| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Incipit.Base
Description
Reexports from base.
Synopsis
- class Functor f => Applicative (f :: Type -> Type) where
- newtype ZipList a = ZipList {
- getZipList :: [a]
- optional :: Alternative f => f a -> f (Maybe a)
- newtype Const a (b :: k) = Const {
- getConst :: a
- class Applicative f => Alternative (f :: Type -> Type) where
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- (&&&) :: Arrow a => a b c -> a b c' -> a b (c, c')
- (>>>) :: forall {k} cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c
- (<<<) :: forall {k} cat (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c
- module Control.Concurrent.MVar
- class (Typeable e, Show e) => Exception e
- data SomeException = Exception e => SomeException e
- guard :: Alternative f => Bool -> f ()
- join :: Monad m => m (m a) -> m a
- class Applicative m => Monad (m :: Type -> Type) where
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- unless :: Applicative f => Bool -> f () -> f ()
- replicateM_ :: Applicative m => Int -> m a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- forever :: Applicative f => f a -> f b
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- when :: Applicative f => Bool -> f () -> f ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- class Monad m => MonadFail (m :: Type -> Type) where
- class Bifunctor (p :: Type -> Type -> Type) where
- xor :: Bits a => a -> a -> a
- toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b
- otherwise :: Bool
- data Bool
- bool :: a -> a -> Bool -> a
- (&&) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- data Char
- chr :: Int -> Char
- coerce :: forall {k :: RuntimeRep} (a :: TYPE k) (b :: TYPE k). Coercible a b => a -> b
- class a ~R# b => Coercible (a :: k) (b :: k)
- module Data.Either
- class Eq a where
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldMap' :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- toList :: t a -> [a]
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- or :: Foldable t => t Bool -> Bool
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- and :: Foldable t => t Bool -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- fix :: (a -> a) -> a
- (&) :: a -> (a -> b) -> b
- id :: a -> a
- flip :: (a -> b -> c) -> b -> a -> c
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- class Functor (f :: Type -> Type) where
- void :: Functor f => f a -> f ()
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- ($>) :: Functor f => f a -> b -> f b
- newtype Compose (f :: k -> Type) (g :: k1 -> k) (a :: k1) = Compose {
- getCompose :: f (g a)
- class Contravariant (f :: Type -> Type) where
- (>$<) :: Contravariant f => (a -> b) -> f b -> f a
- newtype Identity a = Identity {
- runIdentity :: a
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- type Type = Type
- data Constraint
- (++) :: [a] -> [a] -> [a]
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- map :: (a -> b) -> [a] -> [b]
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- transpose :: [[a]] -> [[a]]
- tails :: [a] -> [[a]]
- subsequences :: [a] -> [[a]]
- sortOn :: Ord b => (a -> b) -> [a] -> [a]
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- sort :: Ord a => [a] -> [a]
- permutations :: [a] -> [[a]]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- intersperse :: a -> [a] -> [a]
- intercalate :: [a] -> [[a]] -> [a]
- inits :: [a] -> [[a]]
- group :: Eq a => [a] -> [[a]]
- genericTake :: Integral i => i -> [a] -> [a]
- genericSplitAt :: Integral i => i -> [a] -> ([a], [a])
- genericReplicate :: Integral i => i -> a -> [a]
- genericLength :: Num i => [a] -> i
- genericDrop :: Integral i => i -> [a] -> [a]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- unzip :: [(a, b)] -> ([a], [b])
- uncons :: [a] -> Maybe (a, [a])
- takeWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl' :: (b -> a -> b) -> b -> [a] -> [b]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- reverse :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- iterate :: (a -> a) -> a -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- nonEmpty :: [a] -> Maybe (NonEmpty a)
- data NonEmpty a = a :| [a]
- data Maybe a
- maybeToList :: Maybe a -> [a]
- maybe :: b -> (a -> b) -> Maybe a -> b
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- listToMaybe :: [a] -> Maybe a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- fromMaybe :: a -> Maybe a -> a
- catMaybes :: [Maybe a] -> [a]
- class Semigroup a => Monoid a where
- class Eq a => Ord a where
- data Ordering
- newtype Down a = Down {
- getDown :: a
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- data Proxy (t :: k) = Proxy
- class Semigroup a where
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- mapAccumR :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- mapAccumL :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- swap :: (a, b) -> (b, a)
- curry :: ((a, b) -> c) -> a -> b -> c
- class Typeable (a :: k)
- data Void
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- ord :: Char -> Int
- minInt :: Int
- maxInt :: Int
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- data Double = D# Double#
- data Float = F# Float#
- class Generic a
- class Num a where
- data Integer
- subtract :: Num a => a -> a -> a
- class IsLabel (x :: Symbol) a where
- fromLabel :: a
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (Real a, Fractional a) => RealFrac a where
- data Ratio a
- type Rational = Ratio Integer
- odd :: Integral a => a -> Bool
- numerator :: Ratio a -> a
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- even :: Integral a => a -> Bool
- denominator :: Ratio a -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- class Show a
- type HasCallStack = ?callStack :: CallStack
- class KnownNat (n :: Nat)
- class KnownSymbol (n :: Symbol)
- data Nat
- data Symbol
- type family (a :: Nat) + (b :: Nat) :: Nat where ...
- type family (a :: Nat) * (b :: Nat) :: Nat where ...
- type family (a :: Nat) ^ (b :: Nat) :: Nat where ...
- type family (a :: Nat) <=? (b :: Nat) :: Bool where ...
- type family (a :: Nat) - (b :: Nat) :: Nat where ...
- type family CmpSymbol (a :: Symbol) (b :: Symbol) :: Ordering where ...
- type family CmpNat (a :: Nat) (b :: Nat) :: Ordering where ...
- type family Div (a :: Nat) (b :: Nat) :: Nat where ...
- type family Mod (a :: Nat) (b :: Nat) :: Nat where ...
- type family Log2 (a :: Nat) :: Nat where ...
- type family TypeError (a :: ErrorMessage) :: b where ...
- type family AppendSymbol (a :: Symbol) (b :: Symbol) :: Symbol where ...
- data SomeSymbol = KnownSymbol n => SomeSymbol (Proxy n)
- pattern ShowType :: t -> ErrorMessage
- pattern (:<>:) :: ErrorMessage -> ErrorMessage -> ErrorMessage
- pattern (:$$:) :: ErrorMessage -> ErrorMessage -> ErrorMessage
- symbolVal' :: forall (n :: Symbol). KnownSymbol n => Proxy# n -> String
- symbolVal :: forall (n :: Symbol) proxy. KnownSymbol n => proxy n -> String
- someSymbolVal :: String -> SomeSymbol
- someNatVal :: Integer -> Maybe SomeNat
- sameSymbol :: forall (a :: Symbol) (b :: Symbol) proxy1 proxy2. (KnownSymbol a, KnownSymbol b) => proxy1 a -> proxy2 b -> Maybe (a :~: b)
- natVal' :: forall (n :: Nat). KnownNat n => Proxy# n -> Integer
- natVal :: forall (n :: Nat) proxy. KnownNat n => proxy n -> Integer
- data SomeNat = KnownNat n => SomeNat (Proxy n)
- type (<=) (x :: Nat) (y :: Nat) = (x <=? y) ~ 'True
- sameNat :: forall (a :: Nat) (b :: Nat) proxy1 proxy2. (KnownNat a, KnownNat b) => proxy1 a -> proxy2 b -> Maybe (a :~: b)
- data Natural
- print :: Show a => a -> IO ()
- data IO a
- putStrLn :: String -> IO ()
- putStr :: String -> IO ()
- type FilePath = String
Documentation
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- Identity
pureid<*>v = v- Composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- Homomorphism
puref<*>purex =pure(f x)- Interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
Example
Used in combination with (, <$>)( can be used to build a record.<*>)
>>>data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>produceFoo :: Applicative f => f Foo
>>>produceBar :: Applicative f => f Bar>>>produceBaz :: Applicative f => f Baz
>>>mkState :: Applicative f => f MyState>>>mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2 that is more
efficient than the default one. In particular, if fmap is an
expensive operation, it is likely better to use liftA2 than to
fmap over the structure and then use <*>.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*> and fmap.
Example
>>>liftA2 (,) (Just 3) (Just 5)Just (3,5)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe,
you can chain Maybe computations, with a possible "early return"
in case of Nothing.
>>>Just 2 *> Just 3Just 3
>>>Nothing *> Just 3Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>import Data.Char>>>import Text.ParserCombinators.ReadP>>>let p = string "my name is " *> munch1 isAlpha <* eof>>>readP_to_S p "my name is Simon"[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
| Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN
= ZipList (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Applicative Identity | Since: base-4.8.0.0 |
| Applicative First | Since: base-4.8.0.0 |
| Applicative Last | Since: base-4.8.0.0 |
| Applicative Down | Since: base-4.11.0.0 |
| Applicative First | Since: base-4.9.0.0 |
| Applicative Last | Since: base-4.9.0.0 |
| Applicative Max | Since: base-4.9.0.0 |
| Applicative Min | Since: base-4.9.0.0 |
| Applicative Option | Since: base-4.9.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Applicative Par1 | Since: base-4.9.0.0 |
| Applicative P | Since: base-4.5.0.0 |
| Applicative ReadP | Since: base-4.6.0.0 |
| Applicative Seq | Since: containers-0.5.4 |
| Applicative DList | |
| Applicative IO | Since: base-2.1 |
| Applicative Q | |
| Applicative Maybe | Since: base-2.1 |
| Applicative Solo | Since: base-4.15 |
| Applicative [] | Since: base-2.1 |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Applicative (Either e) | Since: base-3.0 |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
| Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
| (Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
| (Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
| (Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
| Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
| (Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
| (Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
| Applicative ((->) r) | Since: base-2.1 |
| (Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
| Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
Lists, but with an Applicative functor based on zipping.
Constructors
| ZipList | |
Fields
| |
Instances
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Traversable ZipList | Since: base-4.9.0.0 |
| Alternative ZipList | Since: base-4.11.0.0 |
| Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN
= ZipList (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Functor ZipList | Since: base-2.1 |
| IsList (ZipList a) | Since: base-4.15.0.0 |
| Generic (ZipList a) | |
| Read a => Read (ZipList a) | Since: base-4.7.0.0 |
| Show a => Show (ZipList a) | Since: base-4.7.0.0 |
| Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Generic1 ZipList | |
| type Item (ZipList a) | |
| type Rep (ZipList a) | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
| type Rep1 ZipList | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
It is useful for modelling any computation that is allowed to fail.
Examples
Using the Alternative instance of Except, the following functions:
>>>canFail = throwError "it failed" :: Except String Int>>>final = return 42 :: Except String Int
Can be combined by allowing the first function to fail:
>>>runExcept $ canFail *> finalLeft "it failed">>>runExcept $ optional canFail *> finalRight 42
The Const functor.
Instances
| Generic1 (Const a :: k -> Type) | |
| Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Contravariant (Const a :: Type -> Type) | |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |
| FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |
| IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
| Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
| Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |
| RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |
| Generic (Const a b) | |
| Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int # inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int # | |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
| Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
| RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
| Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some and many should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
A variant of <*> with the arguments reversed.
(&&&) :: Arrow a => a b c -> a b c' -> a b (c, c') infixr 3 #
Fanout: send the input to both argument arrows and combine their output.
The default definition may be overridden with a more efficient version if desired.
(>>>) :: forall {k} cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c infixr 1 #
Left-to-right composition
(<<<) :: forall {k} cat (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c infixr 1 #
Right-to-left composition
module Control.Concurrent.MVar
class (Typeable e, Show e) => Exception e #
Any type that you wish to throw or catch as an exception must be an
instance of the Exception class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException
deriving Show
instance Exception MyExceptionThe default method definitions in the Exception class do what we need
in this case. You can now throw and catch ThisException and
ThatException as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
---------------------------------------------------------------------
-- Make the root exception type for all the exceptions in a compiler
data SomeCompilerException = forall e . Exception e => SomeCompilerException e
instance Show SomeCompilerException where
show (SomeCompilerException e) = show e
instance Exception SomeCompilerException
compilerExceptionToException :: Exception e => e -> SomeException
compilerExceptionToException = toException . SomeCompilerException
compilerExceptionFromException :: Exception e => SomeException -> Maybe e
compilerExceptionFromException x = do
SomeCompilerException a <- fromException x
cast a
---------------------------------------------------------------------
-- Make a subhierarchy for exceptions in the frontend of the compiler
data SomeFrontendException = forall e . Exception e => SomeFrontendException e
instance Show SomeFrontendException where
show (SomeFrontendException e) = show e
instance Exception SomeFrontendException where
toException = compilerExceptionToException
fromException = compilerExceptionFromException
frontendExceptionToException :: Exception e => e -> SomeException
frontendExceptionToException = toException . SomeFrontendException
frontendExceptionFromException :: Exception e => SomeException -> Maybe e
frontendExceptionFromException x = do
SomeFrontendException a <- fromException x
cast a
---------------------------------------------------------------------
-- Make an exception type for a particular frontend compiler exception
data MismatchedParentheses = MismatchedParentheses
deriving Show
instance Exception MismatchedParentheses where
toException = frontendExceptionToException
fromException = frontendExceptionFromExceptionWe can now catch a MismatchedParentheses exception as
MismatchedParentheses, SomeFrontendException or
SomeCompilerException, but not other types, e.g. IOException:
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException))
*** Exception: MismatchedParentheses
Instances
| Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
| Exception ArithException | Since: base-4.0.0.0 |
Defined in GHC.Exception.Type Methods toException :: ArithException -> SomeException # | |
| Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # | |
| Exception UnicodeException | |
Defined in Data.Text.Encoding.Error Methods toException :: UnicodeException -> SomeException # | |
data SomeException #
The SomeException type is the root of the exception type hierarchy.
