intervals-0.7: Interval Arithmetic

Portability DeriveDataTypeable experimental ekmett@gmail.com Safe-Inferred

Numeric.Interval.NonEmpty

Description

Interval arithmetic

Synopsis

# Documentation

data Interval a Source

Instances

 Typeable1 Interval Foldable Interval Eq a => Eq (Interval a) (RealFloat a, Ord a) => Floating (Interval a) (Fractional a, Ord a) => Fractional (Interval a) Data a => Data (Interval a) (Num a, Ord a) => Num (Interval a) Ord a => Ord (Interval a) Real a => Real (Interval a) `realToFrac` will use the midpoint RealFloat a => RealFloat (Interval a) We have to play some semantic games to make these methods make sense. Most compute with the midpoint of the interval. RealFrac a => RealFrac (Interval a) Show a => Show (Interval a)

(...) :: Ord a => a -> a -> Interval aSource

Create a non-empty interval, turning it around if necessary

interval :: Ord a => a -> a -> Maybe (Interval a)Source

Try to create a non-empty interval.

The whole real number line

````>>> ````whole
```-Infinity ... Infinity
```

singleton :: a -> Interval aSource

A singleton point

````>>> ````singleton 1
```1 ... 1
```

elem :: Ord a => a -> Interval a -> BoolSource

Determine if a point is in the interval.

````>>> ````elem 3.2 (1.0 ... 5.0)
```True
```
````>>> ````elem 5 (1.0 ... 5.0)
```True
```
````>>> ````elem 1 (1.0 ... 5.0)
```True
```
````>>> ````elem 8 (1.0 ... 5.0)
```False
```

notElem :: Ord a => a -> Interval a -> BoolSource

Determine if a point is not included in the interval

````>>> ````notElem 8 (1.0 ... 5.0)
```True
```
````>>> ````notElem 1.4 (1.0 ... 5.0)
```False
```

inf :: Interval a -> aSource

The infinumum (lower bound) of an interval

````>>> ````inf (1 ... 20)
```1
```

sup :: Interval a -> aSource

The supremum (upper bound) of an interval

````>>> ````sup (1 ... 20)
```20
```

singular :: Ord a => Interval a -> BoolSource

Is the interval a singleton point? N.B. This is fairly fragile and likely will not hold after even a few operations that only involve singletons

````>>> ````singular (singleton 1)
```True
```
````>>> ````singular (1.0 ... 20.0)
```False
```

width :: Num a => Interval a -> aSource

Calculate the width of an interval.

````>>> ````width (1 ... 20)
```19
```
````>>> ````width (singleton 1)
```0
```

midpoint :: Fractional a => Interval a -> aSource

Nearest point to the midpoint of the interval.

````>>> ````midpoint (10.0 ... 20.0)
```15.0
```
````>>> ````midpoint (singleton 5.0)
```5.0
```

distance :: (Num a, Ord a) => Interval a -> Interval a -> aSource

Hausdorff distance between intervals.

````>>> ````distance (1 ... 7) (6 ... 10)
```0
```
````>>> ````distance (1 ... 7) (15 ... 24)
```8
```
````>>> ````distance (1 ... 7) (-10 ... -2)
```3
```

intersection :: (Fractional a, Ord a) => Interval a -> Interval a -> Maybe (Interval a)Source

Calculate the intersection of two intervals.

````>>> ````intersection (1 ... 10 :: Interval Double) (5 ... 15 :: Interval Double)
```Just (5.0 ... 10.0)
```

hull :: Ord a => Interval a -> Interval a -> Interval aSource

Calculate the convex hull of two intervals

````>>> ````hull (0 ... 10 :: Interval Double) (5 ... 15 :: Interval Double)
```0.0 ... 15.0
```
````>>> ````hull (15 ... 85 :: Interval Double) (0 ... 10 :: Interval Double)
```0.0 ... 85.0
```

bisect :: Fractional a => Interval a -> (Interval a, Interval a)Source

Bisect an interval at its midpoint.

````>>> ````bisect (10.0 ... 20.0)
```(10.0 ... 15.0,15.0 ... 20.0)
```
````>>> ````bisect (singleton 5.0)
```(5.0 ... 5.0,5.0 ... 5.0)
```

magnitude :: (Num a, Ord a) => Interval a -> aSource

Magnitude

````>>> ````magnitude (1 ... 20)
```20
```
````>>> ````magnitude (-20 ... 10)
```20
```
````>>> ````magnitude (singleton 5)
```5
```

mignitude :: (Num a, Ord a) => Interval a -> aSource

"mignitude"

