| Safe Haskell | Safe-Inferred |
|---|
Data.Monoid.Idempotent
Description
Idempotent monoids.
- class Monoid m => Idempotent m
Documentation
class Monoid m => Idempotent m Source
The class of monoids that are also idempotent.
Instances must satisfy the following law:
mappend a a = a
Instances
| Idempotent Ordering | |
| Idempotent () | |
| Idempotent All | |
| Idempotent Any | |
| Idempotent IntSet | |
| Idempotent m => Idempotent (Dual m) | |
| Idempotent (First a) | |
| Idempotent (Last a) | |
| Idempotent (IntMap a) | |
| Ord a => Idempotent (Set a) | |
| (Bounded x, Ord x) => Idempotent (Max x) | |
| (Bounded x, Ord x) => Idempotent (Min x) | |
| Idempotent m => Idempotent (r -> m) | |
| (Idempotent a, Idempotent b) => Idempotent (a, b) | |
| Ord a => Idempotent (Map a b) | |
| (Idempotent a, Idempotent b, Idempotent c) => Idempotent (a, b, c) | |
| (Idempotent a, Idempotent b, Idempotent c, Idempotent d) => Idempotent (a, b, c, d) | |
| (Idempotent a, Idempotent b, Idempotent c, Idempotent d, Idempotent e) => Idempotent (a, b, c, d, e) |