When an exception of type e is thrown, behind the scenes it is
encapsulated in a SomeException.
Constructors
| Exception e => SomeException e |
Instances
| Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # | |
| Show SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # | |
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative computations. Defined by
guard True =pure() guard False =empty
Examples
Common uses of guard include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative-based parser.
As an example of signaling an error in the error monad Maybe,
consider a safe division function safeDiv x y that returns
Nothing when the denominator y is zero and otherwise. For example:Just (x `div`
y)
>>> safeDiv 4 0 Nothing >>> safeDiv 4 2 Just 2
A definition of safeDiv using guards, but not guard:
safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0 = Just (x `div` y)
| otherwise = Nothing
A definition of safeDiv using guard and Monad do-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
join :: Monad m => m (m a) -> m a #
The join function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'' can be understood as the join bssdo expression
do bs <- bss bs
Examples
A common use of join is to run an IO computation returned from
an STM transaction, since STM transactions
can't perform IO directly. Recall that
atomically :: STM a -> IO a
is used to run STM transactions atomically. So, by
specializing the types of atomically and join to
atomically:: STM (IO b) -> IO (IO b)join:: IO (IO b) -> IO b
we can compose them as
join.atomically:: STM (IO b) -> IO b
class Applicative m => Monad (m :: Type -> Type) where #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following:
- Left identity
returna>>=k = k a- Right identity
m>>=return= m- Associativity
m>>=(\x -> k x>>=h) = (m>>=k)>>=h
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as ' can be understood as the >>= bsdo expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as ' can be understood as the >> bsdo expression
do as bs
Instances
| Monad Identity | Since: base-4.8.0.0 |
| Monad First | Since: base-4.8.0.0 |
| Monad Last | Since: base-4.8.0.0 |
| Monad Down | Since: base-4.11.0.0 |
| Monad First | Since: base-4.9.0.0 |
| Monad Last | Since: base-4.9.0.0 |
| Monad Max | Since: base-4.9.0.0 |
| Monad Min | Since: base-4.9.0.0 |
| Monad Option | Since: base-4.9.0.0 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad Par1 | Since: base-4.9.0.0 |
| Monad P | Since: base-2.1 |
| Monad ReadP | Since: base-2.1 |
| Monad Seq | |
| Monad DList | |
| Monad IO | Since: base-2.1 |
| Monad Q | |
| Monad Maybe | Since: base-2.1 |
| Monad Solo | Since: base-4.15 |
| Monad [] | Since: base-2.1 |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
| ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
| Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
| Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
| (Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
| (Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
| (Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
| (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
| Monad ((->) r) | Since: base-2.1 |
| Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when.
replicateM_ :: Applicative m => Int -> m a -> m () #
Like replicateM, but discards the result.
replicateM :: Applicative m => Int -> m a -> m [a] #
performs the action replicateM n actact n times,
and then returns the list of results:
Examples
>>>replicateM 3 (putStrLn "a")a a a
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Examples
A common use of forever is to process input from network sockets,
Handles, and channels
(e.g. MVar and
Chan).
For example, here is how we might implement an echo
server, using
forever both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever$ do client <- accept socketforkFinally(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever$ hGetLine client >>= hPutStrLn client
Note that "forever" isn't necessarily non-terminating.
If the action is in a and short-circuits after some number of iterations.
then MonadPlus actually returns forevermzero, effectively short-circuiting its caller.
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter function.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
'(bs ' can be understood as the >=> cs) ado expression
do b <- bs a cs b
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>)
Instances
| MonadPlus Option | Since: base-4.9.0.0 |
| MonadPlus P | Since: base-2.1 |
Defined in Text.ParserCombinators.ReadP | |
| MonadPlus ReadP | Since: base-2.1 |
| MonadPlus Seq | |
| MonadPlus DList | |
| MonadPlus IO | Since: base-4.9.0.0 |
| MonadPlus Maybe | Since: base-2.1 |
| MonadPlus [] | Since: base-2.1 |
| (ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow | |
| MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| MonadPlus (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| MonadPlus m => MonadPlus (Kleisli m a) | Since: base-4.14.0.0 |
| MonadPlus f => MonadPlus (Ap f) | Since: base-4.12.0.0 |
| MonadPlus f => MonadPlus (Rec1 f) | Since: base-4.9.0.0 |
| (MonadPlus f, MonadPlus g) => MonadPlus (Product f g) | Since: base-4.9.0.0 |
| (MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) | Since: base-4.9.0.0 |
| MonadPlus f => MonadPlus (M1 i c f) | Since: base-4.9.0.0 |
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging if the Boolean value debug
is True, and otherwise do nothing.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
class Monad m => MonadFail (m :: Type -> Type) where #
When a value is bound in do-notation, the pattern on the left
hand side of <- might not match. In this case, this class
provides a function to recover.
A Monad without a MonadFail instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat).
Instances of MonadFail should satisfy the following law: fail s should
be a left zero for >>=,
fail s >>= f = fail s
If your Monad is also MonadPlus, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Instances
| MonadFail P | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| MonadFail ReadP | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| MonadFail DList | |
Defined in Data.DList.Internal | |
| MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail Q | |
Defined in Language.Haskell.TH.Syntax | |
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail [] | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail f => MonadFail (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
class Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left value or the Right value,
or both at the same time.
Formally, the class Bifunctor represents a bifunctor
from Hask -> Hask.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor by either defining bimap or by
defining both first and second.
If you supply bimap, you should ensure that:
bimapidid≡id
If you supply first and second, ensure:
firstid≡idsecondid≡id
If you supply both, you should also ensure:
bimapf g ≡firstf.secondg
These ensure by parametricity:
bimap(f.g) (h.i) ≡bimapf h.bimapg ifirst(f.g) ≡firstf.firstgsecond(f.g) ≡secondf.secondg
Since: base-4.8.0.0
Methods
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #
Map over both arguments at the same time.
bimapf g ≡firstf.secondg
Examples
>>>bimap toUpper (+1) ('j', 3)('J',4)
>>>bimap toUpper (+1) (Left 'j')Left 'J'
>>>bimap toUpper (+1) (Right 3)Right 4
Instances
| Bifunctor Either | Since: base-4.8.0.0 |
| Bifunctor Arg | Since: base-4.9.0.0 |
| Bifunctor (,) | Since: base-4.8.0.0 |
| Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
| Bifunctor ((,,) x1) | Since: base-4.8.0.0 |
| Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
| Bifunctor ((,,,) x1 x2) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,) x1 x2 x3) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,,) x1 x2 x3 x4) | Since: base-4.8.0.0 |
| Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) | Since: base-4.8.0.0 |
toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b #
Attempt to convert an Integral type a to an Integral type b using
the size of the types as measured by Bits methods.
A simpler version of this function is:
toIntegral :: (Integral a, Integral b) => a -> Maybe b
toIntegral x
| toInteger x == y = Just (fromInteger y)
| otherwise = Nothing
where
y = toInteger xThis version requires going through Integer, which can be inefficient.
However, toIntegralSized is optimized to allow GHC to statically determine
the relative type sizes (as measured by bitSizeMaybe and isSigned) and
avoid going through Integer for many types. (The implementation uses
fromIntegral, which is itself optimized with rules for base types but may
go through Integer for some type pairs.)
Since: base-4.8.0.0
Instances
| Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in Data.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
| FiniteBits Bool | Since: base-4.7.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
| Bounded Bool | Since: base-2.1 |
| Enum Bool | Since: base-2.1 |
| Generic Bool | |
| SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep Bool | |
| Read Bool | Since: base-2.1 |
| Show Bool | Since: base-2.1 |
| Eq Bool | |
| Ord Bool | |
| SingI 'False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI 'True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Lift Bool | |
| type DemoteRep Bool | |
Defined in GHC.Generics | |
| type Rep Bool | Since: base-4.6.0.0 |
| data Sing (a :: Bool) | |
Case analysis for the Bool type. evaluates to bool x y px
when p is False, and evaluates to y when p is True.
This is equivalent to if p then y else x; that is, one can
think of it as an if-then-else construct with its arguments
reordered.
Examples
Basic usage:
>>>bool "foo" "bar" True"bar">>>bool "foo" "bar" False"foo"
Confirm that and bool x y pif p then y else x are
equivalent:
>>>let p = True; x = "bar"; y = "foo">>>bool x y p == if p then y else xTrue>>>let p = False>>>bool x y p == if p then y else xTrue
Since: base-4.7.0.0
The character type Char is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char.
To convert a Char to or from the corresponding Int value defined
by Unicode, use toEnum and fromEnum from the
Enum class respectively (or equivalently ord and
chr).
Instances
coerce :: forall {k :: RuntimeRep} (a :: TYPE k) (b :: TYPE k). Coercible a b => a -> b #
The function coerce allows you to safely convert between values of
types that have the same representation with no run-time overhead. In the
simplest case you can use it instead of a newtype constructor, to go from
the newtype's concrete type to the abstract type. But it also works in
more complicated settings, e.g. converting a list of newtypes to a list of
concrete types.
This function is runtime-representation polymorphic, but the
RuntimeRep type argument is marked as Inferred, meaning
that it is not available for visible type application. This means
the typechecker will accept coerce @Int @Age 42.
class a ~R# b => Coercible (a :: k) (b :: k) #
Coercible is a two-parameter class that has instances for types a and b if
the compiler can infer that they have the same representation. This class
does not have regular instances; instead they are created on-the-fly during
type-checking. Trying to manually declare an instance of Coercible
is an error.
Nevertheless one can pretend that the following three kinds of instances exist. First, as a trivial base-case:
instance Coercible a a
Furthermore, for every type constructor there is
an instance that allows to coerce under the type constructor. For
example, let D be a prototypical type constructor (data or
newtype) with three type arguments, which have roles nominal,
representational resp. phantom. Then there is an instance of
the form
instance Coercible b b' => Coercible (D a b c) (D a b' c')
Note that the nominal type arguments are equal, the
representational type arguments can differ, but need to have a
Coercible instance themself, and the phantom type arguments can be
changed arbitrarily.
The third kind of instance exists for every newtype NT = MkNT T and
comes in two variants, namely
instance Coercible a T => Coercible a NT
instance Coercible T b => Coercible NT b
This instance is only usable if the constructor MkNT is in scope.
If, as a library author of a type constructor like Set a, you
want to prevent a user of your module to write
coerce :: Set T -> Set NT,
you need to set the role of Set's type parameter to nominal,
by writing
type role Set nominal
For more details about this feature, please refer to Safe Coercions by Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones and Stephanie Weirich.
Since: ghc-prim-4.7.0.0
module Data.Either
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
The Haskell Report defines no laws for Eq. However, == is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
| Eq SomeTypeRep | |
Defined in Data.Typeable.Internal | |
| Eq Void | Since: base-4.8.0.0 |
| Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
| Eq SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods (==) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # (/=) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # | |
| Eq Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods (==) :: Associativity -> Associativity -> Bool # (/=) :: Associativity -> Associativity -> Bool # | |
| Eq DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
| Eq Fixity | Since: base-4.6.0.0 |
| Eq SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
| Eq SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
| Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
| Eq Int16 | Since: base-2.1 |
| Eq Int32 | Since: base-2.1 |
| Eq Int64 | Since: base-2.1 |
| Eq Int8 | Since: base-2.1 |
| Eq SrcLoc | Since: base-4.9.0.0 |
| Eq SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits | |
| Eq SomeNat | Since: base-4.7.0.0 |
| Eq Word16 | Since: base-2.1 |
| Eq Word32 | Since: base-2.1 |
| Eq Word64 | Since: base-2.1 |
| Eq ByteString | |
Defined in Data.ByteString.Internal | |
| Eq ByteString | |
Defined in Data.ByteString.Lazy.Internal | |
| Eq ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (==) :: ShortByteString -> ShortByteString -> Bool # (/=) :: ShortByteString -> ShortByteString -> Bool # | |
| Eq IntSet | |
| Eq Relation | |
| Eq BigNat | |
| Eq ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type Methods (==) :: ForeignSrcLang -> ForeignSrcLang -> Bool # (/=) :: ForeignSrcLang -> ForeignSrcLang -> Bool # | |
| Eq Extension | |
| Eq Module | |
| Eq Ordering | |
| Eq TrName | |
| Eq TyCon | |
| Eq AnnLookup | |
| Eq AnnTarget | |
| Eq Bang | |
| Eq Body | |
| Eq Bytes | |
| Eq Callconv | |
| Eq Clause | |
| Eq Con | |
| Eq Dec | |
| Eq DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
| Eq DerivClause | |
Defined in Language.Haskell.TH.Syntax | |
| Eq DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: DerivStrategy -> DerivStrategy -> Bool # (/=) :: DerivStrategy -> DerivStrategy -> Bool # | |
| Eq Exp | |
| Eq FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: FamilyResultSig -> FamilyResultSig -> Bool # (/=) :: FamilyResultSig -> FamilyResultSig -> Bool # | |
| Eq Fixity | |
| Eq FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: FixityDirection -> FixityDirection -> Bool # (/=) :: FixityDirection -> FixityDirection -> Bool # | |
| Eq Foreign | |
| Eq FunDep | |
| Eq Guard | |
| Eq Info | |
| Eq InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: InjectivityAnn -> InjectivityAnn -> Bool # (/=) :: InjectivityAnn -> InjectivityAnn -> Bool # | |
| Eq Inline | |
| Eq Lit | |
| Eq Loc | |
| Eq Match | |
| Eq ModName | |
| Eq Module | |
| Eq ModuleInfo | |
Defined in Language.Haskell.TH.Syntax | |
| Eq Name | |
| Eq NameFlavour | |
Defined in Language.Haskell.TH.Syntax | |
| Eq NameSpace | |
| Eq OccName | |
| Eq Overlap | |
| Eq Pat | |
| Eq PatSynArgs | |
Defined in Language.Haskell.TH.Syntax | |
| Eq PatSynDir | |
| Eq Phases | |
| Eq PkgName | |
| Eq Pragma | |
| Eq Range | |
| Eq Role | |
| Eq RuleBndr | |
| Eq RuleMatch | |
| Eq Safety | |
| Eq SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
| Eq SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
| Eq Specificity | |
Defined in Language.Haskell.TH.Syntax | |
| Eq Stmt | |
| Eq TyLit | |
| Eq TySynEqn | |
| Eq Type | |
| Eq TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (/=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # | |
| Eq CodePoint | |
| Eq DecoderState | |
| Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # | |
| Eq Word8 | Since: base-2.1 |
| Eq Integer | |
| Eq Natural | |
| Eq () | |
| Eq Bool | |
| Eq Char | |
| Eq Double | Note that due to the presence of
Also note that
|
| Eq Float | Note that due to the presence of
Also note that
|
| Eq Int | |
| Eq Word | |
| Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
| Eq a => Eq (Identity a) | Since: base-4.8.0.0 |
| Eq a => Eq (First a) | Since: base-2.1 |
| Eq a => Eq (Last a) | Since: base-2.1 |
| Eq a => Eq (Down a) | Since: base-4.6.0.0 |
| Eq a => Eq (First a) | Since: base-4.9.0.0 |
| Eq a => Eq (Last a) | Since: base-4.9.0.0 |
| Eq a => Eq (Max a) | Since: base-4.9.0.0 |
| Eq a => Eq (Min a) | Since: base-4.9.0.0 |
| Eq a => Eq (Option a) | Since: base-4.9.0.0 |
| Eq m => Eq (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (==) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (/=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # | |
| Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
| Eq p => Eq (Par1 p) | Since: base-4.7.0.0 |
| Eq (MVar a) | Since: base-4.1.0.0 |
| Eq a => Eq (Ratio a) | Since: base-2.1 |
| Eq a => Eq (IntMap a) | |
| Eq a => Eq (Seq a) | |
| Eq a => Eq (ViewL a) | |
| Eq a => Eq (ViewR a) | |
| Eq a => Eq (Set a) | |
| Eq a => Eq (DList a) | |
| Eq flag => Eq (TyVarBndr flag) | |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Eq a => Eq [a] | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| Eq (Proxy s) | Since: base-4.7.0.0 |
| Eq a => Eq (Arg a b) | Since: base-4.9.0.0 |
| Eq (TypeRep a) | Since: base-2.1 |
| Eq (U1 p) | Since: base-4.9.0.0 |
| Eq (V1 p) | Since: base-4.9.0.0 |
| (Eq k, Eq a) => Eq (Map k a) | |
| (Eq a, Eq b) => Eq (a, b) | |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Eq (f a) => Eq (Ap f a) | Since: base-4.12.0.0 |
| Eq (a :~: b) | Since: base-4.7.0.0 |
| Eq (f p) => Eq (Rec1 f p) | Since: base-4.7.0.0 |
| Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
| Eq (URec Char p) | Since: base-4.9.0.0 |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Eq (URec Float p) | |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Eq (URec Word p) | Since: base-4.9.0.0 |
| (Eq a, Eq b, Eq c) => Eq (a, b, c) | |
| (Eq1 f, Eq1 g, Eq a) => Eq (Product f g a) | Since: base-4.9.0.0 |
| (Eq1 f, Eq1 g, Eq a) => Eq (Sum f g a) | Since: base-4.9.0.0 |
| Eq (a :~~: b) | Since: base-4.10.0.0 |
| (Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 |
| (Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 |
| Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 |
| (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
| (Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) | Since: base-4.9.0.0 |
| Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 |
| Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 |
| (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
class Foldable (t :: Type -> Type) where #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
| Leaf a
| Node (Tree a) a (Tree a)
deriving FoldableA more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Methods
fold :: Monoid m => t m -> m #
Given a structure with elements whose type is a Monoid, combine them
via the monoid's ( operator. This fold is right-associative and
lazy in the accumulator. When you need a strict left-associative fold,
use <>)foldMap' instead, with id as the map.
Examples
Basic usage:
>>>fold [[1, 2, 3], [4, 5], [6], []][1,2,3,4,5,6]
>>>fold $ Node (Leaf (Sum 1)) (Sum 3) (Leaf (Sum 5))Sum {getSum = 9}
Folds of unbounded structures do not terminate when the monoid's
( operator is strict:<>)
>>>fold (repeat Nothing)* Hangs forever *
Lazy corecursive folds of unbounded structures are fine:
>>>take 12 $ fold $ map (\i -> [i..i+2]) [0..][0,1,2,1,2,3,2,3,4,3,4,5]>>>sum $ take 4000000 $ fold $ map (\i -> [i..i+2]) [0..]2666668666666
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>)foldMap'
instead.
Examples
Basic usage:
>>>foldMap Sum [1, 3, 5]Sum {getSum = 9}
>>>foldMap Product [1, 3, 5]Product {getProduct = 15}
>>>foldMap (replicate 3) [1, 2, 3][1,1,1,2,2,2,3,3,3]
When a Monoid's ( is lazy in its second argument, <>)foldMap can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>import qualified Data.ByteString.Lazy as L>>>import qualified Data.ByteString.Builder as B>>>let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20>>>let lbs = B.toLazyByteString $ foldMap bld [0..]>>>L.take 64 lbs"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldMap' :: Monoid m => (a -> m) -> t a -> m #
A left-associative variant of foldMap that is strict in the
accumulator. Use this method for strict reduction when partial
results are merged via (.<>)
Examples
Define a Monoid over finite bit strings under xor. Use it to
strictly compute the xor of a list of Int values.
>>>:set -XGeneralizedNewtypeDeriving>>>import Data.Bits (Bits, FiniteBits, xor, zeroBits)>>>import Data.Foldable (foldMap')>>>import Numeric (showHex)>>>>>>newtype X a = X a deriving (Eq, Bounded, Enum, Bits, FiniteBits)>>>instance Bits a => Semigroup (X a) where X a <> X b = X (a `xor` b)>>>instance Bits a => Monoid (X a) where mempty = X zeroBits>>>>>>let bits :: [Int]; bits = [0xcafe, 0xfeed, 0xdeaf, 0xbeef, 0x5411]>>>(\ (X a) -> showString "0x" . showHex a $ "") $ foldMap' X bits"0x42"
Since: base-4.13.0.0
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr can produce a terminating
expression from an unbounded list.
For a general Foldable structure this should be semantically identical
to,
foldr f z =foldrf z .toList
Examples
Basic usage:
>>>foldr (||) False [False, True, False]True
>>>foldr (||) False []False
>>>foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']"foodcba"
Infinite structures
⚠️ Applying foldr to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
( short-circuits on ||)True values, so the following terminates
because there is a True value finitely far from the left side:
>>>foldr (||) False (True : repeat False)True
But the following doesn't terminate:
>>>foldr (||) False (repeat False ++ [True])* Hangs forever *
Laziness in the second argument
Applying foldr to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined, but [] is more clear):
>>>take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)[1,4,7,10,13]
foldr' :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, strict in the accumulator. This is rarely what you want.
Since: base-4.6.0.0
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum).
For a general Foldable structure this should be semantically identical
to,
foldl' f z =foldl'f z .toList
Since: base-4.6.0.0
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
Examples
Basic usage:
>>>foldr1 (+) [1..4]10
>>>foldr1 (+) []Exception: Prelude.foldr1: empty list
>>>foldr1 (+) Nothing*** Exception: foldr1: empty structure
>>>foldr1 (-) [1..4]-2
>>>foldr1 (&&) [True, False, True, True]False
>>>foldr1 (||) [False, False, True, True]True
>>>foldr1 (+) [1..]* Hangs forever *
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
foldl1f =foldl1f .toList
Examples
Basic usage:
>>>foldl1 (+) [1..4]10
>>>foldl1 (+) []*** Exception: Prelude.foldl1: empty list
>>>foldl1 (+) Nothing*** Exception: foldl1: empty structure
>>>foldl1 (-) [1..4]-8
>>>foldl1 (&&) [True, False, True, True]False
>>>foldl1 (||) [False, False, True, True]True
>>>foldl1 (+) [1..]* Hangs forever *
List of elements of a structure, from left to right. If the entire list is intended to be reduced via a fold, just fold the structure directly bypassing the list.
Examples
Basic usage:
>>>toList Nothing[]
>>>toList (Just 42)[42]
>>>toList (Left "foo")[]
>>>toList (Node (Leaf 5) 17 (Node Empty 12 (Leaf 8)))[5,17,12,8]
For lists, toList is the identity:
>>>toList [1, 2, 3][1,2,3]
Since: base-4.8.0.0
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>null []True
>>>null [1]False
null is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>null [1..]False
Since: base-4.8.0.0
Returns the size/length of a finite structure as an Int. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>length []0
>>>length ['a', 'b', 'c']3>>>length [1..]* Hangs forever *
Since: base-4.8.0.0
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem is often used in infix form.
Examples
Basic usage:
>>>3 `elem` []False
>>>3 `elem` [1,2]False
>>>3 `elem` [1,2,3,4,5]True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>3 `elem` [1..]True
>>>3 `elem` ([4..] ++ [3])* Hangs forever *
Since: base-4.8.0.0
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>maximum [1..10]10
>>>maximum []*** Exception: Prelude.maximum: empty list
>>>maximum Nothing*** Exception: maximum: empty structure
Since: base-4.8.0.0
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>minimum [1..10]1
>>>minimum []*** Exception: Prelude.minimum: empty list
>>>minimum Nothing*** Exception: minimum: empty structure
Since: base-4.8.0.0
The sum function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>sum []0
>>>sum [42]42
>>>sum [1..10]55
>>>sum [4.1, 2.0, 1.7]7.8
>>>sum [1..]* Hangs forever *
Since: base-4.8.0.0
product :: Num a => t a -> a #
The product function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>product []1
>>>product [42]42
>>>product [1..10]3628800
>>>product [4.1, 2.0, 1.7]13.939999999999998
>>>product [1..]* Hangs forever *
Since: base-4.8.0.0
Instances
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
| Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
| Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
| Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldMap' :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
| Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
| Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
| Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
| Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
| Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
| Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
| Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
| Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
| Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
| Foldable DList | |
Defined in Data.DList.Internal Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldMap' :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
| Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
| Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
| Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
| Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
| Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
| Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
| Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
| (Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
| Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
| Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an Applicative action, evaluate these
actions from left to right, and ignore the results. For a version that
doesn't ignore the results see traverse.
traverse_ is just like mapM_, but generalised to Applicative actions.
Examples
Basic usage:
>>>traverse_ print ["Hello", "world", "!"]"Hello" "world" "!"
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence.
sequence_ is just like sequenceA_, but specialised to monadic
actions.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA.
sequenceA_ is just like sequence_, but generalised to Applicative
actions.
Examples
Basic usage:
>>>sequenceA_ [print "Hello", print "world", print "!"]"Hello" "world" "!"
or :: Foldable t => t Bool -> Bool #
or returns the disjunction of a container of Bools. For the
result to be False, the container must be finite; True, however,
results from a True value finitely far from the left end.
Examples
Basic usage:
>>>or []False
>>>or [True]True
>>>or [False]False
>>>or [True, True, False]True
>>>or (True : repeat False) -- Infinite list [True,False,False,False,...True
>>>or (repeat False)* Hangs forever *
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
for_ is traverse_ with its arguments flipped. For a version
that doesn't ignore the results see for. This
is forM_ generalised to Applicative actions.
for_ is just like forM_, but generalised to Applicative actions.
Examples
Basic usage:
>>>for_ [1..4] print1 2 3 4
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
Left-to-right monadic fold over the elements of a structure.
Given a structure t with elements (a, b, ..., w, x, y), the result of
a fold with an operator function f is equivalent to:
foldlM f z t = do
aa <- f z a
bb <- f aa b
...
xx <- f ww x
yy <- f xx y
return yy -- Just @return z@ when the structure is emptyFor a Monad m, given two functions f1 :: a -> m b and f2 :: b -> m c,
their Kleisli composition (f1 >=> f2) :: a -> m c is defined by:
(f1 >=> f2) a = f1 a >>= f2
Another way of thinking about foldlM is that it amounts to an application
to z of a Kleisli composition:
foldlM f z t =
flip f a >=> flip f b >=> ... >=> flip f x >=> flip f y $ zThe monadic effects of foldlM are sequenced from left to right.
If at some step the bind operator ( short-circuits (as with, e.g.,
>>=)mzero in a MonadPlus), the evaluated effects will be from an initial
segment of the element sequence. If you want to evaluate the monadic
effects in right-to-left order, or perhaps be able to short-circuit after
processing a tail of the sequence of elements, you'll need to use foldrM
instead.
If the monadic effects don't short-circuit, the outermost application of
f is to the rightmost element y, so that, ignoring effects, the result
looks like a left fold:
((((z `f` a) `f` b) ... `f` w) `f` x) `f` y
Examples
Basic usage:
>>>let f a e = do { print e ; return $ e : a }>>>foldlM f [] [0..3]0 1 2 3 [3,2,1,0]
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>concatMap (take 3) [[1..], [10..], [100..], [1000..]][1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>concatMap (take 3) (Just [1..])[1,2,3]
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>concat (Just [1, 2, 3])[1,2,3]
>>>concat (Left 42)[]
>>>concat [[1, 2, 3], [4, 5], [6], []][1,2,3,4,5,6]
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
The sum of a collection of actions, generalizing concat.
asum is just like msum, but generalised to Alternative.
Examples
Basic usage:
>>>asum [Just "Hello", Nothing, Just "World"]Just "Hello"
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>any (> 3) []False
>>>any (> 3) [1,2]False
>>>any (> 3) [1,2,3,4,5]True
>>>any (> 3) [1..]True
>>>any (> 3) [0, -1..]* Hangs forever *
and :: Foldable t => t Bool -> Bool #
and returns the conjunction of a container of Bools. For the
result to be True, the container must be finite; False, however,
results from a False value finitely far from the left end.
