint -- GHC will append the new call-site to the existingCallStack. - If there is no
CallStackin scope -- e.g. in the GHCi session above -- and the enclosing definition does not have an explicit type signature, GHC will infer aHasCallStackconstraint for the enclosing definition (subject to the monomorphism restriction). - If there is no
CallStackin scope and the enclosing definition has an explicit type signature, GHC will solve theHasCallStackconstraint for the singletonCallStackcontaining just the current call-site.
CallStacks do not interact with the RTS and do not require compilation
with -prof. On the other hand, as they are built up explicitly via the
HasCallStack constraints, they will generally not contain as much
information as the simulated call-stacks maintained by the RTS.
A CallStack is a [(String, SrcLoc)]. The String is the name of
function that was called, the SrcLoc is the call-site. The list is
ordered with the most recently called function at the head.
NOTE: The intrepid user may notice that HasCallStack is just an
alias for an implicit parameter ?callStack :: CallStack. This is an
implementation detail and should not be considered part of the
CallStack API, we may decide to change the implementation in the
future.
Since: base-4.8.1.0
type HasCallStack = ?callStack :: CallStack #
Request a CallStack.
NOTE: The implicit parameter ?callStack :: CallStack is an
implementation detail and should not be considered part of the
CallStack API, we may decide to change the implementation in the
future.
Since: base-4.9.0.0
withFrozenCallStack :: HasCallStack => (HasCallStack => a) -> a #
Perform some computation without adding new entries to the CallStack.
Since: base-4.9.0.0
Representable types of kind *.
This class is derivable in GHC with the DeriveGeneric flag on.
A Generic instance must satisfy the following laws:
from.to≡idto.from≡id
Instances
data IOException #
Exceptions that occur in the IO monad.
An IOException records a more specific error type, a descriptive
string and maybe the handle that was used when the error was
flagged.
Instances
| Exception IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: IOException -> SomeException # fromException :: SomeException -> Maybe IOException # displayException :: IOException -> String # | |
| Show IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOException -> ShowS # show :: IOException -> String # showList :: [IOException] -> ShowS # | |
| Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
data SomeException #
The SomeException type is the root of the exception type hierarchy.
When an exception of type e is thrown, behind the scenes it is
encapsulated in a SomeException.
Constructors
| Exception e => SomeException e |
Instances
| Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # | |
| Show SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # | |