hz3-96.0.0.0: Bindings for the Z3 Theorem Prover
Copyright(c) Iago Abal 2012-2015
(c) David Castro 2012-2015
LicenseBSD3
MaintainerIago Abal <mail@iagoabal.eu>, David Castro <david.castro.dcp@gmail.com>
Safe HaskellNone
LanguageHaskell98

Z3.Base

Description

Low-level bindings to Z3 API.

There is (mostly) a one-to-one correspondence with Z3 C API, thus see http://z3prover.github.io/api/html/group__capi.html for further details.

Synopsis

Types

data Config Source #

A Z3 configuration object.

Instances

Instances details
Eq Config Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Config -> Config -> Bool #

(/=) :: Config -> Config -> Bool #

data Context Source #

A Z3 logical context.

Instances

Instances details
Eq Context Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Context -> Context -> Bool #

(/=) :: Context -> Context -> Bool #

data Symbol Source #

A Z3 symbol.

Used to name types, constants and functions.

Instances

Instances details
Eq Symbol Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Symbol -> Symbol -> Bool #

(/=) :: Symbol -> Symbol -> Bool #

Ord Symbol Source # 
Instance details

Defined in Z3.Base

Show Symbol Source # 
Instance details

Defined in Z3.Base

Storable Symbol Source # 
Instance details

Defined in Z3.Base

data AST Source #

A Z3 AST node.

This is the data-structure used in Z3 to represent terms, formulas and types.

Instances

Instances details
Eq AST Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: AST -> AST -> Bool #

(/=) :: AST -> AST -> Bool #

Ord AST Source # 
Instance details

Defined in Z3.Base

Methods

compare :: AST -> AST -> Ordering #

(<) :: AST -> AST -> Bool #

(<=) :: AST -> AST -> Bool #

(>) :: AST -> AST -> Bool #

(>=) :: AST -> AST -> Bool #

max :: AST -> AST -> AST #

min :: AST -> AST -> AST #

Show AST Source # 
Instance details

Defined in Z3.Base

Methods

showsPrec :: Int -> AST -> ShowS #

show :: AST -> String #

showList :: [AST] -> ShowS #

data Sort Source #

A kind of AST representing types.

Instances

Instances details
Eq Sort Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Sort -> Sort -> Bool #

(/=) :: Sort -> Sort -> Bool #

Ord Sort Source # 
Instance details

Defined in Z3.Base

Methods

compare :: Sort -> Sort -> Ordering #

(<) :: Sort -> Sort -> Bool #

(<=) :: Sort -> Sort -> Bool #

(>) :: Sort -> Sort -> Bool #

(>=) :: Sort -> Sort -> Bool #

max :: Sort -> Sort -> Sort #

min :: Sort -> Sort -> Sort #

Show Sort Source # 
Instance details

Defined in Z3.Base

Methods

showsPrec :: Int -> Sort -> ShowS #

show :: Sort -> String #

showList :: [Sort] -> ShowS #

data FuncDecl Source #

A kind of AST representing function symbols.

Instances

Instances details
Eq FuncDecl Source # 
Instance details

Defined in Z3.Base

Ord FuncDecl Source # 
Instance details

Defined in Z3.Base

Show FuncDecl Source # 
Instance details

Defined in Z3.Base

data App Source #

A kind of AST representing constant and function declarations.

Instances

Instances details
Eq App Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: App -> App -> Bool #

(/=) :: App -> App -> Bool #

Ord App Source # 
Instance details

Defined in Z3.Base

Methods

compare :: App -> App -> Ordering #

(<) :: App -> App -> Bool #

(<=) :: App -> App -> Bool #

(>) :: App -> App -> Bool #

(>=) :: App -> App -> Bool #

max :: App -> App -> App #

min :: App -> App -> App #

Show App Source # 
Instance details

Defined in Z3.Base

Methods

showsPrec :: Int -> App -> ShowS #

show :: App -> String #

showList :: [App] -> ShowS #

data Pattern Source #

A kind of AST representing pattern and multi-patterns to guide quantifier instantiation.

Instances

Instances details
Eq Pattern Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Pattern -> Pattern -> Bool #

(/=) :: Pattern -> Pattern -> Bool #

Ord Pattern Source # 
Instance details

Defined in Z3.Base

Show Pattern Source # 
Instance details

Defined in Z3.Base

data Constructor Source #

A type contructor for a (recursive) datatype.

data Model Source #

A model for the constraints asserted into the logical context.

Instances

Instances details
Eq Model Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Model -> Model -> Bool #

(/=) :: Model -> Model -> Bool #

data FuncInterp Source #

An interpretation of a function in a model.

Instances

Instances details
Eq FuncInterp Source # 
Instance details

Defined in Z3.Base

data FuncEntry Source #

Representation of the value of a Z3_func_interp at a particular point.

Instances

Instances details
Eq FuncEntry Source # 
Instance details

Defined in Z3.Base

data Params Source #

A Z3 parameter set.

Starting at Z3 4.0, parameter sets are used to configure many components such as: simplifiers, tactics, solvers, etc.

Instances

Instances details
Eq Params Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Params -> Params -> Bool #

(/=) :: Params -> Params -> Bool #

data Solver Source #

A Z3 solver engine.

A(n) (incremental) solver, possibly specialized by a particular tactic or logic.

Instances

Instances details
Eq Solver Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Solver -> Solver -> Bool #

(/=) :: Solver -> Solver -> Bool #

data ASTKind Source #

Different kinds of Z3 AST nodes.

Instances

Instances details
Eq ASTKind Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: ASTKind -> ASTKind -> Bool #

(/=) :: ASTKind -> ASTKind -> Bool #

Show ASTKind Source # 
Instance details

Defined in Z3.Base

data Tactic Source #

A tactic

Instances

Instances details
Eq Tactic Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Tactic -> Tactic -> Bool #

(/=) :: Tactic -> Tactic -> Bool #

data ApplyResult Source #

A result of applying a tactic

Instances

Instances details
Eq ApplyResult Source # 
Instance details

Defined in Z3.Base

data Goal Source #

A goal (aka problem)

Instances

Instances details
Eq Goal Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Goal -> Goal -> Bool #

(/=) :: Goal -> Goal -> Bool #

Satisfiability result

data Result Source #

Result of a satisfiability check.

This corresponds to the z3_lbool type in the C API.

Constructors

Sat 
Unsat 
Undef 

Instances

Instances details
Eq Result Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Result -> Result -> Bool #

(/=) :: Result -> Result -> Bool #

Ord Result Source # 
Instance details

Defined in Z3.Base

Read Result Source # 
Instance details

Defined in Z3.Base

Show Result Source # 
Instance details

Defined in Z3.Base

Create configuration

mkConfig :: IO Config Source #

Create a configuration.

See withConfig.

delConfig :: Config -> IO () Source #

Delete a configuration.

See withConfig.

setParamValue :: Config -> String -> String -> IO () Source #

Set a configuration parameter.

Helpers

withConfig :: (Config -> IO a) -> IO a Source #

Run a computation using a temporally created configuration.

Note that the configuration object can be thrown away once it has been used to create the Z3 Context.

Create context

mkContext :: Config -> IO Context Source #

Create a context using the given configuration.

Z3_del_context is called by Haskell's garbage collector before freeing the Context object.

Parameters

mkParams :: Context -> IO Params Source #

Create a Z3 (empty) parameter set.

Starting at Z3 4.0, parameter sets are used to configure many components such as: simplifiers, tactics, solvers, etc.

paramsSetBool :: Context -> Params -> Symbol -> Bool -> IO () Source #

Add a Boolean parameter k with value v to the parameter set p.

paramsSetUInt :: Context -> Params -> Symbol -> Word -> IO () Source #

Add a unsigned parameter k with value v to the parameter set p.

paramsSetDouble :: Context -> Params -> Symbol -> Double -> IO () Source #

Add a double parameter k with value v to the parameter set p.

paramsSetSymbol :: Context -> Params -> Symbol -> Symbol -> IO () Source #

Add a symbol parameter k with value v to the parameter set p.

paramsToString :: Context -> Params -> IO String Source #

Convert a parameter set into a string.

This function is mainly used for printing the contents of a parameter set.

Symbols

mkIntSymbol :: Integral int => Context -> int -> IO Symbol Source #

Create a Z3 symbol using an integer.

mkIntSymbol c i requires 0 <= i < 2^30

mkStringSymbol :: Context -> String -> IO Symbol Source #

Create a Z3 symbol using a String.

Sorts

mkUninterpretedSort :: Context -> Symbol -> IO Sort Source #

Create a free (uninterpreted) type using the given name (symbol).

Two free types are considered the same iff the have the same name.

mkBoolSort :: Context -> IO Sort Source #

Create the boolean type.

This type is used to create propositional variables and predicates.

mkIntSort :: Context -> IO Sort Source #

Create the integer type.

This is the type of arbitrary precision integers. A machine integer can be represented using bit-vectors, see mkBvSort.

mkRealSort :: Context -> IO Sort Source #

Create the real type.

This type is not a floating point number. Z3 does not have support for floating point numbers yet.

mkBvSort :: Integral int => Context -> int -> IO Sort Source #

Create a bit-vector type of the given size.

This type can also be seen as a machine integer.

mkBvSort c sz requires sz >= 0

mkFiniteDomainSort :: Context -> Symbol -> Word64 -> IO Sort Source #

Create a finite-domain type.

mkArraySort :: Context -> Sort -> Sort -> IO Sort Source #

Create an array type

We usually represent the array type as: [domain -> range]. Arrays are usually used to model the heap/memory in software verification.

mkTupleSort Source #

Arguments

:: Context

Context

-> Symbol

Name of the sort

-> [(Symbol, Sort)]

Name and sort of each field

-> IO (Sort, FuncDecl, [FuncDecl])

Resulting sort, and function declarations for the constructor and projections.

Create a tuple type

A tuple with n fields has a constructor and n projections. This function will also declare the constructor and projection functions.

mkConstructor Source #

Arguments

:: Context

Context

-> Symbol

Name of the constructor

-> Symbol

Name of recognizer function

-> [(Symbol, Maybe Sort, Int)]

Name, sort option, and sortRefs

-> IO Constructor 

Create a contructor

mkDatatype :: Context -> Symbol -> [Constructor] -> IO Sort Source #

Create datatype, such as lists, trees, records, enumerations or unions of records.

The datatype may be recursive. Returns the datatype sort.

mkDatatypes :: Context -> [Symbol] -> [[Constructor]] -> IO [Sort] Source #

Create mutually recursive datatypes, such as a tree and forest.