Examples
Basic usage:
>>>and []True
>>>and [True]True
>>>and [False]False
>>>and [True, True, False]False
>>>and (False : repeat True) -- Infinite list [False,True,True,True,...False
>>>and (repeat True)* Hangs forever *
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>all (> 3) []True
>>>all (> 3) [1,2]False
>>>all (> 3) [1,2,3,4,5]False
>>>all (> 3) [1..]False
>>>all (> 3) [4..]* Hangs forever *
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.zipWith ($) fs xs
Note that ( is levity-polymorphic in its result type, so that
$)foo where $ Truefoo :: Bool -> Int# is well-typed.
is the least fixed point of the function fix ff,
i.e. the least defined x such that f x = x.
For example, we can write the factorial function using direct recursion as
>>>let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5120
This uses the fact that Haskell’s let introduces recursive bindings. We can
rewrite this definition using fix,
>>>fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5120
Instead of making a recursive call, we introduce a dummy parameter rec;
when used within fix, this parameter then refers to fix’s argument, hence
the recursion is reintroduced.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip ff.
>>>flip (++) "hello" "world""worldhello"
const x is a unary function which evaluates to x for all inputs.
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
class Functor (f :: Type -> Type) where #
A type f is a Functor if it provides a function fmap which, given any types a and b
lets you apply any function from (a -> b) to turn an f a into an f b, preserving the
structure of f. Furthermore f needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap and
the first law, so you need only check that the former condition holds.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
fmap is used to apply a function of type (a -> b) to a value of type f a,
where f is a functor, to produce a value of type f b.
Note that for any type constructor with more than one parameter (e.g., Either),
only the last type parameter can be modified with fmap (e.g., b in `Either a b`).
Some type constructors with two parameters or more have a instance that allows
both the last and the penultimate parameters to be mapped over.
==== ExamplesBifunctor
Convert from a to a Maybe IntMaybe String
using show:
>>>fmap show NothingNothing>>>fmap show (Just 3)Just "3"
Convert from an to an
Either Int IntEither Int String using show:
>>>fmap show (Left 17)Left 17>>>fmap show (Right 17)Right "17"
Double each element of a list:
>>>fmap (*2) [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>fmap even (2,2)(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements `(a,b,c)` can also be written `(,,) a b c` and its Functor instance
is defined for `Functor ((,,) a b)` (i.e., only the third parameter is free to be mapped over
with fmap).
It explains why fmap can be used with tuples containing values of different types as in the
following example:
>>>fmap even ("hello", 1.0, 4)("hello",1.0,True)
Instances
| Functor ZipList | Since: base-2.1 |
| Functor Handler | Since: base-4.6.0.0 |
| Functor Identity | Since: base-4.8.0.0 |
| Functor First | Since: base-4.8.0.0 |
| Functor Last | Since: base-4.8.0.0 |
| Functor Down | Since: base-4.11.0.0 |
| Functor First | Since: base-4.9.0.0 |
| Functor Last | Since: base-4.9.0.0 |
| Functor Max | Since: base-4.9.0.0 |
| Functor Min | Since: base-4.9.0.0 |
| Functor Option | Since: base-4.9.0.0 |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Functor Par1 | Since: base-4.9.0.0 |
| Functor P | Since: base-4.8.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| Functor ReadP | Since: base-2.1 |
| Functor IntMap | |
| Functor Digit | |
| Functor Elem | |
| Functor FingerTree | |
Defined in Data.Sequence.Internal Methods fmap :: (a -> b) -> FingerTree a -> FingerTree b # (<$) :: a -> FingerTree b -> FingerTree a # | |
| Functor Node | |
| Functor Seq | |
| Functor ViewL | |
| Functor ViewR | |
| Functor DList | |
| Functor IO | Since: base-2.1 |
| Functor Q | |
| Functor TyVarBndr | |
| Functor Maybe | Since: base-2.1 |
| Functor Solo | Since: base-4.15 |
| Functor [] | Since: base-2.1 |
| Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Functor (Either a) | Since: base-3.0 |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Functor (Arg a) | Since: base-4.9.0.0 |
| Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (Map k) | |
| Functor ((,) a) | Since: base-2.1 |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Functor m => Functor (Kleisli m a) | Since: base-4.14.0.0 |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
| Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
| Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Functor (WhenMissing f x) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b # (<$) :: a -> WhenMissing f x b -> WhenMissing f x a # | |
| Functor ((,,) a b) | Since: base-4.14.0.0 |
| (Functor f, Functor g) => Functor (Product f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (Sum f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
| Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| Functor f => Functor (WhenMatched f x y) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # (<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Functor (WhenMissing f k x) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # (<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a # | |
| Functor ((,,,) a b c) | Since: base-4.14.0.0 |
| Functor ((->) r) | Since: base-2.1 |
| (Functor f, Functor g) => Functor (Compose f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
| Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
| Functor f => Functor (WhenMatched f k x y) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # (<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void valueIO action.
Examples
Replace the contents of a with unit:Maybe Int
>>>void NothingNothing>>>void (Just 3)Just ()
Replace the contents of an
with unit, resulting in an Either Int Int:Either Int ()
>>>void (Left 8675309)Left 8675309>>>void (Right 8675309)Right ()
Replace every element of a list with unit:
>>>void [1,2,3][(),(),()]
Replace the second element of a pair with unit:
>>>void (1,2)(1,())
Discard the result of an IO action:
>>>mapM print [1,2]1 2 [(),()]>>>void $ mapM print [1,2]1 2
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe
Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an
Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$.
Examples
Replace the contents of a with a constant
Maybe IntString:
>>>Nothing $> "foo"Nothing>>>Just 90210 $> "foo"Just "foo"
Replace the contents of an
with a constant Either Int IntString, resulting in an :Either
Int String
>>>Left 8675309 $> "foo"Left 8675309>>>Right 8675309 $> "foo"Right "foo"
Replace each element of a list with a constant String:
>>>[1,2,3] $> "foo"["foo","foo","foo"]
Replace the second element of a pair with a constant String:
>>>(1,2) $> "foo"(1,"foo")
Since: base-4.7.0.0
newtype Compose (f :: k -> Type) (g :: k1 -> k) (a :: k1) infixr 9 #
Right-to-left composition of functors. The composition of applicative functors is always applicative, but the composition of monads is not always a monad.
Constructors
| Compose infixr 9 | |
Fields
| |
Instances
| TestEquality f => TestEquality (Compose f g :: k2 -> Type) | The deduction (via generativity) that if Since: base-4.14.0.0 |
Defined in Data.Functor.Compose | |
| Functor f => Generic1 (Compose f g :: k -> Type) | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
| (Eq1 f, Eq1 g) => Eq1 (Compose f g) | Since: base-4.9.0.0 |
| (Ord1 f, Ord1 g) => Ord1 (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Read1 f, Read1 g) => Read1 (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Compose f g a) # liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Compose f g a] # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Compose f g a) # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Compose f g a] # | |
| (Show1 f, Show1 g) => Show1 (Compose f g) | Since: base-4.9.0.0 |
| (Functor f, Contravariant g) => Contravariant (Compose f g) | |
| (Traversable f, Traversable g) => Traversable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Alternative f, Applicative g) => Alternative (Compose f g) | Since: base-4.9.0.0 |
| (Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Functor f, Functor g) => Functor (Compose f g) | Since: base-4.9.0.0 |
| (Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) # toConstr :: Compose f g a -> Constr # dataTypeOf :: Compose f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) # gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # | |
| Generic (Compose f g a) | |
| (Read1 f, Read1 g, Read a) => Read (Compose f g a) | Since: base-4.9.0.0 |
| (Show1 f, Show1 g, Show a) => Show (Compose f g a) | Since: base-4.9.0.0 |
| (Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) | Since: base-4.9.0.0 |
| (Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
| type Rep1 (Compose f g :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| type Rep (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
class Contravariant (f :: Type -> Type) where #
The class of contravariant functors.
Whereas in Haskell, one can think of a Functor as containing or producing
values, a contravariant functor is a functor that can be thought of as
consuming values.
As an example, consider the type of predicate functions a -> Bool. One
such predicate might be negative x = x < 0, which
classifies integers as to whether they are negative. However, given this
predicate, we can re-use it in other situations, providing we have a way to
map values to integers. For instance, we can use the negative predicate
on a person's bank balance to work out if they are currently overdrawn:
newtype Predicate a = Predicate { getPredicate :: a -> Bool }
instance Contravariant Predicate where
contramap :: (a' -> a) -> (Predicate a -> Predicate a')
contramap f (Predicate p) = Predicate (p . f)
| `- First, map the input...
`----- then apply the predicate.
overdrawn :: Predicate Person
overdrawn = contramap personBankBalance negative
Any instance should be subject to the following laws:
Note, that the second law follows from the free theorem of the type of
contramap and the first law, so you need only check that the former
condition holds.
Minimal complete definition
Instances
| Contravariant Comparison | A |
Defined in Data.Functor.Contravariant Methods contramap :: (a' -> a) -> Comparison a -> Comparison a' # (>$) :: b -> Comparison b -> Comparison a # | |
| Contravariant Equivalence | Equivalence relations are |
Defined in Data.Functor.Contravariant Methods contramap :: (a' -> a) -> Equivalence a -> Equivalence a' # (>$) :: b -> Equivalence b -> Equivalence a # | |
| Contravariant Predicate | A Without newtypes contramap :: (a' -> a) -> (Predicate a -> Predicate a') contramap f (Predicate g) = Predicate (g . f) |
| Contravariant (Op a) | |
| Contravariant (Proxy :: Type -> Type) | |
| Contravariant (U1 :: Type -> Type) | |
| Contravariant (V1 :: Type -> Type) | |
| Contravariant (Const a :: Type -> Type) | |
| Contravariant f => Contravariant (Alt f) | |
| Contravariant f => Contravariant (Rec1 f) | |
| (Contravariant f, Contravariant g) => Contravariant (Product f g) | |
| (Contravariant f, Contravariant g) => Contravariant (Sum f g) | |
| (Contravariant f, Contravariant g) => Contravariant (f :*: g) | |
| (Contravariant f, Contravariant g) => Contravariant (f :+: g) | |
| Contravariant (K1 i c :: Type -> Type) | |
| (Functor f, Contravariant g) => Contravariant (Compose f g) | |
| (Functor f, Contravariant g) => Contravariant (f :.: g) | |
| Contravariant f => Contravariant (M1 i c f) | |
(>$<) :: Contravariant f => (a -> b) -> f b -> f a infixl 4 #
This is an infix alias for contramap.
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
| Identity | |
Fields
| |
Instances
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range for a given implementation can be determined by using
minBound and maxBound from the Bounded class.
Instances
| Bits Int | Since: base-2.1 |
Defined in Data.Bits | |
| FiniteBits Int | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
| Bounded Int | Since: base-2.1 |
| Enum Int | Since: base-2.1 |
| Num Int | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Integral Int | Since: base-2.0.1 |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Show Int | Since: base-2.1 |
| Default Int | |
Defined in Data.Default.Class | |
| Eq Int | |
| Ord Int | |
| Lift Int | |
| Generic1 (URec Int :: k -> Type) | |
| Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Int p) | |
| Show (URec Int p) | Since: base-4.9.0.0 |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
8-bit signed integer type
Instances
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
data Constraint #
The kind of constraints, like Show a
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>filter odd [1, 2, 3][1,3]
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip takes two lists and returns a list of
corresponding pairs.
>>>zip [1, 2] ['a', 'b'][(1, 'a'), (2, 'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>zip [1] ['a', 'b'][(1, 'a')]>>>zip [1, 2] ['a'][(1, 'a')]>>>zip [] [1..][]>>>zip [1..] [][]
zip is right-lazy:
>>>zip [] _|_[]>>>zip _|_ []_|_
zip is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
map :: (a -> b) -> [a] -> [b] #
\(\mathcal{O}(n)\). map f xs is the list obtained by applying f to
each element of xs, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>map (+1) [1, 2, 3][2,3,4]
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] #
The unfoldr function is a `dual' to foldr: while foldr
reduces a list to a summary value, unfoldr builds a list from
a seed value. The function takes the element and returns Nothing
if it is done producing the list or returns Just (a,b), in which
case, a is a prepended to the list and b is used as the next
element in a recursive call. For example,
iterate f == unfoldr (\x -> Just (x, f x))
In some cases, unfoldr can undo a foldr operation:
unfoldr f' (foldr f z xs) == xs
if the following holds:
f' (f x y) = Just (x,y) f' z = Nothing
A simple use of unfoldr:
>>>unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10[10,9,8,7,6,5,4,3,2,1]
The transpose function transposes the rows and columns of its argument.
For example,
>>>transpose [[1,2,3],[4,5,6]][[1,4],[2,5],[3,6]]
If some of the rows are shorter than the following rows, their elements are skipped:
>>>transpose [[10,11],[20],[],[30,31,32]][[10,20,30],[11,31],[32]]
subsequences :: [a] -> [[a]] #
The subsequences function returns the list of all subsequences of the argument.
>>>subsequences "abc"["","a","b","ab","c","ac","bc","abc"]
sortOn :: Ord b => (a -> b) -> [a] -> [a] #
Sort a list by comparing the results of a key function applied to each
element. sortOn f is equivalent to sortBy (comparing f), but has the
performance advantage of only evaluating f once for each element in the
input list. This is called the decorate-sort-undecorate paradigm, or
Schwartzian transform.
Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.
>>>sortOn fst [(2, "world"), (4, "!"), (1, "Hello")][(1,"Hello"),(2,"world"),(4,"!")]
Since: base-4.8.0.0
permutations :: [a] -> [[a]] #
The permutations function returns the list of all permutations of the argument.
