{- ORMOLU_DISABLE -}
-- Implicit CAD. Copyright (C) 2011, Christopher Olah (chris@colah.ca)
-- Copyright (C) 2014 2015 2016, Julia Longtin (julial@turinglace.com)
-- Released under the GNU AGPLV3+, see LICENSE

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ViewPatterns #-}

-- A module of math utilities.
module Graphics.Implicit.MathUtil (rmax, rmaximum, rminimum, distFromLineSeg, pack, box3sWithin, reflect, alaV3, packV3, unpackV3, infty) where

-- Explicitly include what we need from Prelude.
import Prelude (Num, Fractional, Bool, Ordering, (.), (>), (<), (+), ($), (/), otherwise, not, (||), (&&), abs, (-), (*), sin, asin, pi, max, sqrt, min, compare, (<=), fst, snd, (<>), flip, error, (/=))

import Graphics.Implicit.Definitions (, ℝ2, ℝ3, Box2)

import Data.List (sort, sortBy)
import Linear (Metric, (*^), norm, distance, normalize, dot, V2(V2), V3(V3))

-- | The distance a point p is from a line segment (a,b)
distFromLineSeg :: ℝ2 -> (ℝ2, ℝ2) -> 
distFromLineSeg :: ℝ2 -> (ℝ2, ℝ2) -> ℝ
distFromLineSeg ℝ2
p (ℝ2
a,ℝ2
b) = forall (f :: * -> *) a. (Metric f, Floating a) => f a -> f a -> a
distance ℝ2
p ℝ2
closest
    where
        ab :: ℝ2
ab = ℝ2
b forall a. Num a => a -> a -> a
- ℝ2
a
        ap :: ℝ2
ap = ℝ2
p forall a. Num a => a -> a -> a
- ℝ2
a
        d :: 
        d :: ℝ
d  = forall a (f :: * -> *).
(Floating a, Metric f, Epsilon a) =>
f a -> f a
normalize ℝ2
ab forall (f :: * -> *) a. (Metric f, Num a) => f a -> f a -> a
`dot` ℝ2
ap
        -- the closest point to p on the line segment.
        closest :: ℝ2
        closest :: ℝ2
closest
            | d forall a. Ord a => a -> a -> Bool
< 0 = ℝ2
a
            | d forall a. Ord a => a -> a -> Bool
> forall (f :: * -> *) a. (Metric f, Floating a) => f a -> a
norm ℝ2
ab = ℝ2
b
            | Bool
otherwise = ℝ2
a forall a. Num a => a -> a -> a
+ d forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ forall a (f :: * -> *).
(Floating a, Metric f, Epsilon a) =>
f a -> f a
normalize ℝ2
ab

box3sWithin ::  -> (ℝ3, ℝ3) -> (ℝ3, ℝ3) -> Bool
box3sWithin :: ℝ -> (ℝ3, ℝ3) -> (ℝ3, ℝ3) -> Bool
box3sWithin r (V3 ax1 ay1 az1, V3 ax2 ay2 az2) (V3 bx1 by1 bz1, V3 bx2 by2 bz2) =
    let
        near :: (ℝ, ℝ) -> (ℝ, ℝ) -> Bool
near (a1, a2) (b1, b2) = Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ (a2 forall a. Num a => a -> a -> a
+ r forall a. Ord a => a -> a -> Bool
< b1) Bool -> Bool -> Bool
|| (b2 forall a. Num a => a -> a -> a
+ r forall a. Ord a => a -> a -> Bool
< a1)
    in
           (ax1,ax2) (ℝ, ℝ) -> (ℝ, ℝ) -> Bool
`near` (bx1, bx2)
        Bool -> Bool -> Bool
&& (ay1,ay2) (ℝ, ℝ) -> (ℝ, ℝ) -> Bool
`near` (by1, by2)
        Bool -> Bool -> Bool
&& (az1,az2) (ℝ, ℝ) -> (ℝ, ℝ) -> Bool
`near` (bz1, bz2)