Returns the datatype sorts

mkSetSort :: Context -> Sort -> IO Sort Source #

Create an set type with a given domain type

Constants and Applications

mkFuncDecl Source #

Arguments

:: Context

Logical context.

-> Symbol

Name of the function (or constant).

-> [Sort]

Function domain (empty for constants).

-> Sort

Return sort of the function.

-> IO FuncDecl 

Declare a constant or function.

mkApp :: Context -> FuncDecl -> [AST] -> IO AST Source #

Create a constant or function application.

mkConst :: Context -> Symbol -> Sort -> IO AST Source #

Declare and create a constant.

This is a shorthand for: do xd <- mkFunDecl c x [] s; mkApp c xd []

mkFreshFuncDecl :: Context -> String -> [Sort] -> Sort -> IO FuncDecl Source #

Declare a fresh constant or function.

mkFreshConst Source #

Arguments

:: Context

Logical context.

-> String

Prefix.

-> Sort

Sort of the constant.

-> IO AST 

Declare and create a fresh constant.

Helpers

mkVar :: Context -> Symbol -> Sort -> IO AST Source #

Declare and create a variable (aka constant).

An alias for mkConst.

mkBoolVar :: Context -> Symbol -> IO AST Source #

Declarate and create a variable of sort bool.

See mkVar.

mkRealVar :: Context -> Symbol -> IO AST Source #

Declarate and create a variable of sort real.

See mkVar.

mkIntVar :: Context -> Symbol -> IO AST Source #

Declarate and create a variable of sort int.

See mkVar.

mkBvVar Source #

Arguments

:: Context 
-> Symbol 
-> Int

bit-width

-> IO AST 

Declarate and create a variable of sort bit-vector.

See mkVar.

mkFreshVar :: Context -> String -> Sort -> IO AST Source #

Declare and create a fresh variable (aka constant).

An alias for mkFreshConst.

mkFreshBoolVar :: Context -> String -> IO AST Source #

Declarate and create a fresh variable of sort bool.

See mkFreshVar.

mkFreshRealVar :: Context -> String -> IO AST Source #

Declarate and create a fresh variable of sort real.

See mkFreshVar.

mkFreshIntVar :: Context -> String -> IO AST Source #

Declarate and create a fresh variable of sort int.

See mkFreshVar.

mkFreshBvVar Source #

Arguments

:: Context 
-> String 
-> Int

bit-width

-> IO AST 

Declarate and create a fresh variable of sort bit-vector.

See mkFreshVar.

Propositional Logic and Equality

mkTrue :: Context -> IO AST Source #

Create an AST node representing true.

mkFalse :: Context -> IO AST Source #

Create an AST node representing false.

mkEq :: Context -> AST -> AST -> IO AST Source #

Create an AST node representing l = r.

mkNot :: Context -> AST -> IO AST Source #

Create an AST node representing not(a).

mkIte :: Context -> AST -> AST -> AST -> IO AST Source #

Create an AST node representing an if-then-else: ite(t1, t2, t3).

mkIff :: Context -> AST -> AST -> IO AST Source #

Create an AST node representing t1 iff t2.

mkImplies :: Context -> AST -> AST -> IO AST Source #

Create an AST node representing t1 implies t2.

mkXor :: Context -> AST -> AST -> IO AST Source #

Create an AST node representing t1 xor t2.

mkAnd :: Context -> [AST] -> IO AST Source #

Create an AST node representing args[0] and ... and args[num_args-1].

mkOr :: Context -> [AST] -> IO AST Source #

Create an AST node representing args[0] or ... or args[num_args-1].

mkDistinct :: Context -> [AST] -> IO AST Source #

The distinct construct is used for declaring the arguments pairwise distinct.

That is, and [ args!!i /= args!!j | i <- [0..length(args)-1], j <- [i+1..length(args)-1] ]

Helpers

mkBool :: Context -> Bool -> IO AST Source #

Create an AST node representing the given boolean.

Arithmetic: Integers and Reals

mkAdd :: Context -> [AST] -> IO AST Source #

Create an AST node representing args[0] + ... + args[num_args-1].

mkMul :: Context -> [AST] -> IO AST Source #

Create an AST node representing args[0] * ... * args[num_args-1].

mkSub :: Context -> NonEmpty AST -> IO AST Source #

Create an AST node representing args[0] - ... - args[num_args - 1].

mkUnaryMinus :: Context -> AST -> IO AST Source #

Create an AST node representing -arg.

mkDiv :: Context -> AST -> AST -> IO AST Source #

Create an AST node representing arg1 div arg2.

mkMod :: Context -> AST -> AST -> IO AST Source #

Create an AST node representing arg1 mod arg2.

mkRem :: Context -> AST -> AST -> IO AST Source #

Create an AST node representing arg1 rem arg2.

mkLt :: Context -> AST -> AST -> IO AST Source #

Create less than.

mkLe :: Context -> AST -> AST -> IO AST Source #

Create less than or equal to.

mkGt :: Context -> AST -> AST -> IO AST Source #

Create greater than.

mkGe :: Context -> AST -> AST -> IO AST Source #

Create greater than or equal to.

mkInt2Real :: Context -> AST -> IO AST Source #

Coerce an integer to a real.

mkReal2Int :: Context -> AST -> IO AST Source #

Coerce a real to an integer.

mkIsInt :: Context -> AST -> IO AST Source #

Check if a real number is an integer.