>>>permutations "abc"["abc","bac","cba","bca","cab","acb"]
isPrefixOf :: Eq a => [a] -> [a] -> Bool #
\(\mathcal{O}(\min(m,n))\). The isPrefixOf function takes two lists and
returns True iff the first list is a prefix of the second.
>>>"Hello" `isPrefixOf` "Hello World!"True
>>>"Hello" `isPrefixOf` "Wello Horld!"False
intersperse :: a -> [a] -> [a] #
\(\mathcal{O}(n)\). The intersperse function takes an element and a list
and `intersperses' that element between the elements of the list. For
example,
>>>intersperse ',' "abcde""a,b,c,d,e"
intercalate :: [a] -> [[a]] -> [a] #
intercalate xs xss is equivalent to (.
It inserts the list concat (intersperse xs xss))xs in between the lists in xss and concatenates the
result.
>>>intercalate ", " ["Lorem", "ipsum", "dolor"]"Lorem, ipsum, dolor"
group :: Eq a => [a] -> [[a]] #
The group function takes a list and returns a list of lists such
that the concatenation of the result is equal to the argument. Moreover,
each sublist in the result contains only equal elements. For example,
>>>group "Mississippi"["M","i","ss","i","ss","i","pp","i"]
It is a special case of groupBy, which allows the programmer to supply
their own equality test.
genericTake :: Integral i => i -> [a] -> [a] #
The genericTake function is an overloaded version of take, which
accepts any Integral value as the number of elements to take.
genericSplitAt :: Integral i => i -> [a] -> ([a], [a]) #
The genericSplitAt function is an overloaded version of splitAt, which
accepts any Integral value as the position at which to split.
genericReplicate :: Integral i => i -> a -> [a] #
The genericReplicate function is an overloaded version of replicate,
which accepts any Integral value as the number of repetitions to make.
genericLength :: Num i => [a] -> i #
\(\mathcal{O}(n)\). The genericLength function is an overloaded version
of length. In particular, instead of returning an Int, it returns any
type which is an instance of Num. It is, however, less efficient than
length.
>>>genericLength [1, 2, 3] :: Int3>>>genericLength [1, 2, 3] :: Float3.0
genericDrop :: Integral i => i -> [a] -> [a] #
The genericDrop function is an overloaded version of drop, which
accepts any Integral value as the number of elements to drop.
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith generalises zip by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
For example, is applied to two lists to produce the list of
corresponding sums:zipWith (+)
>>>zipWith (+) [1, 2, 3] [4, 5, 6][5,7,9]
zipWith is right-lazy:
>>>zipWith f [] _|_[]
zipWith is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
unzip :: [(a, b)] -> ([a], [b]) #
unzip transforms a list of pairs into a list of first components
and a list of second components.
>>>unzip []([],[])>>>unzip [(1, 'a'), (2, 'b')]([1,2],"ab")
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.
>>>takeWhile (< 3) [1,2,3,4,1,2,3,4][1,2]>>>takeWhile (< 9) [1,2,3][1,2,3]>>>takeWhile (< 0) [1,2,3][]
take n, applied to a list xs, returns the prefix of xs
of length n, or xs itself if n >= .length xs
>>>take 5 "Hello World!""Hello">>>take 3 [1,2,3,4,5][1,2,3]>>>take 3 [1,2][1,2]>>>take 3 [][]>>>take (-1) [1,2][]>>>take 0 [1,2][]
It is an instance of the more general genericTake,
in which n may be of any integral type.
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt n xs returns a tuple where first element is xs prefix of
length n and second element is the remainder of the list:
>>>splitAt 6 "Hello World!"("Hello ","World!")>>>splitAt 3 [1,2,3,4,5]([1,2,3],[4,5])>>>splitAt 1 [1,2,3]([1],[2,3])>>>splitAt 3 [1,2,3]([1,2,3],[])>>>splitAt 4 [1,2,3]([1,2,3],[])>>>splitAt 0 [1,2,3]([],[1,2,3])>>>splitAt (-1) [1,2,3]([],[1,2,3])
It is equivalent to ( when take n xs, drop n xs)n is not _|_
(splitAt _|_ xs = _|_).
splitAt is an instance of the more general genericSplitAt,
in which n may be of any integral type.
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
satisfy p and second element is the remainder of the list:
>>>span (< 3) [1,2,3,4,1,2,3,4]([1,2],[3,4,1,2,3,4])>>>span (< 9) [1,2,3]([1,2,3],[])>>>span (< 0) [1,2,3]([],[1,2,3])
scanr1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanr1 is a variant of scanr that has no starting
value argument.
>>>scanr1 (+) [1..4][10,9,7,4]>>>scanr1 (+) [][]>>>scanr1 (-) [1..4][-2,3,-1,4]>>>scanr1 (&&) [True, False, True, True][False,False,True,True]>>>scanr1 (||) [True, True, False, False][True,True,False,False]>>>force $ scanr1 (+) [1..]*** Exception: stack overflow
scanr :: (a -> b -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanr is the right-to-left dual of scanl. Note that the order of parameters on the accumulating function are reversed compared to scanl.
Also note that
head (scanr f z xs) == foldr f z xs.
>>>scanr (+) 0 [1..4][10,9,7,4,0]>>>scanr (+) 42 [][42]>>>scanr (-) 100 [1..4][98,-97,99,-96,100]>>>scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]>>>force $ scanr (+) 0 [1..]*** Exception: stack overflow
scanl1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanl1 is a variant of scanl that has no starting
value argument:
scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
>>>scanl1 (+) [1..4][1,3,6,10]>>>scanl1 (+) [][]>>>scanl1 (-) [1..4][1,-1,-4,-8]>>>scanl1 (&&) [True, False, True, True][True,False,False,False]>>>scanl1 (||) [False, False, True, True][False,False,True,True]>>>scanl1 (+) [1..]* Hangs forever *
scanl :: (b -> a -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanl is similar to foldl, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
>>>scanl (+) 0 [1..4][0,1,3,6,10]>>>scanl (+) 42 [][42]>>>scanl (-) 100 [1..4][100,99,97,94,90]>>>scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']["foo","afoo","bafoo","cbafoo","dcbafoo"]>>>scanl (+) 0 [1..]* Hangs forever *
reverse xs returns the elements of xs in reverse order.
xs must be finite.
>>>reverse [][]>>>reverse [42][42]>>>reverse [2,5,7][7,5,2]>>>reverse [1..]* Hangs forever *
replicate :: Int -> a -> [a] #
replicate n x is a list of length n with x the value of
every element.
It is an instance of the more general genericReplicate,
in which n may be of any integral type.
>>>replicate 0 True[]>>>replicate (-1) True[]>>>replicate 4 True[True,True,True,True]
repeat x is an infinite list, with x the value of every element.
>>>take 20 $ repeat 17[17,17,17,17,17,17,17,17,17...
iterate :: (a -> a) -> a -> [a] #
iterate f x returns an infinite list of repeated applications
of f to x:
iterate f x == [x, f x, f (f x), ...]
Note that iterate is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate' for a strict
variant of this function.
>>>take 10 $ iterate not True[True,False,True,False...>>>take 10 $ iterate (+3) 42[42,45,48,51,54,57,60,63...
drop n xs returns the suffix of xs
after the first n elements, or [] if n >= .length xs
>>>drop 6 "Hello World!""World!">>>drop 3 [1,2,3,4,5][4,5]>>>drop 3 [1,2][]>>>drop 3 [][]>>>drop (-1) [1,2][1,2]>>>drop 0 [1,2][1,2]
It is an instance of the more general genericDrop,
in which n may be of any integral type.
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
do not satisfy p and second element is the remainder of the list:
>>>break (> 3) [1,2,3,4,1,2,3,4]([1,2,3],[4,1,2,3,4])>>>break (< 9) [1,2,3]([],[1,2,3])>>>break (> 9) [1,2,3]([1,2,3],[])
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
| a :| [a] infixr 5 |
Instances
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Traversable NonEmpty | Since: base-4.9.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Lift a => Lift (NonEmpty a :: Type) | Since: template-haskell-2.15.0.0 |
| Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
| IsList (NonEmpty a) | Since: base-4.9.0.0 |
| Generic (NonEmpty a) | |
| Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
| Show a => Show (NonEmpty a) | Since: base-4.11.0.0 |
| Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| Generic1 NonEmpty | |
| type Item (NonEmpty a) | |
| type Rep (NonEmpty a) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (NonEmpty a) = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'LeftAssociative 9) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |
| type Rep1 NonEmpty | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 NonEmpty = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'LeftAssociative 9) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 []))) | |
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Traversable Maybe | Since: base-2.1 |
| Alternative Maybe | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| MonadPlus Maybe | Since: base-2.1 |
| Lift a => Lift (Maybe a :: Type) | |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Generic (Maybe a) | |
| SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Show a => Show (Maybe a) | Since: base-2.1 |
| Default (Maybe a) | |
Defined in Data.Default.Class | |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Generic1 Maybe | |
| SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
| type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
| data Sing (b :: Maybe a) | |
| type Rep1 Maybe | Since: base-4.6.0.0 |
maybeToList :: Maybe a -> [a] #
The maybeToList function returns an empty list when given
Nothing or a singleton list when given Just.
Examples
Basic usage:
>>>maybeToList (Just 7)[7]
>>>maybeToList Nothing[]
One can use maybeToList to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>import Text.Read ( readMaybe )>>>sum $ maybeToList (readMaybe "3")3>>>sum $ maybeToList (readMaybe "")0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe function is a version of map which can throw
out elements. In particular, the functional argument returns
something of type . If this is Maybe bNothing, no element
is added on to the result list. If it is , then Just bb is
included in the result list.
Examples
Using is a shortcut for mapMaybe f x
in most cases:catMaybes $ map f x
>>>import Text.Read ( readMaybe )>>>let readMaybeInt = readMaybe :: String -> Maybe Int>>>mapMaybe readMaybeInt ["1", "Foo", "3"][1,3]>>>catMaybes $ map readMaybeInt ["1", "Foo", "3"][1,3]
If we map the Just constructor, the entire list should be returned:
>>>mapMaybe Just [1,2,3][1,2,3]
listToMaybe :: [a] -> Maybe a #
The listToMaybe function returns Nothing on an empty list
or where Just aa is the first element of the list.
Examples
Basic usage:
>>>listToMaybe []Nothing
>>>listToMaybe [9]Just 9
>>>listToMaybe [1,2,3]Just 1
Composing maybeToList with listToMaybe should be the identity
on singleton/empty lists:
>>>maybeToList $ listToMaybe [5][5]>>>maybeToList $ listToMaybe [][]
But not on lists with more than one element:
>>>maybeToList $ listToMaybe [1,2,3][1]
fromMaybe :: a -> Maybe a -> a #
The fromMaybe function takes a default value and a Maybe
value. If the Maybe is Nothing, it returns the default value;
otherwise, it returns the value contained in the Maybe.
Examples
Basic usage:
>>>fromMaybe "" (Just "Hello, World!")"Hello, World!"
>>>fromMaybe "" Nothing""
Read an integer from a string using readMaybe. If we fail to
parse an integer, we want to return 0 by default:
>>>import Text.Read ( readMaybe )>>>fromMaybe 0 (readMaybe "5")5>>>fromMaybe 0 (readMaybe "")0
catMaybes :: [Maybe a] -> [a] #
The catMaybes function takes a list of Maybes and returns
a list of all the Just values.
Examples
Basic usage:
>>>catMaybes [Just 1, Nothing, Just 3][1,3]
When constructing a list of Maybe values, catMaybes can be used
to return all of the "success" results (if the list is the result
of a map, then mapMaybe would be more appropriate):
>>>import Text.Read ( readMaybe )>>>[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][Just 1,Nothing,Just 3]>>>catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][1,3]
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x<>mempty= x- Left identity
mempty<>x = x- Associativity
x(<>(y<>z) = (x<>y)<>zSemigrouplaw)- Concatenation
mconcat=foldr(<>)mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
>>>"Hello world" <> mempty"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation since base-4.11.0.0.
Should it be implemented manually, since mappend = (<>)mappend is a synonym for
(<>), it is expected that the two functions are defined the same
way. In a future GHC release mappend will be removed from Monoid.
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>mconcat ["Hello", " ", "Haskell", "!"]"Hello Haskell!"
Instances
| Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods mappend :: ShortByteString -> ShortByteString -> ShortByteString # mconcat :: [ShortByteString] -> ShortByteString # | |
| Monoid IntSet | |
| Monoid Ordering | Since: base-2.1 |
| Monoid () | Since: base-2.1 |
| Monoid (Comparison a) |
mempty :: Comparison a mempty = Comparison _ _ -> EQ |
Defined in Data.Functor.Contravariant Methods mempty :: Comparison a # mappend :: Comparison a -> Comparison a -> Comparison a # mconcat :: [Comparison a] -> Comparison a # | |
| Monoid (Equivalence a) |
mempty :: Equivalence a mempty = Equivalence _ _ -> True |
Defined in Data.Functor.Contravariant Methods mempty :: Equivalence a # mappend :: Equivalence a -> Equivalence a -> Equivalence a # mconcat :: [Equivalence a] -> Equivalence a # | |
| Monoid (Predicate a) |
mempty :: Predicate a mempty = _ -> True |
| Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
| Monoid (First a) | Since: base-2.1 |
| Monoid (Last a) | Since: base-2.1 |
| Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
| (Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
| (Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
| Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
| Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
| Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
| Monoid (IntMap a) | |
| Monoid (Seq a) | |
| Monoid (MergeSet a) | |
| Ord a => Monoid (Set a) | |
| Monoid (DList a) | |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Monoid a => Monoid (Q a) | Since: template-haskell-2.17.0.0 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Monoid a => Monoid (a) | Since: base-4.15 |
| Monoid [a] | Since: base-2.1 |
| Monoid a => Monoid (Op a b) |
mempty :: Op a b mempty = Op _ -> mempty |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Monoid (U1 p) | Since: base-4.12.0.0 |
| Ord k => Monoid (Map k v) | |
| Monoid b => Monoid (a -> b) | Since: base-2.1 |
| (Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
| Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
| (Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
| Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
| Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
| Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in
the data declaration determines the ordering in derived Ord instances. The
Ordering datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord. However, <= is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z=True, thenx <= z=True - Reflexivity
x <= x=True- Antisymmetry
- if
x <= y && y <= x=True, thenx == y=True
Note that the following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y=Truemax x y == if x >= y then x else y=True
Note that (7.) and (8.) do not require min and max to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==).