-- | Rounded Maximum
-- Consider  max(x,y) = 0, the generated curve
-- has a square-like corner. We replace it with a
-- quarter of a circle
--
-- NOTE: rmax is not associative!
rmax ::
         -- ^ radius
    ->   -- ^ first number to round maximum
    ->   -- ^ second number to round maximum
    ->   -- ^ resulting number
rmax :: ℝ -> ℝ -> ℝ -> ℝ
rmax r x y = if r forall a. Eq a => a -> a -> Bool
/= 0 Bool -> Bool -> Bool
&& forall a. Num a => a -> a
abs (xforall a. Num a => a -> a -> a
-y) forall a. Ord a => a -> a -> Bool
< r
                then y forall a. Num a => a -> a -> a
- rforall a. Num a => a -> a -> a
*forall a. Floating a => a -> a
sin(forall a. Floating a => a
piforall a. Fractional a => a -> a -> a
/4forall a. Num a => a -> a -> a
-forall a. Floating a => a -> a
asin((xforall a. Num a => a -> a -> a
-y)forall a. Fractional a => a -> a -> a
/rforall a. Fractional a => a -> a -> a
/forall a. Floating a => a -> a
sqrt 2)) forall a. Num a => a -> a -> a
+ r
                else forall a. Ord a => a -> a -> a
max x y

-- | Rounded minimum
--
-- NOTE: rmin is not associative!
rmin ::
         -- ^ radius
    ->   -- ^ first number to round minimum
    ->   -- ^ second number to round minimum
    ->   -- ^ resulting number
rmin :: ℝ -> ℝ -> ℝ -> ℝ
rmin r x y = if r forall a. Eq a => a -> a -> Bool
/= 0 Bool -> Bool -> Bool
&& forall a. Num a => a -> a
abs (xforall a. Num a => a -> a -> a
-y) forall a. Ord a => a -> a -> Bool
< r
    then y forall a. Num a => a -> a -> a
+ rforall a. Num a => a -> a -> a
*forall a. Floating a => a -> a
sin(forall a. Floating a => a
piforall a. Fractional a => a -> a -> a
/4forall a. Num a => a -> a -> a
+forall a. Floating a => a -> a
asin((xforall a. Num a => a -> a -> a
-y)forall a. Fractional a => a -> a -> a
/rforall a. Fractional a => a -> a -> a
/forall a. Floating a => a -> a
sqrt 2)) forall a. Num a => a -> a -> a
- r
    else forall a. Ord a => a -> a -> a
min x y

-- | Like rmax, but on a list instead of two.
-- Just as maximum is.
-- The implementation is to take the maximum two
-- and rmax those.
rmaximum ::
          -- ^ radius
    -> [] -- ^ numbers to take round maximum
    ->    -- ^ resulting number
rmaximum :: ℝ -> [ℝ] -> ℝ
rmaximum _ [] = 0
rmaximum _ [a] = a
rmaximum r [a,b] = ℝ -> ℝ -> ℝ -> ℝ
rmax r a b
rmaximum r (forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. Ord a => a -> a -> Ordering
compare) -> (a:b:_:[ℝ]
_)) = ℝ -> ℝ -> ℝ -> ℝ
rmax r a b
rmaximum _ [ℝ]
_ = forall a. HasCallStack => [Char] -> a
error [Char]
"impossible."  -- (and with dependent types we could prove it!)

-- | Like rmin but on a list.
rminimum ::
          -- ^ radius
    -> [] -- ^ numbers to take round minimum
    ->    -- ^ resulting number
rminimum :: ℝ -> [ℝ] -> ℝ
rminimum _ [] = 0
rminimum _ [a] = a
rminimum r [a,b] = ℝ -> ℝ -> ℝ -> ℝ
rmin r a b
rminimum r (forall a. Ord a => [a] -> [a]
sort -> (a:b:_:[ℝ]
_)) = ℝ -> ℝ -> ℝ -> ℝ
rmin r a b
rminimum _ [ℝ]
_ = forall a. HasCallStack => [Char] -> a
error [Char]
"impossible."