Bit-vectors

mkBvnot :: Context -> AST -> IO AST Source #

Bitwise negation.

mkBvredand :: Context -> AST -> IO AST Source #

Take conjunction of bits in vector, return vector of length 1.

mkBvredor :: Context -> AST -> IO AST Source #

Take disjunction of bits in vector, return vector of length 1.

mkBvand :: Context -> AST -> AST -> IO AST Source #

Bitwise and.

mkBvor :: Context -> AST -> AST -> IO AST Source #

Bitwise or.

mkBvxor :: Context -> AST -> AST -> IO AST Source #

Bitwise exclusive-or.

mkBvnand :: Context -> AST -> AST -> IO AST Source #

Bitwise nand.

mkBvnor :: Context -> AST -> AST -> IO AST Source #

Bitwise nor.

mkBvxnor :: Context -> AST -> AST -> IO AST Source #

Bitwise xnor.

mkBvneg :: Context -> AST -> IO AST Source #

Standard two's complement unary minus.

mkBvadd :: Context -> AST -> AST -> IO AST Source #

Standard two's complement addition.

mkBvsub :: Context -> AST -> AST -> IO AST Source #

Standard two's complement subtraction.

mkBvmul :: Context -> AST -> AST -> IO AST Source #

Standard two's complement multiplication.

mkBvudiv :: Context -> AST -> AST -> IO AST Source #

Unsigned division.

mkBvsdiv :: Context -> AST -> AST -> IO AST Source #

Two's complement signed division.

mkBvurem :: Context -> AST -> AST -> IO AST Source #

Unsigned remainder.

mkBvsrem :: Context -> AST -> AST -> IO AST Source #

Two's complement signed remainder (sign follows dividend).

mkBvsmod :: Context -> AST -> AST -> IO AST Source #

Two's complement signed remainder (sign follows divisor).

mkBvult :: Context -> AST -> AST -> IO AST Source #

Unsigned less than.

mkBvslt :: Context -> AST -> AST -> IO AST Source #

Two's complement signed less than.

mkBvule :: Context -> AST -> AST -> IO AST Source #

Unsigned less than or equal to.

mkBvsle :: Context -> AST -> AST -> IO AST Source #

Two's complement signed less than or equal to.

mkBvuge :: Context -> AST -> AST -> IO AST Source #

Unsigned greater than or equal to.

mkBvsge :: Context -> AST -> AST -> IO AST Source #

Two's complement signed greater than or equal to.

mkBvugt :: Context -> AST -> AST -> IO AST Source #

Unsigned greater than.

mkBvsgt :: Context -> AST -> AST -> IO AST Source #

Two's complement signed greater than.

mkConcat :: Context -> AST -> AST -> IO AST Source #

Concatenate the given bit-vectors.

mkExtract :: Context -> Int -> Int -> AST -> IO AST Source #

Extract the bits high down to low from a bitvector of size m to yield a new bitvector of size n, where n = high - low + 1.

mkSignExt :: Context -> Int -> AST -> IO AST Source #

Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector.

mkZeroExt :: Context -> Int -> AST -> IO AST Source #

Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector.

mkRepeat :: Context -> Int -> AST -> IO AST Source #

Repeat the given bit-vector up length i.

mkBvshl :: Context -> AST -> AST -> IO AST Source #

Shift left.

mkBvlshr :: Context -> AST -> AST -> IO AST Source #

Logical shift right.

mkBvashr :: Context -> AST -> AST -> IO AST Source #

Arithmetic shift right.

mkRotateLeft :: Context -> Int -> AST -> IO AST Source #

Rotate bits of t1 to the left i times.

mkRotateRight :: Context -> Int -> AST -> IO AST Source #

Rotate bits of t1 to the right i times.

mkExtRotateLeft :: Context -> AST -> AST -> IO AST Source #

Rotate bits of t1 to the left t2 times.

mkExtRotateRight :: Context -> AST -> AST -> IO AST Source #

Rotate bits of t1 to the right t2 times.

mkInt2bv :: Context -> Int -> AST -> IO AST Source #

Create an n bit bit-vector from the integer argument t1.

mkBv2int :: Context -> AST -> Bool -> IO AST Source #

Create an integer from the bit-vector argument t1.

If is_signed is false, then the bit-vector t1 is treated as unsigned. So the result is non-negative and in the range [0..2^N-1], where N are the number of bits in t1. If is_signed is true, t1 is treated as a signed bit-vector.

mkBvnegNoOverflow :: Context -> AST -> IO AST Source #

Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

mkBvaddNoOverflow :: Context -> AST -> AST -> Bool -> IO AST Source #

Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

mkBvaddNoUnderflow :: Context -> AST -> AST -> IO AST Source #

Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

mkBvsubNoOverflow :: Context -> AST -> AST -> IO AST Source #

Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

mkBvsubNoUnderflow :: Context -> AST -> AST -> IO AST Source #

Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

mkBvmulNoOverflow :: Context -> AST -> AST -> Bool -> IO AST Source #

Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

mkBvmulNoUnderflow :: Context -> AST -> AST -> IO AST Source #

Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflow.

mkBvsdivNoOverflow :: Context -> AST -> AST -> IO AST Source #

Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

Arrays

mkSelect Source #

Arguments

:: Context 
-> AST

Array.