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
| Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
| Ord Void | Since: base-4.8.0.0 |
| Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
| Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
| Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
| Ord Fixity | Since: base-4.6.0.0 |
| Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
| Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
| Ord Int16 | Since: base-2.1 |
| Ord Int32 | Since: base-2.1 |
| Ord Int64 | Since: base-2.1 |
| Ord Int8 | Since: base-2.1 |
| Ord SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods compare :: SomeSymbol -> SomeSymbol -> Ordering # (<) :: SomeSymbol -> SomeSymbol -> Bool # (<=) :: SomeSymbol -> SomeSymbol -> Bool # (>) :: SomeSymbol -> SomeSymbol -> Bool # (>=) :: SomeSymbol -> SomeSymbol -> Bool # max :: SomeSymbol -> SomeSymbol -> SomeSymbol # min :: SomeSymbol -> SomeSymbol -> SomeSymbol # | |
| Ord SomeNat | Since: base-4.7.0.0 |
| Ord Word16 | Since: base-2.1 |
| Ord Word32 | Since: base-2.1 |
| Ord Word64 | Since: base-2.1 |
| Ord ByteString | |
Defined in Data.ByteString.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
| Ord ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
| Ord ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods compare :: ShortByteString -> ShortByteString -> Ordering # (<) :: ShortByteString -> ShortByteString -> Bool # (<=) :: ShortByteString -> ShortByteString -> Bool # (>) :: ShortByteString -> ShortByteString -> Bool # (>=) :: ShortByteString -> ShortByteString -> Bool # max :: ShortByteString -> ShortByteString -> ShortByteString # min :: ShortByteString -> ShortByteString -> ShortByteString # | |
| Ord IntSet | |
| Ord BigNat | |
| Ord Extension | |
| Ord Ordering | |
Defined in GHC.Classes | |
| Ord TyCon | |
| Ord AnnLookup | |
| Ord AnnTarget | |
| Ord Bang | |
| Ord Body | |
| Ord Bytes | |
| Ord Callconv | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Clause | |
| Ord Con | |
| Ord Dec | |
| Ord DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
| Ord DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivClause -> DerivClause -> Ordering # (<) :: DerivClause -> DerivClause -> Bool # (<=) :: DerivClause -> DerivClause -> Bool # (>) :: DerivClause -> DerivClause -> Bool # (>=) :: DerivClause -> DerivClause -> Bool # max :: DerivClause -> DerivClause -> DerivClause # min :: DerivClause -> DerivClause -> DerivClause # | |
| Ord DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivStrategy -> DerivStrategy -> Ordering # (<) :: DerivStrategy -> DerivStrategy -> Bool # (<=) :: DerivStrategy -> DerivStrategy -> Bool # (>) :: DerivStrategy -> DerivStrategy -> Bool # (>=) :: DerivStrategy -> DerivStrategy -> Bool # max :: DerivStrategy -> DerivStrategy -> DerivStrategy # min :: DerivStrategy -> DerivStrategy -> DerivStrategy # | |
| Ord Exp | |
| Ord FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FamilyResultSig -> FamilyResultSig -> Ordering # (<) :: FamilyResultSig -> FamilyResultSig -> Bool # (<=) :: FamilyResultSig -> FamilyResultSig -> Bool # (>) :: FamilyResultSig -> FamilyResultSig -> Bool # (>=) :: FamilyResultSig -> FamilyResultSig -> Bool # max :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # min :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # | |
| Ord Fixity | |
| Ord FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FixityDirection -> FixityDirection -> Ordering # (<) :: FixityDirection -> FixityDirection -> Bool # (<=) :: FixityDirection -> FixityDirection -> Bool # (>) :: FixityDirection -> FixityDirection -> Bool # (>=) :: FixityDirection -> FixityDirection -> Bool # max :: FixityDirection -> FixityDirection -> FixityDirection # min :: FixityDirection -> FixityDirection -> FixityDirection # | |
| Ord Foreign | |
Defined in Language.Haskell.TH.Syntax | |
| Ord FunDep | |
| Ord Guard | |
| Ord Info | |
| Ord InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods compare :: InjectivityAnn -> InjectivityAnn -> Ordering # (<) :: InjectivityAnn -> InjectivityAnn -> Bool # (<=) :: InjectivityAnn -> InjectivityAnn -> Bool # (>) :: InjectivityAnn -> InjectivityAnn -> Bool # (>=) :: InjectivityAnn -> InjectivityAnn -> Bool # max :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # min :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # | |
| Ord Inline | |
| Ord Lit | |
| Ord Loc | |
| Ord Match | |
| Ord ModName | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Module | |
| Ord ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods compare :: ModuleInfo -> ModuleInfo -> Ordering # (<) :: ModuleInfo -> ModuleInfo -> Bool # (<=) :: ModuleInfo -> ModuleInfo -> Bool # (>) :: ModuleInfo -> ModuleInfo -> Bool # (>=) :: ModuleInfo -> ModuleInfo -> Bool # max :: ModuleInfo -> ModuleInfo -> ModuleInfo # min :: ModuleInfo -> ModuleInfo -> ModuleInfo # | |
| Ord Name | |
| Ord NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods compare :: NameFlavour -> NameFlavour -> Ordering # (<) :: NameFlavour -> NameFlavour -> Bool # (<=) :: NameFlavour -> NameFlavour -> Bool # (>) :: NameFlavour -> NameFlavour -> Bool # (>=) :: NameFlavour -> NameFlavour -> Bool # max :: NameFlavour -> NameFlavour -> NameFlavour # min :: NameFlavour -> NameFlavour -> NameFlavour # | |
| Ord NameSpace | |
| Ord OccName | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Overlap | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Pat | |
| Ord PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods compare :: PatSynArgs -> PatSynArgs -> Ordering # (<) :: PatSynArgs -> PatSynArgs -> Bool # (<=) :: PatSynArgs -> PatSynArgs -> Bool # (>) :: PatSynArgs -> PatSynArgs -> Bool # (>=) :: PatSynArgs -> PatSynArgs -> Bool # max :: PatSynArgs -> PatSynArgs -> PatSynArgs # min :: PatSynArgs -> PatSynArgs -> PatSynArgs # | |
| Ord PatSynDir | |
| Ord Phases | |
| Ord PkgName | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Pragma | |
| Ord Range | |
| Ord Role | |
| Ord RuleBndr | |
Defined in Language.Haskell.TH.Syntax | |
| Ord RuleMatch | |
| Ord Safety | |
| Ord SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
| Ord SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
| Ord Specificity | |
Defined in Language.Haskell.TH.Syntax Methods compare :: Specificity -> Specificity -> Ordering # (<) :: Specificity -> Specificity -> Bool # (<=) :: Specificity -> Specificity -> Bool # (>) :: Specificity -> Specificity -> Bool # (>=) :: Specificity -> Specificity -> Bool # max :: Specificity -> Specificity -> Specificity # min :: Specificity -> Specificity -> Specificity # | |
| Ord Stmt | |
| Ord TyLit | |
| Ord TySynEqn | |
Defined in Language.Haskell.TH.Syntax | |
| Ord Type | |
| Ord TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods compare :: TypeFamilyHead -> TypeFamilyHead -> Ordering # (<) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (<=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # max :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # min :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # | |
| Ord Word8 | Since: base-2.1 |
| Ord Integer | |
| Ord Natural | |
| Ord () | |
| Ord Bool | |
| Ord Char | |
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Ord Int | |
| Ord Word | |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
| Ord a => Ord (First a) | Since: base-2.1 |
| Ord a => Ord (Last a) | Since: base-2.1 |
| Ord a => Ord (Down a) | Since: base-4.6.0.0 |
| Ord a => Ord (First a) | Since: base-4.9.0.0 |
| Ord a => Ord (Last a) | Since: base-4.9.0.0 |
| Ord a => Ord (Max a) | Since: base-4.9.0.0 |
| Ord a => Ord (Min a) | Since: base-4.9.0.0 |
| Ord a => Ord (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| Ord m => Ord (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
| Integral a => Ord (Ratio a) | Since: base-2.0.1 |
| Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
| Ord a => Ord (Seq a) | |
| Ord a => Ord (ViewL a) | |
Defined in Data.Sequence.Internal | |
| Ord a => Ord (ViewR a) | |
Defined in Data.Sequence.Internal | |
| Ord a => Ord (Set a) | |
| Ord a => Ord (DList a) | |
| Ord flag => Ord (TyVarBndr flag) | |
Defined in Language.Haskell.TH.Syntax Methods compare :: TyVarBndr flag -> TyVarBndr flag -> Ordering # (<) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (<=) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (>) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (>=) :: TyVarBndr flag -> TyVarBndr flag -> Bool # | |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Ord a => Ord [a] | |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| Ord a => Ord (Arg a b) | Since: base-4.9.0.0 |
| Ord (TypeRep a) | Since: base-4.4.0.0 |
| Ord (U1 p) | Since: base-4.7.0.0 |
| Ord (V1 p) | Since: base-4.9.0.0 |
| (Ord k, Ord v) => Ord (Map k v) | |
| (Ord a, Ord b) => Ord (a, b) | |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
| Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
| Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| (Ord1 f, Ord1 g, Ord a) => Ord (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods compare :: Product f g a -> Product f g a -> Ordering # (<) :: Product f g a -> Product f g a -> Bool # (<=) :: Product f g a -> Product f g a -> Bool # (>) :: Product f g a -> Product f g a -> Bool # (>=) :: Product f g a -> Product f g a -> Bool # | |
| (Ord1 f, Ord1 g, Ord a) => Ord (Sum f g a) | Since: base-4.9.0.0 |
| Ord (a :~~: b) | Since: base-4.10.0.0 |
| (Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
| (Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
| Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # | |
Instances
| Monoid Ordering | Since: base-2.1 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Bounded Ordering | Since: base-2.1 |
| Enum Ordering | Since: base-2.1 |
| Generic Ordering | |
| Read Ordering | Since: base-2.1 |
| Show Ordering | Since: base-2.1 |
| Default Ordering | |
Defined in Data.Default.Class | |
| Eq Ordering | |
| Ord Ordering | |
Defined in GHC.Classes | |
| type Rep Ordering | Since: base-4.6.0.0 |
The Down type allows you to reverse sort order conveniently. A value of type
contains a value of type Down aa (represented as ).Down a
If a has an instance associated with it then comparing two
values thus wrapped will give you the opposite of their normal sort order.
This is particularly useful when sorting in generalised list comprehensions,
as in: Ordthen sortWith by .Down x
>>>compare True FalseGT
>>>compare (Down True) (Down False)LT
If a has a instance then the wrapped instance also respects
the reversed ordering by exchanging the values of Bounded and
minBound.maxBound
>>>minBound :: Int-9223372036854775808
>>>minBound :: Down IntDown 9223372036854775807
All other instances of behave as they do for Down aa.
Since: base-4.6.0.0
Instances
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
| Traversable Down | Since: base-4.12.0.0 |
| Applicative Down | Since: base-4.11.0.0 |
| Functor Down | Since: base-4.11.0.0 |
| Monad Down | Since: base-4.11.0.0 |
| Bits a => Bits (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods (.&.) :: Down a -> Down a -> Down a # (.|.) :: Down a -> Down a -> Down a # xor :: Down a -> Down a -> Down a # complement :: Down a -> Down a # shift :: Down a -> Int -> Down a # rotate :: Down a -> Int -> Down a # setBit :: Down a -> Int -> Down a # clearBit :: Down a -> Int -> Down a # complementBit :: Down a -> Int -> Down a # testBit :: Down a -> Int -> Bool # bitSizeMaybe :: Down a -> Maybe Int # shiftL :: Down a -> Int -> Down a # unsafeShiftL :: Down a -> Int -> Down a # shiftR :: Down a -> Int -> Down a # unsafeShiftR :: Down a -> Int -> Down a # rotateL :: Down a -> Int -> Down a # | |
| FiniteBits a => FiniteBits (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods finiteBitSize :: Down a -> Int # countLeadingZeros :: Down a -> Int # countTrailingZeros :: Down a -> Int # | |
| Storable a => Storable (Down a) | Since: base-4.14.0.0 |
| Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
| Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
| Bounded a => Bounded (Down a) | Swaps Since: base-4.14.0.0 |
| Floating a => Floating (Down a) | Since: base-4.14.0.0 |
| RealFloat a => RealFloat (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods floatRadix :: Down a -> Integer # floatDigits :: Down a -> Int # floatRange :: Down a -> (Int, Int) # decodeFloat :: Down a -> (Integer, Int) # encodeFloat :: Integer -> Int -> Down a # significand :: Down a -> Down a # scaleFloat :: Int -> Down a -> Down a # isInfinite :: Down a -> Bool # isDenormalized :: Down a -> Bool # isNegativeZero :: Down a -> Bool # | |
| Generic (Down a) | |
| Ix a => Ix (Down a) | Since: base-4.14.0.0 |
| Num a => Num (Down a) | Since: base-4.11.0.0 |
| Read a => Read (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 |
| Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
| Real a => Real (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods toRational :: Down a -> Rational # | |
| RealFrac a => RealFrac (Down a) | Since: base-4.14.0.0 |
| Show a => Show (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 |
| Eq a => Eq (Down a) | Since: base-4.6.0.0 |
| Ord a => Ord (Down a) | Since: base-4.6.0.0 |
| Generic1 Down | |
| type Rep (Down a) | Since: base-4.12.0.0 |
Defined in GHC.Generics | |
| type Rep1 Down | Since: base-4.12.0.0 |
Defined in GHC.Generics | |
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
Proxy is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically, is a safer alternative to the
Proxy :: Proxy a idiom.undefined :: a
>>>Proxy :: Proxy (Void, Int -> Int)Proxy
Proxy can even hold types of higher kinds,
>>>Proxy :: Proxy EitherProxy
>>>Proxy :: Proxy FunctorProxy
>>>Proxy :: Proxy complicatedStructureProxy
Constructors
| Proxy |
Instances
| Generic1 (Proxy :: k -> Type) | |
| Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Contravariant (Proxy :: Type -> Type) | |
| Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Semigroup (Proxy s) | Since: base-4.9.0.0 |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| Enum (Proxy s) | Since: base-4.7.0.0 |
| Generic (Proxy t) | |
| Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
| Read (Proxy t) | Since: base-4.7.0.0 |
| Show (Proxy s) | Since: base-4.7.0.0 |
| Eq (Proxy s) | Since: base-4.7.0.0 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
| type Rep (Proxy t) | Since: base-4.6.0.0 |
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
Since: base-4.9.0.0
Minimal complete definition
Methods
(<>) :: a -> a -> a infixr 6 #
An associative operation.