````>>> ````mignitude (1 ... 20)
```1
```
````>>> ````mignitude (-20 ... 10)
```0
```
````>>> ````mignitude (singleton 5)
```5
```

contains :: Ord a => Interval a -> Interval a -> BoolSource

Check if interval `X` totally contains interval `Y`

````>>> ````(20 ... 40 :: Interval Double) `contains` (25 ... 35 :: Interval Double)
```True
```
````>>> ````(20 ... 40 :: Interval Double) `contains` (15 ... 35 :: Interval Double)
```False
```

isSubsetOf :: Ord a => Interval a -> Interval a -> BoolSource

Flipped version of `contains`. Check if interval `X` a subset of interval `Y`

````>>> ````(25 ... 35 :: Interval Double) `isSubsetOf` (20 ... 40 :: Interval Double)
```True
```
````>>> ````(20 ... 40 :: Interval Double) `isSubsetOf` (15 ... 35 :: Interval Double)
```False
```

certainly :: Ord a => (forall b. Ord b => b -> b -> Bool) -> Interval a -> Interval a -> BoolSource

For all `x` in `X`, `y` in `Y`. `x op y`

(<!) :: Ord a => Interval a -> Interval a -> BoolSource

For all `x` in `X`, `y` in `Y`. `x < y`

````>>> ````(5 ... 10 :: Interval Double) <! (20 ... 30 :: Interval Double)
```True
```
````>>> ````(5 ... 10 :: Interval Double) <! (10 ... 30 :: Interval Double)
```False
```
````>>> ````(20 ... 30 :: Interval Double) <! (5 ... 10 :: Interval Double)
```False
```

(<=!) :: Ord a => Interval a -> Interval a -> BoolSource

For all `x` in `X`, `y` in `Y`. `x <= y`

````>>> ````(5 ... 10 :: Interval Double) <=! (20 ... 30 :: Interval Double)
```True
```
````>>> ````(5 ... 10 :: Interval Double) <=! (10 ... 30 :: Interval Double)
```True
```
````>>> ````(20 ... 30 :: Interval Double) <=! (5 ... 10 :: Interval Double)
```False
```

(==!) :: Eq a => Interval a -> Interval a -> BoolSource

For all `x` in `X`, `y` in `Y`. `x == y`

Only singleton intervals or empty intervals can return true

````>>> ````(singleton 5 :: Interval Double) ==! (singleton 5 :: Interval Double)
```True
```
````>>> ````(5 ... 10 :: Interval Double) ==! (5 ... 10 :: Interval Double)
```False
```

(>=!) :: Ord a => Interval a -> Interval a -> BoolSource

For all `x` in `X`, `y` in `Y`. `x >= y`

````>>> ````(20 ... 40 :: Interval Double) >=! (10 ... 20 :: Interval Double)
```True
```
````>>> ````(5 ... 20 :: Interval Double) >=! (15 ... 40 :: Interval Double)
```False
```

(>!) :: Ord a => Interval a -> Interval a -> BoolSource

For all `x` in `X`, `y` in `Y`. `x > y`

````>>> ````(20 ... 40 :: Interval Double) >! (10 ... 19 :: Interval Double)
```True
```
````>>> ````(5 ... 20 :: Interval Double) >! (15 ... 40 :: Interval Double)
```False
```

possibly :: Ord a => (forall b. Ord b => b -> b -> Bool) -> Interval a -> Interval a -> BoolSource

Does there exist an `x` in `X`, `y` in `Y` such that `x op y`?

(<?) :: Ord a => Interval a -> Interval a -> BoolSource

Does there exist an `x` in `X`, `y` in `Y` such that `x < y`?

(<=?) :: Ord a => Interval a -> Interval a -> BoolSource

Does there exist an `x` in `X`, `y` in `Y` such that `x <= y`?

(==?) :: Ord a => Interval a -> Interval a -> BoolSource

Does there exist an `x` in `X`, `y` in `Y` such that `x == y`?

(>=?) :: Ord a => Interval a -> Interval a -> BoolSource

Does there exist an `x` in `X`, `y` in `Y` such that `x >= y`?

(>?) :: Ord a => Interval a -> Interval a -> BoolSource

Does there exist an `x` in `X`, `y` in `Y` such that `x > y`?

clamp :: Ord a => Interval a -> a -> aSource

The nearest value to that supplied which is contained in the interval.

id function. Useful for type specification

````>>> ````:t idouble (1 ... 3)
```idouble (1 ... 3) :: Interval Double
```

id function. Useful for type specification

````>>> ````:t ifloat (1 ... 3)
```ifloat (1 ... 3) :: Interval Float
```