-> AST

Index of the array to read.

-> IO AST 

Array read. The argument a is the array and i is the index of the array that gets read.

mkStore Source #

Arguments

:: Context 
-> AST

Array.

-> AST

Index i of the array.

-> AST

New value for i.

-> IO AST 

Array update.

The result of this function is an array that is equal to the input array (with respect to select) on all indices except for i, where it maps to v.

The semantics of this function is given by the theory of arrays described in the SMT-LIB standard. See http://smtlib.org for more details.

mkConstArray Source #

Arguments

:: Context 
-> Sort

Domain sort of the array.

-> AST

Value v that the array maps to.

-> IO AST 

Create the constant array.

The resulting term is an array, such that a select on an arbitrary index produces the value v.

mkMap Source #

Arguments

:: Context 
-> FuncDecl

Function f.

-> [AST]

List of arrays.

-> IO AST 

Map a function f on the the argument arrays.

The n nodes args must be of array sorts [domain -> range_i]. The function declaration f must have type range_1 .. range_n -> range. The sort of the result is [domain -> range].

mkArrayDefault Source #

Arguments

:: Context 
-> AST

Array.

-> IO AST 

Access the array default value.

Produces the default range value, for arrays that can be represented as finite maps with a default range value.

Sets

mkEmptySet Source #

Arguments

:: Context 
-> Sort

Domain sort of the set.

-> IO AST 

Create the empty set.

mkFullSet Source #

Arguments

:: Context 
-> Sort

Domain sort of the set.

-> IO AST 

Create the full set.

mkSetAdd Source #

Arguments

:: Context 
-> AST

Set.

-> AST

Element.

-> IO AST 

Add an element to a set.

mkSetDel Source #

Arguments

:: Context 
-> AST

Set.

-> AST

Element.

-> IO AST 

Remove an element from a set.

mkSetUnion :: Context -> [AST] -> IO AST Source #

Take the union of a list of sets.

mkSetIntersect :: Context -> [AST] -> IO AST Source #

Take the intersection of a list of sets.

mkSetDifference Source #

Arguments

:: Context 
-> AST

First set.

-> AST

Second set.

-> IO AST 

Take the set difference between two sets.

mkSetComplement Source #

Arguments

:: Context 
-> AST

Set.

-> IO AST 

Take the complement of a set.

mkSetMember Source #

Arguments

:: Context 
-> AST

Element.

-> AST

Set.

-> IO AST 

Check for set membership.

mkSetSubset Source #

Arguments

:: Context 
-> AST

First set.

-> AST

Second set.

-> IO AST 

Check if the first set is a subset of the second set.

Numerals

mkNumeral :: Context -> String -> Sort -> IO AST Source #

Create a numeral of a given sort.

mkReal Source #

Arguments

:: Context 
-> Int

numerator

-> Int

denominator (/= 0)

-> IO AST 

Create a real from a fraction.

mkInt :: Context -> Int -> Sort -> IO AST Source #

Create a numeral of an int, bit-vector, or finite-domain sort.

This function can be use to create numerals that fit in a machine integer. It is slightly faster than mkNumeral since it is not necessary to parse a string.

mkUnsignedInt :: Context -> Word -> Sort -> IO AST Source #

Create a numeral of an int, bit-vector, or finite-domain sort.

This function can be use to create numerals that fit in a machine unsigned integer. It is slightly faster than mkNumeral since it is not necessary to parse a string.

mkInt64 :: Context -> Int64 -> Sort -> IO AST Source #

Create a numeral of an int, bit-vector, or finite-domain sort.

This function can be use to create numerals that fit in a machine 64-bit integer. It is slightly faster than mkNumeral since it is not necessary to parse a string.

mkUnsignedInt64 :: Context -> Word64 -> Sort -> IO AST Source #

Create a numeral of an int, bit-vector, or finite-domain sort.

This function can be use to create numerals that fit in a machine unsigned 64-bit integer. It is slightly faster than mkNumeral since it is not necessary to parse a string.

Helpers

mkIntegral :: Integral a => Context -> a -> Sort -> IO AST Source #

Create a numeral of an int, bit-vector, or finite-domain sort.

mkRational :: Context -> Rational -> IO AST Source #

Create a numeral of sort real from a Rational.

mkFixed :: HasResolution a => Context -> Fixed a -> IO AST Source #

Create a numeral of sort real from a Fixed.

mkRealNum :: Real r => Context -> r -> IO AST Source #

Create a numeral of sort real from a Real.

mkInteger :: Context -> Integer -> IO AST Source #

Create a numeral of sort int from an Integer.

mkIntNum :: Integral a => Context -> a -> IO AST Source #

Create a numeral of sort int from an Integral.

mkBitvector Source #

Arguments

:: Context 
-> Int

bit-width

-> Integer

integer value

-> IO AST 

Create a numeral of sort Bit-vector from an Integer.

mkBvNum Source #

Arguments

:: Integral i 
=> Context 
-> Int

bit-width

-> i

integer value

-> IO AST 

Create a numeral of sort Bit-vector from an Integral.

Quantifiers

mkPattern Source #

Arguments

:: Context 
-> NonEmpty AST

Terms.