>>>[1,2,3] <> [4,5,6][1,2,3,4,5,6]
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
>>>import Data.List.NonEmpty (NonEmpty (..))>>>sconcat $ "Hello" :| [" ", "Haskell", "!"]"Hello Haskell!"
stimes :: Integral b => b -> a -> a #
Repeat a value n times.
Given that this works on a Semigroup it is allowed to fail if
you request 0 or fewer repetitions, and the default definition
will do so.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by
picking stimes = or stimesIdempotentstimes =
respectively.stimesIdempotentMonoid
>>>stimes 4 [1][1,1,1,1]
Instances
| Semigroup Void | Since: base-4.9.0.0 |
| Semigroup ByteString | |
Defined in Data.ByteString.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
| Semigroup ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
| Semigroup ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (<>) :: ShortByteString -> ShortByteString -> ShortByteString # sconcat :: NonEmpty ShortByteString -> ShortByteString # stimes :: Integral b => b -> ShortByteString -> ShortByteString # | |
| Semigroup IntSet | Since: containers-0.5.7 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Semigroup () | Since: base-4.9.0.0 |
| Semigroup (Comparison a) |
(<>) :: Comparison a -> Comparison a -> Comparison a Comparison cmp <> Comparison cmp' = Comparison a a' -> cmp a a' <> cmp a a' |
Defined in Data.Functor.Contravariant Methods (<>) :: Comparison a -> Comparison a -> Comparison a # sconcat :: NonEmpty (Comparison a) -> Comparison a # stimes :: Integral b => b -> Comparison a -> Comparison a # | |
| Semigroup (Equivalence a) |
(<>) :: Equivalence a -> Equivalence a -> Equivalence a Equivalence equiv <> Equivalence equiv' = Equivalence a b -> equiv a b && equiv a b |
Defined in Data.Functor.Contravariant Methods (<>) :: Equivalence a -> Equivalence a -> Equivalence a # sconcat :: NonEmpty (Equivalence a) -> Equivalence a # stimes :: Integral b => b -> Equivalence a -> Equivalence a # | |
| Semigroup (Predicate a) |
(<>) :: Predicate a -> Predicate a -> Predicate a Predicate pred <> Predicate pred' = Predicate a -> pred a && pred' a |
| Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
| Semigroup (First a) | Since: base-4.9.0.0 |
| Semigroup (Last a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
| Semigroup (First a) | Since: base-4.9.0.0 |
| Semigroup (Last a) | Since: base-4.9.0.0 |
| Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
| Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Option a) | Since: base-4.9.0.0 |
| Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
| Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
| Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
| Semigroup (IntMap a) | Since: containers-0.5.7 |
| Semigroup (Seq a) | Since: containers-0.5.7 |
| Semigroup (MergeSet a) | |
| Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
| Semigroup (DList a) | |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
| Semigroup a => Semigroup (Q a) | Since: template-haskell-2.17.0.0 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (a) | Since: base-4.15 |
| Semigroup [a] | Since: base-4.9.0.0 |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Op a b) |
(<>) :: Op a b -> Op a b -> Op a b Op f <> Op g = Op a -> f a <> g a |
| Semigroup (Proxy s) | Since: base-4.9.0.0 |
| Semigroup (U1 p) | Since: base-4.12.0.0 |
| Semigroup (V1 p) | Since: base-4.12.0.0 |
| Ord k => Semigroup (Map k v) | |
| Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
| (Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
| Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
| (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
| (Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
| Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
| Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
| Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative (or,
therefore, Monad) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>traverse Just [1,2,3,4]Just [1,2,3,4]
>>>traverse id [Right 1, Right 2, Right 3, Right 4]Right [1,2,3,4]
In the next examples, we show that Nothing and Left values short
circuit the created structure.
>>>traverse (const Nothing) [1,2,3,4]Nothing
>>>traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]Nothing
>>>traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]Left 0
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_.
Examples
Basic usage:
For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>>sequenceA [Just 1, Just 2, Just 3]Just [1,2,3]
>>>sequenceA [Right 1, Right 2, Right 3]Right [1,2,3]
The next two example show Nothing and Just will short circuit
the resulting structure if present in the input. For more context,
check the Traversable instances for Either and Maybe.
>>>sequenceA [Just 1, Just 2, Just 3, Nothing]Nothing
>>>sequenceA [Right 1, Right 2, Right 3, Left 4]Left 4
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_.
Examples
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_.
Examples
Basic usage:
The first two examples are instances where the input and
and output of sequence are isomorphic.
>>>sequence $ Right [1,2,3,4][Right 1,Right 2,Right 3,Right 4]
>>>sequence $ [Right 1,Right 2,Right 3,Right 4]Right [1,2,3,4]
The following examples demonstrate short circuit behavior
for sequence.
>>>sequence $ Left [1,2,3,4]Left [1,2,3,4]
>>>sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]Left 0
Instances
| Traversable ZipList | Since: base-4.9.0.0 |
| Traversable Identity | Since: base-4.9.0.0 |
| Traversable First | Since: base-4.8.0.0 |
| Traversable Last | Since: base-4.8.0.0 |
| Traversable Down | Since: base-4.12.0.0 |
| Traversable First | Since: base-4.9.0.0 |
| Traversable Last | Since: base-4.9.0.0 |
| Traversable Max | Since: base-4.9.0.0 |
| Traversable Min | Since: base-4.9.0.0 |
| Traversable Option | Since: base-4.9.0.0 |
| Traversable Dual | Since: base-4.8.0.0 |
| Traversable Product | Since: base-4.8.0.0 |
| Traversable Sum | Since: base-4.8.0.0 |
| Traversable NonEmpty | Since: base-4.9.0.0 |
| Traversable Par1 | Since: base-4.9.0.0 |
| Traversable IntMap | Traverses in order of increasing key. |
| Traversable Digit | |
| Traversable Elem | |
| Traversable FingerTree | |
Defined in Data.Sequence.Internal Methods traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) # sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) # mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) # sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) # | |
| Traversable Node | |
| Traversable Seq | |
| Traversable ViewL | |
| Traversable ViewR | |
| Traversable DList | |
| Traversable Maybe | Since: base-2.1 |
| Traversable Solo | Since: base-4.15 |
| Traversable [] | Since: base-2.1 |
Defined in Data.Traversable | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Traversable (Arg a) | Since: base-4.9.0.0 |
| Ix i => Traversable (Array i) | Since: base-2.1 |
| Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (Map k) | Traverses in order of increasing key. |
| Traversable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
| Traversable f => Traversable (Ap f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (Alt f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (Rec1 f) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
| (Traversable f, Traversable g) => Traversable (Sum f g) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| (Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 |
mapAccumR :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b) #
The mapAccumR function behaves like a combination of fmap
and foldr; it applies a function to each element of a structure,
passing an accumulating parameter from right to left, and returning
a final value of this accumulator together with the new structure.
Examples
Basic usage:
>>>mapAccumR (\a b -> (a + b, a)) 0 [1..10](55,[54,52,49,45,40,34,27,19,10,0])
>>>mapAccumR (\a b -> (a <> show b, a)) "0" [1..5]("054321",["05432","0543","054","05","0"])
mapAccumL :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b) #
The mapAccumL function behaves like a combination of fmap
and foldl; it applies a function to each element of a structure,
passing an accumulating parameter from left to right, and returning
a final value of this accumulator together with the new structure.
Examples
Basic usage:
>>>mapAccumL (\a b -> (a + b, a)) 0 [1..10](55,[0,1,3,6,10,15,21,28,36,45])
>>>mapAccumL (\a b -> (a <> show b, a)) "0" [1..5]("012345",["0","01","012","0123","01234"])
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry converts a curried function to a function on pairs.
Examples
>>>uncurry (+) (1,2)3
>>>uncurry ($) (show, 1)"1"
>>>map (uncurry max) [(1,2), (3,4), (6,8)][2,4,8]
The class Typeable allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
Uninhabited data type
Since: base-4.8.0.0
Instances
| Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
| Semigroup Void | Since: base-4.9.0.0 |
| Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
| Generic Void | |
| Ix Void | Since: base-4.8.0.0 |
| Read Void | Reading a Since: base-4.8.0.0 |
| Show Void | Since: base-4.8.0.0 |
| Eq Void | Since: base-4.8.0.0 |
| Ord Void | Since: base-4.8.0.0 |
| Lift Void | Since: template-haskell-2.15.0.0 |
| type Rep Void | Since: base-4.8.0.0 |
Instances
| Bits Word | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
| FiniteBits Word | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
| Bounded Word | Since: base-2.1 |
| Enum Word | Since: base-2.1 |
| Num Word | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Integral Word | Since: base-2.1 |
| Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
| Show Word | Since: base-2.1 |
| Default Word | |
Defined in Data.Default.Class | |
| Eq Word | |
| Ord Word | |
| Lift Word | |
| Generic1 (URec Word :: k -> Type) | |
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Word p) | |
| Show (URec Word p) | Since: base-4.9.0.0 |
| Eq (URec Word p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
8-bit unsigned integer type
Instances
16-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 #
The value of seq a b is bottom if a is bottom, and
otherwise equal to b. In other words, it evaluates the first
argument a to weak head normal form (WHNF). seq is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b does
not guarantee that a will be evaluated before b.
The only guarantee given by seq is that the both a
and b will be evaluated before seq returns a value.
In particular, this means that b may be evaluated before
a. If you need to guarantee a specific order of evaluation,
you must use the function pseq from the "parallel" package.
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
The Bounded class is used to name the upper and lower limits of a
type. Ord is not a superclass of Bounded since types that are not
totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type;
minBound is the first constructor listed in the data declaration
and maxBound is the last.
Bounded may also be derived for single-constructor datatypes whose
constituent types are in Bounded.
Instances
| Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded Int16 | Since: base-2.1 |
| Bounded Int32 | Since: base-2.1 |
| Bounded Int64 | Since: base-2.1 |
| Bounded Int8 | Since: base-2.1 |
| Bounded Word16 | Since: base-2.1 |
| Bounded Word32 | Since: base-2.1 |
| Bounded Word64 | Since: base-2.1 |
| Bounded Extension | |
| Bounded Ordering | Since: base-2.1 |
| Bounded Word8 | Since: base-2.1 |
| Bounded () | Since: base-2.1 |
| Bounded Bool | Since: base-2.1 |
| Bounded Char | Since: base-2.1 |
| Bounded Int | Since: base-2.1 |
| Bounded VecCount | Since: base-4.10.0.0 |
| Bounded VecElem | Since: base-4.10.0.0 |
| Bounded Word | Since: base-2.1 |
| Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Down a) | Swaps Since: base-4.14.0.0 |
| Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
| Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
| a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
| a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
| (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBoundMethods
the successor of a value. For numeric types, succ adds 1.
the predecessor of a value. For numeric types, pred subtracts 1.
Convert from an Int.
Convert to an Int.
It is implementation-dependent what fromEnum returns when
applied to a value that is too large to fit in an Int.
Used in Haskell's translation of [n..] with [n..] = enumFrom n,
a possible implementation being enumFrom n = n : enumFrom (succ n).
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n', a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n'),
worker s v = v : worker s (s v), x = fromEnum n' - fromEnum n and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m] with
[n..m] = enumFromTo n m, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = [].
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m] with
[n,n'..m] = enumFromThenTo n n' m, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m,
x = fromEnum n' - fromEnum n, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a #
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a #
error stops execution and displays an error message.
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
| Floating Double | Since: base-2.1 |
| RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
| Read Double | Since: base-2.1 |
| Default Double | |
Defined in Data.Default.Class | |
| Eq Double | Note that due to the presence of
Also note that
|
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Lift Double | |
| Generic1 (URec Double :: k -> Type) | |
| Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Double p) | |
| Show (URec Double p) | Since: base-4.9.0.0 |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
| Floating Float | Since: base-2.1 |
| RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
| Read Float | Since: base-2.1 |
| Default Float | |
Defined in Data.Default.Class | |
| Eq Float | Note that due to the presence of
Also note that
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Lift Float | |
| Generic1 (URec Float :: k -> Type) | |
| Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Float p) | |
| Show (URec Float p) | |
| Eq (URec Float p) | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Float p) | |
Defined in GHC.Generics | |
Representable types of kind *.
This class is derivable in GHC with the DeriveGeneric flag on.
