hypergeometric-0.1.5.1: Hypergeometric functions
Safe HaskellSafe-Inferred
LanguageHaskell2010

Math.SpecialFunction

Synopsis

Documentation

incbeta Source #

Arguments

:: (Floating a, Ord a) 
=> a

\(z\)

-> a

\(a\)

-> a

\(b\)

-> a 

Incomplete beta function, \(|z|\leq 1\)

Calculated with \(B(z;a,b)=\displaystyle\frac{z^a}{a}{}_2F_1(a, 1-b; a+1; z)\)

Since: 0.1.1.0

beta :: (Floating a, Ord a) => a -> a -> a Source #

\(B(x, y) = \displaystyle\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\)

This uses gammaln under the hood to extend its domain somewhat.

Since: 0.1.1.0

regbeta Source #

Arguments

:: (Floating a, Ord a) 
=> a

\(z\)

-> a

\(a\)

-> a

\(b\)

-> a 

Regularized beta function, \(|z|\leq 1\)

\(I(z;a,b) = \displaystyle\frac{B(z;a,b)}{B(a,b)}\)

bessel1 Source #

Arguments

:: (Floating a, Ord a) 
=> a

\(\alpha\)

-> a

\(x\)

-> a 

Bessel functions of the first kind, \( J_\alpha(x)\).

Since: 0.1.3.0

gamma :: (Floating a, Ord a) => a -> a Source #

\(\Gamma(z)\)

Since: 0.1.1.0

gammaln Source #

Arguments

:: (Floating a, Ord a) 
=> a

\( z \)

-> a 

\(\text{log} (\Gamma(z))\)

Lanczos approximation. This is exactly the approach described in Press, William H. et al. Numerical Recipes, 3rd ed., extended to work on negative real numbers.

Since: 0.1.1.0

agm :: (Ord a, Floating a) => a -> a -> a Source #

fcdf Source #

Arguments

:: (Floating a, Ord a) 
=> a

\(n\)

-> a

\(m\)

-> a

\(x\)

-> a 

Since: 0.1.2.0

chisqcdf Source #

Arguments

:: (Floating a, Ord a) 
=> a

\(r\) (degrees of freedom)

-> a

\(\chi^2\)

-> a 

Since: 0.1.2.0

tcdf Source #

Arguments

:: (Floating a, Ord a) 
=> a

\(\nu\) (degrees of freedom)

-> a

\(x\)

-> a 

Converges if and only if \(|x| \leq \sqrt{\nu} \)

Since: 0.1.2.0