-> IO Pattern 

Create a pattern for quantifier instantiation.

Z3 uses pattern matching to instantiate quantifiers. If a pattern is not provided for a quantifier, then Z3 will automatically compute a set of patterns for it. However, for optimal performance, the user should provide the patterns.

Patterns comprise a list of terms. If the list comprises of more than one term, it is a called a multi-pattern.

In general, one can pass in a list of (multi-)patterns in the quantifier constructor.

mkBound Source #

Arguments

:: Context 
-> Int

de-Bruijn index.

-> Sort 
-> IO AST 

Create a bound variable.

Bound variables are indexed by de-Bruijn indices.

See http://z3prover.github.io/api/html/group__capi.html#ga1d4da8849fca699b345322f8ee1fa31e

mkForall Source #

Arguments

:: Context 
-> [Pattern]

Instantiation patterns (see mkPattern).

-> [Symbol]

Bound (quantified) variables xs.

-> [Sort]

Sorts of the bound variables.

-> AST

Body of the quantifier.

-> IO AST 

Create a forall formula.

The bound variables are de-Bruijn indices created using mkBound.

Z3 applies the convention that the last element in xs refers to the variable with index 0, the second to last element of xs refers to the variable with index 1, etc.

mkExists :: Context -> [Pattern] -> [Symbol] -> [Sort] -> AST -> IO AST Source #

Create an exists formula.

Similar to mkForall.

mkForallConst Source #

Arguments

:: Context 
-> [Pattern]

Instantiation patterns (see mkPattern).

-> [App]

Constants to be abstracted into bound variables.

-> AST

Quantifier body.

-> IO AST 

Create a universal quantifier using a list of constants that will form the set of bound variables.

mkExistsConst Source #

Arguments

:: Context 
-> [Pattern]

Instantiation patterns (see mkPattern).

-> [App]

Constants to be abstracted into bound variables.

-> AST

Quantifier body.

-> IO AST 

Create a existential quantifier using a list of constants that will form the set of bound variables.

Accessors

getSymbolString :: Context -> Symbol -> IO String Source #

Return the symbol name.

getSortKind :: Context -> Sort -> IO SortKind Source #

Return the sort kind of the given sort.

getBvSortSize :: Context -> Sort -> IO Int Source #

Return the size of the given bit-vector sort.

getDatatypeSortConstructors Source #

Arguments

:: Context 
-> Sort

Datatype sort.

-> IO [FuncDecl]

Constructor declarations.

Get list of constructors for datatype.

getDatatypeSortRecognizers Source #

Arguments

:: Context 
-> Sort

Datatype sort.

-> IO [FuncDecl]

Constructor recognizers.

Get list of recognizers for datatype.

getDatatypeSortConstructorAccessors Source #

Arguments

:: Context 
-> Sort

Datatype sort.

-> IO [[FuncDecl]]

Constructor accessors.

Get list of accessors for the datatype constructor.

getDeclName :: Context -> FuncDecl -> IO Symbol Source #

Return the constant declaration name as a symbol.

getArity :: Context -> FuncDecl -> IO Int Source #

Returns the number of parameters of the given declaration

getDomain Source #

Arguments

:: Context 
-> FuncDecl

A function declaration

-> Int

i

-> IO Sort 

Returns the sort of the i-th parameter of the given function declaration

getRange :: Context -> FuncDecl -> IO Sort Source #

Returns the range of the given declaration.

appToAst :: Context -> App -> IO AST Source #

Convert an app into AST. This is just type casting.

getAppDecl :: Context -> App -> IO FuncDecl Source #

Return the declaration of a constant or function application.

getAppNumArgs :: Context -> App -> IO Int Source #

Return the number of argument of an application. If t is an constant, then the number of arguments is 0.

getAppArg :: Context -> App -> Int -> IO AST Source #

Return the i-th argument of the given application.

getAppArgs :: Context -> App -> IO [AST] Source #

Return a list of all the arguments of the given application.

getSort :: Context -> AST -> IO Sort Source #

Return the sort of an AST node.

getBoolValue :: Context -> AST -> IO (Maybe Bool) Source #

Return Z3_L_TRUE if a is true, Z3_L_FALSE if it is false, and Z3_L_UNDEF otherwise.

getAstKind :: Context -> AST -> IO ASTKind Source #

Return the kind of the given AST.

isApp :: Context -> AST -> IO Bool Source #

Return True if an ast is APP_AST, False otherwise.

toApp :: Context -> AST -> IO App Source #

Convert an ast into an APP_AST. This is just type casting.

getNumeralString :: Context -> AST -> IO String Source #

Return numeral value, as a string of a numeric constant term.

Helpers

getBool :: Context -> AST -> IO Bool Source #

Read a Bool value from an AST

getInt :: Context -> AST -> IO Integer Source #

Read an Integer value from an AST

getReal :: Context -> AST -> IO Rational Source #

Read a Rational value from an AST

getBv Source #

Arguments

:: Context 
-> AST 
-> Bool

signed?

-> IO Integer 

Read the Integer value from an AST of sort bit-vector.

See mkBv2int.

Modifiers

Models

modelEval Source #

Arguments

:: Context 
-> Model

Model m.

-> AST

Expression to evaluate t.

-> Bool

Model completion?