A Generic instance must satisfy the following laws:
from.to≡idto.from≡id
Instances
Basic numeric class.
The Haskell Report defines no laws for Num. However, ( and +)( are
customarily expected to define a ring and have the following properties:*)
- Associativity of
(+) (x + y) + z=x + (y + z)- Commutativity of
(+) x + y=y + xis the additive identityfromInteger0x + fromInteger 0=xnegategives the additive inversex + negate x=fromInteger 0- Associativity of
(*) (x * y) * z=x * (y * z)is the multiplicative identityfromInteger1x * fromInteger 1=xandfromInteger 1 * x=x- Distributivity of
(with respect to*)(+) a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord implement an ordered ring. Indeed, in base only Integer and
Rational do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs and signum should satisfy the law:
abs x * signum x == x
For real numbers, the signum is either -1 (negative), 0 (zero)
or 1 (positive).
fromInteger :: Integer -> a #
Conversion from an Integer.
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer,
so such literals have type (.Num a) => a
Instances
| Num Int16 | Since: base-2.1 |
| Num Int32 | Since: base-2.1 |
| Num Int64 | Since: base-2.1 |
| Num Int8 | Since: base-2.1 |
| Num Word16 | Since: base-2.1 |
| Num Word32 | Since: base-2.1 |
| Num Word64 | Since: base-2.1 |
| Num CodePoint | |
Defined in Data.Text.Encoding | |
| Num DecoderState | |
Defined in Data.Text.Encoding Methods (+) :: DecoderState -> DecoderState -> DecoderState # (-) :: DecoderState -> DecoderState -> DecoderState # (*) :: DecoderState -> DecoderState -> DecoderState # negate :: DecoderState -> DecoderState # abs :: DecoderState -> DecoderState # signum :: DecoderState -> DecoderState # fromInteger :: Integer -> DecoderState # | |
| Num Word8 | Since: base-2.1 |
| Num Integer | Since: base-2.1 |
| Num Natural | Note that Since: base-4.8.0.0 |
| Num Int | Since: base-2.1 |
| Num Word | Since: base-2.1 |
| Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
| Num a => Num (Down a) | Since: base-4.11.0.0 |
| Num a => Num (Max a) | Since: base-4.9.0.0 |
| Num a => Num (Min a) | Since: base-4.9.0.0 |
| Integral a => Num (Ratio a) | Since: base-2.0.1 |
| Num a => Num (Op a b) | |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| (Applicative f, Num a) => Num (Ap f a) | Note that even if the underlying Commutativity:
Additive inverse:
Distributivity:
Since: base-4.12.0.0 |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int, the Integer type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int), IS constructor is used.
Otherwise IP and IN constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Instances
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional. However, ( and
+)( are customarily expected to define a division ring and have the
following properties:*)
recipgives the multiplicative inversex * recip x=recip x * x=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional implement a field. However, all instances in base do.
Minimal complete definition
fromRational, (recip | (/))
Methods
Fractional division.
Reciprocal fraction.
fromRational :: Rational -> a #
Conversion from a Rational (that is ).
A floating literal stands for an application of Ratio IntegerfromRational
to a value of type Rational, so such literals have type
(.Fractional a) => a
Instances
| Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
| Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
| Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
| Fractional a => Fractional (Op a b) | |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div/mod and quot/rem pairs, given
suitable Euclidean functions f and g:
x=y * quot x y + rem x ywithrem x y=fromInteger 0org (rem x y)<g yx=y * div x y + mod x ywithmod x y=fromInteger 0orf (mod x y)<f y
An example of a suitable Euclidean function, for Integer's instance, is
abs.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
| Integral Int16 | Since: base-2.1 |
| Integral Int32 | Since: base-2.1 |
| Integral Int64 | Since: base-2.1 |
| Integral Int8 | Since: base-2.1 |
| Integral Word16 | Since: base-2.1 |
| Integral Word32 | Since: base-2.1 |
| Integral Word64 | Since: base-2.1 |
| Integral Word8 | Since: base-2.1 |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
| Integral Int | Since: base-2.0.1 |
| Integral Word | Since: base-2.1 |
| Integral a => Integral (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods quot :: Identity a -> Identity a -> Identity a # rem :: Identity a -> Identity a -> Identity a # div :: Identity a -> Identity a -> Identity a # mod :: Identity a -> Identity a -> Identity a # quotRem :: Identity a -> Identity a -> (Identity a, Identity a) # divMod :: Identity a -> Identity a -> (Identity a, Identity a) # | |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
| Real Int16 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int16 -> Rational # | |
| Real Int32 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int32 -> Rational # | |
| Real Int64 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int64 -> Rational # | |
| Real Int8 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int8 -> Rational # | |
| Real Word16 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word16 -> Rational # | |
| Real Word32 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word32 -> Rational # | |
| Real Word64 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word64 -> Rational # | |
| Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
| Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
| Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real Methods toRational :: Natural -> Rational # | |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
| Real a => Real (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods toRational :: Identity a -> Rational # | |
| Real a => Real (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods toRational :: Down a -> Rational # | |
| Integral a => Real (Ratio a) | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Ratio a -> Rational # | |
| Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction takes a real fractional number x
and returns a pair (n,f) such that x = n+f, and:
nis an integral number with the same sign asx; andfis a fraction with the same type and sign asx, and with absolute value less than1.
The default definitions of the ceiling, floor, truncate
and round functions are in terms of properFraction.
truncate :: Integral b => a -> b #
returns the integer nearest truncate xx between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round xx;
the even integer if x is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor xx
Rational numbers, with numerator and denominator of some Integral type.
Note that Ratio's instances inherit the deficiencies from the type
parameter's. For example, Ratio Natural's Num instance has similar
problems to Natural's.
Instances
| Integral a => Lift (Ratio a :: Type) | |
| Integral a => Enum (Ratio a) | Since: base-2.0.1 |
| Integral a => Num (Ratio a) | Since: base-2.0.1 |
| (Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
| Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
| Integral a => Real (Ratio a) | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Ratio a -> Rational # | |
| Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
| Show a => Show (Ratio a) | Since: base-2.0.1 |
| Integral a => Default (Ratio a) | |
Defined in Data.Default.Class | |
| Eq a => Eq (Ratio a) | Since: base-2.1 |
| Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Extract the numerator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm x yx and y divide.
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd x yx and y of which
every common factor of x and y is also a factor; for example
, gcd 4 2 = 2, gcd (-4) 6 = 2 = gcd 0 44. = gcd 0 00.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types, ,
the result may be negative if one of the arguments is abs minBound < 0 (and
necessarily is if the other is minBound0 or ) for such types.minBound
denominator :: Ratio a -> a #
Extract the denominator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
Conversion of values to readable Strings.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Instances
type HasCallStack = ?callStack :: CallStack #
Request a CallStack.
NOTE: The implicit parameter ?callStack :: CallStack is an
implementation detail and should not be considered part of the
CallStack API, we may decide to change the implementation in the
future.
Since: base-4.9.0.0
This class gives the integer associated with a type-level natural. There are instances of the class for every concrete literal: 0, 1, 2, etc.
Since: base-4.7.0.0
Minimal complete definition
natSing
class KnownSymbol (n :: Symbol) #
This class gives the string associated with a type-level symbol. There are instances of the class for every concrete literal: "hello", etc.
Since: base-4.7.0.0
Minimal complete definition
symbolSing
(Kind) This is the kind of type-level symbols. Declared here because class IP needs it
Instances
| SingKind Symbol | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep Symbol | |
| KnownSymbol a => SingI (a :: Symbol) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods sing :: Sing a | |
| type DemoteRep Symbol | |
Defined in GHC.Generics | |
| data Sing (s :: Symbol) | |
Defined in GHC.Generics | |
type family (a :: Nat) + (b :: Nat) :: Nat where ... infixl 6 #
Addition of type-level naturals.
Since: base-4.7.0.0
type family (a :: Nat) * (b :: Nat) :: Nat where ... infixl 7 #
Multiplication of type-level naturals.
Since: base-4.7.0.0
type family (a :: Nat) ^ (b :: Nat) :: Nat where ... infixr 8 #
Exponentiation of type-level naturals.
Since: base-4.7.0.0
type family (a :: Nat) <=? (b :: Nat) :: Bool where ... infix 4 #
Comparison of type-level naturals, as a function.
NOTE: The functionality for this function should be subsumed
by CmpNat, so this might go away in the future.
Please let us know, if you encounter discrepancies between the two.
type family (a :: Nat) - (b :: Nat) :: Nat where ... infixl 6 #
Subtraction of type-level naturals.
Since: base-4.7.0.0
type family CmpSymbol (a :: Symbol) (b :: Symbol) :: Ordering where ... #
Comparison of type-level symbols, as a function.
Since: base-4.7.0.0
type family CmpNat (a :: Nat) (b :: Nat) :: Ordering where ... #
Comparison of type-level naturals, as a function.
Since: base-4.7.0.0
type family Div (a :: Nat) (b :: Nat) :: Nat where ... infixl 7 #
Division (round down) of natural numbers.
Div x 0 is undefined (i.e., it cannot be reduced).
Since: base-4.11.0.0
type family Mod (a :: Nat) (b :: Nat) :: Nat where ... infixl 7 #
Modulus of natural numbers.
Mod x 0 is undefined (i.e., it cannot be reduced).
Since: base-4.11.0.0
type family Log2 (a :: Nat) :: Nat where ... #
Log base 2 (round down) of natural numbers.
Log 0 is undefined (i.e., it cannot be reduced).
Since: base-4.11.0.0
type family TypeError (a :: ErrorMessage) :: b where ... #
The type-level equivalent of error.
The polymorphic kind of this type allows it to be used in several settings. For instance, it can be used as a constraint, e.g. to provide a better error message for a non-existent instance,
-- in a context
instance TypeError (Text "Cannot Show functions." :$$:
Text "Perhaps there is a missing argument?")
=> Show (a -> b) where
showsPrec = error "unreachable"
It can also be placed on the right-hand side of a type-level function to provide an error for an invalid case,
type family ByteSize x where
ByteSize Word16 = 2
ByteSize Word8 = 1
ByteSize a = TypeError (Text "The type " :<>: ShowType a :<>:
Text " is not exportable.")
Since: base-4.9.0.0
type family AppendSymbol (a :: Symbol) (b :: Symbol) :: Symbol where ... #
Concatenation of type-level symbols.
Since: base-4.10.0.0
data SomeSymbol #
This type represents unknown type-level symbols.
Constructors
| KnownSymbol n => SomeSymbol (Proxy n) | Since: base-4.7.0.0 |
Instances
| Read SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods readsPrec :: Int -> ReadS SomeSymbol # readList :: ReadS [SomeSymbol] # readPrec :: ReadPrec SomeSymbol # readListPrec :: ReadPrec [SomeSymbol] # | |
| Show SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods showsPrec :: Int -> SomeSymbol -> ShowS # show :: SomeSymbol -> String # showList :: [SomeSymbol] -> ShowS # | |
| Eq SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits | |
| Ord SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods compare :: SomeSymbol -> SomeSymbol -> Ordering # (<) :: SomeSymbol -> SomeSymbol -> Bool # (<=) :: SomeSymbol -> SomeSymbol -> Bool # (>) :: SomeSymbol -> SomeSymbol -> Bool # (>=) :: SomeSymbol -> SomeSymbol -> Bool # max :: SomeSymbol -> SomeSymbol -> SomeSymbol # min :: SomeSymbol -> SomeSymbol -> SomeSymbol # | |
pattern ShowType :: t -> ErrorMessage #
Pretty print the type.
ShowType :: k -> ErrorMessage
pattern (:<>:) :: ErrorMessage -> ErrorMessage -> ErrorMessage infixl 6 #
Put two pieces of error message next to each other.
pattern (:$$:) :: ErrorMessage -> ErrorMessage -> ErrorMessage infixl 5 #
Stack two pieces of error message on top of each other.
symbolVal' :: forall (n :: Symbol). KnownSymbol n => Proxy# n -> String #
Since: base-4.8.0.0
symbolVal :: forall (n :: Symbol) proxy. KnownSymbol n => proxy n -> String #
Since: base-4.7.0.0
someSymbolVal :: String -> SomeSymbol #
Convert a string into an unknown type-level symbol.
Since: base-4.7.0.0
someNatVal :: Integer -> Maybe SomeNat #
Convert an integer into an unknown type-level natural.
Since: base-4.7.0.0
sameSymbol :: forall (a :: Symbol) (b :: Symbol) proxy1 proxy2. (KnownSymbol a, KnownSymbol b) => proxy1 a -> proxy2 b -> Maybe (a :~: b) #
We either get evidence that this function was instantiated with the
same type-level symbols, or Nothing.
Since: base-4.7.0.0
This type represents unknown type-level natural numbers.
Since: base-4.10.0.0
type (<=) (x :: Nat) (y :: Nat) = (x <=? y) ~ 'True infix 4 #
Comparison of type-level naturals, as a constraint.
Since: base-4.7.0.0
sameNat :: forall (a :: Nat) (b :: Nat) proxy1 proxy2. (KnownNat a, KnownNat b) => proxy1 a -> proxy2 b -> Maybe (a :~: b) #
We either get evidence that this function was instantiated with the
same type-level numbers, or Nothing.
Since: base-4.7.0.0
Natural number
Invariant: numbers <= 0xffffffffffffffff use the NS constructor
Instances
print :: Show a => a -> IO () #
The print function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show; print
converts values to strings for output using the show operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
A value of type is a computation which, when performed,
does some I/O before returning a value of type IO aa.
There is really only one way to "perform" an I/O action: bind it to
Main.main in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO monad and called
at some point, directly or indirectly, from Main.main.
IO is a monad, so IO actions can be combined using either the do-notation
or the >> and >>= operations from the Monad
class.