-- | Pack the given objects in a box the given size.
pack ::
    Box2           -- ^ The box to pack within
    ->            -- ^ The space seperation between items
    -> [(Box2, a)] -- ^ Objects with their boxes
    -> ([(ℝ2, a)], [(Box2, a)] ) -- ^ Packed objects with their positions, objects that could be packed
pack :: forall a.
(ℝ2, ℝ2) -> ℝ -> [((ℝ2, ℝ2), a)] -> ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
pack (ℝ2
dx, ℝ2
dy) sep [((ℝ2, ℝ2), a)]
objs = forall a.
[((ℝ2, ℝ2), a)] -> (ℝ2, ℝ2) -> ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
packSome [((ℝ2, ℝ2), a)]
sortedObjs (ℝ2
dx, ℝ2
dy)
    where
        compareBoxesByY :: Box2 -> Box2 -> Ordering
        compareBoxesByY :: (ℝ2, ℝ2) -> (ℝ2, ℝ2) -> Ordering
compareBoxesByY  (V2 _ ay1, V2 _ ay2)  (V2 _ by1, V2 _ by2) =
                forall a. Ord a => a -> a -> Ordering
compare (forall a. Num a => a -> a
abs forall a b. (a -> b) -> a -> b
$ by2forall a. Num a => a -> a -> a
-by1) (forall a. Num a => a -> a
abs forall a b. (a -> b) -> a -> b
$ ay2forall a. Num a => a -> a -> a
-ay1)

        sortedObjs :: [((ℝ2, ℝ2), a)]
sortedObjs = forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy
            (\((ℝ2, ℝ2)
boxa, a
_) ((ℝ2, ℝ2)
boxb, a
_) -> (ℝ2, ℝ2) -> (ℝ2, ℝ2) -> Ordering
compareBoxesByY (ℝ2, ℝ2)
boxa (ℝ2, ℝ2)
boxb )
            [((ℝ2, ℝ2), a)]
objs

        tmap1 :: (t2 -> t) -> (t2, t1) -> (t, t1)
        tmap1 :: forall t2 t t1. (t2 -> t) -> (t2, t1) -> (t, t1)
tmap1 t2 -> t
f (t2
a,t1
b) = (t2 -> t
f t2
a, t1
b)
        tmap2 :: (t2 -> t1) -> (t, t2) -> (t, t1)
        tmap2 :: forall t2 t1 t. (t2 -> t1) -> (t, t2) -> (t, t1)
tmap2 t2 -> t1
f (t
a,t2
b) = (t
a, t2 -> t1
f t2
b)

        packSome :: [(Box2,a)] -> Box2 -> ([(ℝ2,a)], [(Box2,a)])
        packSome :: forall a.
[((ℝ2, ℝ2), a)] -> (ℝ2, ℝ2) -> ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
packSome (presObj :: ((ℝ2, ℝ2), a)
presObj@((V2 x1 y1,V2 x2 y2),a
obj):[((ℝ2, ℝ2), a)]
otherBoxedObjs) box :: (ℝ2, ℝ2)
box@(V2 bx1 by1, V2 bx2 by2) =
            if forall a. Num a => a -> a
abs (x2 forall a. Num a => a -> a -> a
- x1) forall a. Ord a => a -> a -> Bool
<= forall a. Num a => a -> a
abs (bx2forall a. Num a => a -> a -> a
-bx1) Bool -> Bool -> Bool
&& forall a. Num a => a -> a
abs (y2 forall a. Num a => a -> a -> a
- y1) forall a. Ord a => a -> a -> Bool
<= forall a. Num a => a -> a
abs (by2forall a. Num a => a -> a -> a
-by1)
            then
                let
                    row :: ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
row = forall t2 t t1. (t2 -> t) -> (t2, t1) -> (t, t1)
tmap1 ((forall a. a -> a -> V2 a
V2 (bx1forall a. Num a => a -> a -> a
-x1) (by1forall a. Num a => a -> a -> a
-y1), a
obj)forall a. a -> [a] -> [a]
:) forall a b. (a -> b) -> a -> b
$
                        forall a.
[((ℝ2, ℝ2), a)] -> (ℝ2, ℝ2) -> ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
packSome [((ℝ2, ℝ2), a)]
otherBoxedObjs (forall a. a -> a -> V2 a
V2 (bx1forall a. Num a => a -> a -> a
+x2forall a. Num a => a -> a -> a
-x1forall a. Num a => a -> a -> a
+sep) by1, forall a. a -> a -> V2 a
V2 bx2 (by1 forall a. Num a => a -> a -> a
+ y2forall a. Num a => a -> a -> a
-y1))
                    rowAndUp :: ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
rowAndUp =
                        if forall a. Num a => a -> a
abs (by2forall a. Num a => a -> a -> a
-by1) forall a. Num a => a -> a -> a
- forall a. Num a => a -> a
abs (y2forall a. Num a => a -> a -> a
-y1) forall a. Ord a => a -> a -> Bool
> sep
                        then forall t2 t t1. (t2 -> t) -> (t2, t1) -> (t, t1)
tmap1 (forall a b. (a, b) -> a
fst ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
row forall a. Semigroup a => a -> a -> a
<> ) forall a b. (a -> b) -> a -> b
$
                            forall a.
[((ℝ2, ℝ2), a)] -> (ℝ2, ℝ2) -> ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
packSome (forall a b. (a, b) -> b
snd ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
row) (forall a. a -> a -> V2 a
V2 bx1 (by1 forall a. Num a => a -> a -> a
+ y2forall a. Num a => a -> a -> a
-y1forall a. Num a => a -> a -> a
+sep), forall a. a -> a -> V2 a
V2 bx2 by2)
                        else ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
row
                in
                    ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
rowAndUp
            else
                forall t2 t1 t. (t2 -> t1) -> (t, t2) -> (t, t1)
tmap2 (((ℝ2, ℝ2), a)
presObjforall a. a -> [a] -> [a]
:) forall a b. (a -> b) -> a -> b
$ forall a.
[((ℝ2, ℝ2), a)] -> (ℝ2, ℝ2) -> ([(ℝ2, a)], [((ℝ2, ℝ2), a)])
packSome [((ℝ2, ℝ2), a)]
otherBoxedObjs (ℝ2, ℝ2)
box
        packSome [] (ℝ2, ℝ2)
_ = ([], [])