-> IO (Maybe AST) 

Evaluate an AST node in the given model.

The evaluation may fail for the following reasons:

  • t contains a quantifier.
  • the model m is partial.
  • t is type incorrect.

evalArray :: Context -> Model -> AST -> IO (Maybe FuncModel) Source #

Evaluate an array as a function, if possible.

getFuncInterp :: Context -> Model -> FuncDecl -> IO (Maybe FuncInterp) Source #

Return the interpretation of the function f in the model m. Return NULL, if the model does not assign an interpretation for f. That should be interpreted as: the f does not matter.

isAsArray :: Context -> AST -> IO Bool Source #

The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3. It is the array such that forall indices i we have that (select (_ as-array f) i) is equal to (f i). This procedure returns Z3_TRUE if the a is an as-array AST node.

getAsArrayFuncDecl :: Context -> AST -> IO FuncDecl Source #

Return the function declaration f associated with a (_ as_array f) node.

funcInterpGetNumEntries :: Context -> FuncInterp -> IO Int Source #

Return the number of entries in the given function interpretation.

funcInterpGetEntry :: Context -> FuncInterp -> Int -> IO FuncEntry Source #

Return a _point_ of the given function intepretation. It represents the value of f in a particular point.

funcInterpGetElse :: Context -> FuncInterp -> IO AST Source #

Return the 'else' value of the given function interpretation.

funcInterpGetArity :: Context -> FuncInterp -> IO Int Source #

Return the arity (number of arguments) of the given function interpretation.

funcEntryGetValue :: Context -> FuncEntry -> IO AST Source #

Return the value of this point.

funcEntryGetNumArgs :: Context -> FuncEntry -> IO Int Source #

Return the number of arguments in a Z3_func_entry object.

funcEntryGetArg :: Context -> FuncEntry -> Int -> IO AST Source #

Return an argument of a Z3_func_entry object.

modelToString :: Context -> Model -> IO String Source #

Convert the given model into a string.

showModel :: Context -> Model -> IO String Source #

Deprecated: Use modelToString instead.

Alias for modelToString.

Helpers

type EvalAst a = Model -> AST -> IO (Maybe a) Source #

Type of an evaluation function for AST.

Evaluation may fail (i.e. return Nothing) for a few reasons, see modelEval.

eval :: Context -> EvalAst AST Source #

An alias for modelEval with model completion enabled.

evalBool :: Context -> EvalAst Bool Source #

Evaluate an AST node of sort bool in the given model.

See modelEval and getBool.

evalInt :: Context -> EvalAst Integer Source #

Evaluate an AST node of sort int in the given model.

See modelEval and getInt.

evalReal :: Context -> EvalAst Rational Source #

Evaluate an AST node of sort real in the given model.

See modelEval and getReal.

evalBv Source #

Arguments

:: Context 
-> Bool

signed?

-> EvalAst Integer 

Evaluate an AST node of sort bit-vector in the given model.

The flag signed decides whether the bit-vector value is interpreted as a signed or unsigned integer.

See modelEval and getBv.

mapEval :: Traversable t => EvalAst a -> Model -> t AST -> IO (Maybe (t a)) Source #

Run a evaluation function on a Traversable data structure of ASTs (e.g. [AST], Vector AST, Maybe AST, etc).

This a generic version of evalT which can be used in combination with other helpers. For instance, mapEval (evalInt c) can be used to obtain the Integer interpretation of a list of AST of sort int.

evalT :: Traversable t => Context -> Model -> t AST -> IO (Maybe (t AST)) Source #

Evaluate a collection of AST nodes in the given model.

data FuncModel Source #

The interpretation of a function.

Constructors

FuncModel 

Fields

evalFunc :: Context -> Model -> FuncDecl -> IO (Maybe FuncModel) Source #

Evaluate a function declaration to a list of argument/value pairs.

Tactics

String Conversion

data ASTPrintMode Source #

Pretty-printing mode for converting ASTs to strings. The mode can be one of the following:

  • Z3_PRINT_SMTLIB_FULL: Print AST nodes in SMTLIB verbose format.
  • Z3_PRINT_LOW_LEVEL: Print AST nodes using a low-level format.
  • Z3_PRINT_SMTLIB_COMPLIANT: Print AST nodes in SMTLIB 1.x compliant format.
  • Z3_PRINT_SMTLIB2_COMPLIANT: Print AST nodes in SMTLIB 2.x compliant format.

setASTPrintMode :: Context -> ASTPrintMode -> IO () Source #

Set the pretty-printing mode for converting ASTs to strings.

astToString :: Context -> AST -> IO String Source #

Convert an AST to a string.

patternToString :: Context -> Pattern -> IO String Source #

Convert a pattern to a string.

sortToString :: Context -> Sort -> IO String Source #

Convert a sort to a string.

funcDeclToString :: Context -> FuncDecl -> IO String Source #

Convert a FuncDecl to a string.

benchmarkToSMTLibString Source #

Arguments

:: Context 
-> String

name

-> String

logic

-> String

status

-> String

attributes

-> [AST]

assumptions

-> AST

formula

-> IO String 

Convert the given benchmark into SMT-LIB formatted string.

The output format can be configured via setASTPrintMode.

