{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, FlexibleInstances, FlexibleContexts, TypeSynonymInstances, UndecidableInstances #-}
module Graphics.Implicit.ObjectUtil.GetImplicit2 (getImplicit2) where
import Prelude(Num, abs, (-), (/), sqrt, (*), (+), (!!), mod, length, map, (<=), (&&), (>=), (||), odd, ($), (>), filter, (<), minimum, (==), maximum, max, cos, sin, head, tail, (.))
import Graphics.Implicit.Definitions (ℝ, Fastℕ, ℝ2, (⋯/), Obj2, SymbolicObj2(RectR, Circle, PolygonR, Complement2, UnionR2, DifferenceR2, IntersectR2, Translate2, Scale2, Rotate2, Shell2, Outset2, EmbedBoxedObj2))
import Graphics.Implicit.MathUtil (rminimum, rmaximum, distFromLineSeg)
import Data.VectorSpace ((^-^))
import Data.List (nub)
getImplicit2 :: SymbolicObj2 -> Obj2
getImplicit2 (RectR r (x1,y1) (x2,y2)) =
\(x,y) -> let
(dx, dy) = (x2-x1, y2-y1)
in
if r == 0
then maximum [abs (x-dx/2-x1) - dx/2, abs (y-dy/2-y1) - dy/2]
else rmaximum r [abs (x-dx/2-x1) - dx/2, abs (y-dy/2-y1) - dy/2]
getImplicit2 (Circle r) =
\(x,y) -> sqrt (x * x + y * y) - r
getImplicit2 (PolygonR _ points) =
\p -> let
pair :: Fastℕ -> (ℝ2,ℝ2)
pair n = (points !! n, points !! mod (n + 1) (length points) )
pairs = [ pair n | n <- [0 .. length points - 1] ]
relativePairs = map (\(a,b) -> (a ^-^ p, b ^-^ p) ) pairs
crossing_points =
[x2 ^-^ y2*(x2-x1)/(y2-y1) | ((x1,y1), (x2,y2)) <-relativePairs,
( (y2 <= 0) && (y1 >= 0) ) || ( (y2 >= 0) && (y1 <= 0) ) ]
seemsInRight = odd . length . filter (>0) $ nub crossing_points
seemsInLeft = odd . length . filter (<0) $ nub crossing_points
isIn = seemsInRight && seemsInLeft
dists = map (distFromLineSeg p) pairs :: [ℝ]
in
minimum dists * if isIn then -1 else 1
getImplicit2 (Complement2 symbObj) =
\p -> let
obj = getImplicit2 symbObj
in
- obj p
getImplicit2 (UnionR2 r symbObjs) =
\p -> let
objs = map getImplicit2 symbObjs
in
if r == 0
then minimum $ map ($p) objs
else rminimum r $ map ($p) objs
getImplicit2 (DifferenceR2 r symbObjs) =
let
objs = map getImplicit2 symbObjs
obj = head objs
complement :: forall a t. Num a => (t -> a) -> t -> a
complement obj' p = - obj' p
in
if r == 0
then \p -> maximum . map ($p) $ obj:map complement (tail objs)
else \p -> rmaximum r . map ($p) $ obj:map complement (tail objs)
getImplicit2 (IntersectR2 r symbObjs) =
\p -> let
objs = map getImplicit2 symbObjs
in
if r == 0
then maximum $ map ($p) objs
else rmaximum r $ map ($p) objs
getImplicit2 (Translate2 v symbObj) =
\p -> let
obj = getImplicit2 symbObj
in
obj (p ^-^ v)
getImplicit2 (Scale2 s@(sx,sy) symbObj) =
\p -> let
obj = getImplicit2 symbObj
k = abs(max sx sy)
in
k * obj (p ⋯/ s)
getImplicit2 (Rotate2 θ symbObj) =
\(x,y) -> let
obj = getImplicit2 symbObj
in
obj ( x*cos θ + y*sin θ, y*cos θ - x*sin θ)
getImplicit2 (Shell2 w symbObj) =
\p -> let
obj = getImplicit2 symbObj
in
abs (obj p) - w/2
getImplicit2 (Outset2 d symbObj) =
\p -> let
obj = getImplicit2 symbObj
in
obj p - d
getImplicit2 (EmbedBoxedObj2 (obj,_)) = obj