-- | Reflect a vector across a hyperplane defined by its normal vector.
--
-- From https://en.wikipedia.org/wiki/Reflection_(mathematics)#Reflection_through_a_hyperplane_in_n_dimensions
reflect
    :: (Num (f a), Fractional a, Metric f)
    => f a  -- ^ Mirror axis
    -> f a  -- ^ Vector to transform
    -> f a
reflect :: forall (f :: * -> *) a.
(Num (f a), Fractional a, Metric f) =>
f a -> f a -> f a
reflect f a
a f a
v = f a
v forall a. Num a => a -> a -> a
- (a
2 forall a. Num a => a -> a -> a
* ((f a
v forall (f :: * -> *) a. (Metric f, Num a) => f a -> f a -> a
`dot` f a
a) forall a. Fractional a => a -> a -> a
/ (f a
a forall (f :: * -> *) a. (Metric f, Num a) => f a -> f a -> a
`dot` f a
a))) forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ f a
a

-- | Lift a function over 'V3' into a function over 'ℝ3'.
alaV3 :: (V3 a -> V3 a) -> (a, a, a) -> (a, a, a)
alaV3 :: forall a. (V3 a -> V3 a) -> (a, a, a) -> (a, a, a)
alaV3 V3 a -> V3 a
f = forall a. V3 a -> (a, a, a)
unpackV3 forall b c a. (b -> c) -> (a -> b) -> a -> c
. V3 a -> V3 a
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a, a, a) -> V3 a
packV3
{-# INLINABLE alaV3 #-}

packV3 :: (a, a, a) -> V3 a
packV3 :: forall a. (a, a, a) -> V3 a
packV3 (a
x, a
y, a
z) = forall a. a -> a -> a -> V3 a
V3 a
x a
y a
z
{-# INLINABLE packV3 #-}

unpackV3 :: V3 a -> (a, a, a)
unpackV3 :: forall a. V3 a -> (a, a, a)
unpackV3 (V3 a
a a
a2 a
a3) = (a
a, a
a2, a
a3)
{-# INLINABLE unpackV3 #-}

------------------------------------------------------------------------------
-- | Haskell's standard library doesn't make floating-point infinity available
-- in any convenient way, so we define it here.
infty :: (Fractional t) => t
infty :: forall t. Fractional t => t
infty = t
1forall a. Fractional a => a -> a -> a
/t
0
{-# INLINABLE infty #-}