Parser interface

parseSMTLib2String Source #

Arguments

:: Context 
-> String

string to parse

-> [Symbol]

sort names

-> [Sort]

sorts

-> [Symbol]

declaration names

-> [FuncDecl]

declarations

-> IO AST 

parseSMTLib2File Source #

Arguments

:: Context 
-> String

file name

-> [Symbol]

sort names

-> [Sort]

sorts

-> [Symbol]

declaration names

-> [FuncDecl]

declarations

-> IO AST 

Error Handling

data Z3Error Source #

Z3 exceptions.

Z3 errors are re-thrown as Haskell Z3Error exceptions, see Exception.

Constructors

Z3Error 

Instances

Instances details
Show Z3Error Source # 
Instance details

Defined in Z3.Base

Exception Z3Error Source # 
Instance details

Defined in Z3.Base

Miscellaneous

data Version Source #

Constructors

Version 

Fields

Instances

Instances details
Eq Version Source # 
Instance details

Defined in Z3.Base

Methods

(==) :: Version -> Version -> Bool #

(/=) :: Version -> Version -> Bool #

Ord Version Source # 
Instance details

Defined in Z3.Base

Show Version Source # 
Instance details

Defined in Z3.Base

getVersion :: IO Version Source #

Return Z3 version number information.

Fixedpoint

newtype Fixedpoint Source #

Instances

Instances details
Eq Fixedpoint Source # 
Instance details

Defined in Z3.Base

Solvers

data Logic Source #

Solvers available in Z3.

These are described at http://smtlib.cs.uiowa.edu/logics.html

Constructors

AUFLIA

Closed formulas over the theory of linear integer arithmetic and arrays extended with free sort and function symbols but restricted to arrays with integer indices and values.

AUFLIRA

Closed linear formulas with free sort and function symbols over one- and two-dimentional arrays of integer index and real value.

AUFNIRA

Closed formulas with free function and predicate symbols over a theory of arrays of arrays of integer index and real value.

LRA

Closed linear formulas in linear real arithmetic.

QF_ABV

Closed quantifier-free formulas over the theory of bitvectors and bitvector arrays.

QF_AUFBV

Closed quantifier-free formulas over the theory of bitvectors and bitvector arrays extended with free sort and function symbols.

QF_AUFLIA

Closed quantifier-free linear formulas over the theory of integer arrays extended with free sort and function symbols.

QF_AX

Closed quantifier-free formulas over the theory of arrays with extensionality.

QF_BV

Closed quantifier-free formulas over the theory of fixed-size bitvectors.

QF_IDL

Difference Logic over the integers. In essence, Boolean combinations of inequations of the form x - y < b where x and y are integer variables and b is an integer constant.

QF_LIA

Unquantified linear integer arithmetic. In essence, Boolean combinations of inequations between linear polynomials over integer variables.

QF_LRA

Unquantified linear real arithmetic. In essence, Boolean combinations of inequations between linear polynomials over real variables.

QF_NIA

Quantifier-free integer arithmetic.

QF_NRA

Quantifier-free real arithmetic.

QF_RDL

Difference Logic over the reals. In essence, Boolean combinations of inequations of the form x - y < b where x and y are real variables and b is a rational constant.

QF_UF

Unquantified formulas built over a signature of uninterpreted (i.e., free) sort and function symbols.

QF_UFBV

Unquantified formulas over bitvectors with uninterpreted sort function and symbols.

QF_UFIDL

Difference Logic over the integers (in essence) but with uninterpreted sort and function symbols.

QF_UFLIA

Unquantified linear integer arithmetic with uninterpreted sort and function symbols.

QF_UFLRA

Unquantified linear real arithmetic with uninterpreted sort and function symbols.

QF_UFNRA

Unquantified non-linear real arithmetic with uninterpreted sort and function symbols.

UFLRA

Linear real arithmetic with uninterpreted sort and function symbols.

UFNIA

Non-linear integer arithmetic with uninterpreted sort and function symbols.

Instances

Instances details
Show Logic Source # 
Instance details

Defined in Z3.Base

Methods

showsPrec :: Int -> Logic -> ShowS #

show :: Logic -> String #

showList :: [Logic] -> ShowS #

solverGetHelp :: Context -> Solver -> IO String Source #

Return a string describing all solver available parameters.

solverSetParams :: Context -> Solver -> Params -> IO () Source #

Set the given solver using the given parameters.

solverGetNumScopes :: Context -> Solver -> IO Int Source #

Number of backtracking points.

solverCheck :: Context -> Solver -> IO Result Source #

Check whether the assertions in a given solver are consistent or not.

solverCheckAssumptions :: Context -> Solver -> [AST] -> IO Result Source #

Check whether the assertions in the given solver and optional assumptions are consistent or not.

solverGetModel :: Context -> Solver -> IO Model Source #

Retrieve the model for the last solverCheck.

The error handler is invoked if a model is not available because the commands above were not invoked for the given solver, or if the result was Unsat.

solverGetUnsatCore :: Context -> Solver -> IO [AST] Source #

Retrieve the unsat core for the last solverCheckAssumptions; the unsat core is a subset of the assumptions

solverGetReasonUnknown :: Context -> Solver -> IO String Source #

Return a brief justification for an Unknown result for the commands solverCheck and solverCheckAssumptions.

solverToString :: Context -> Solver -> IO String Source #

Convert the given solver into a string.

Helpers