{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Math.Algebra.Jack.Internal
(Partition
, jackCoeffP
, jackCoeffQ
, jackCoeffC
, jackSymbolicCoeffC
, jackSymbolicCoeffPinv
, jackSymbolicCoeffQinv
, _betaratio
, _betaRatioOfPolynomials
, _isPartition
, _N
, (.^)
, _fromInt
, skewSchurLRCoefficients
, isSkewPartition)
where
import Prelude
hiding ((*), (+), (-), (/), (^), (*>), product, sum, fromIntegral, fromInteger, recip)
import Algebra.Additive ( (+), (-), sum )
import Algebra.Field ( (/), recip )
import Algebra.Ring ( (*), product, one, (^), fromInteger )
import Algebra.ToInteger ( fromIntegral )
import qualified Algebra.Additive as AlgAdd
import qualified Algebra.Field as AlgField
import qualified Algebra.Ring as AlgRing
import Data.List.Index ( iconcatMap )
import qualified Data.Map.Strict as DM
import Math.Algebra.Hspray (
RatioOfPolynomials
, Polynomial
, outerVariable
, constPoly
)
import qualified Math.Combinat.Partitions.Integer as MCP
import Math.Combinat.Tableaux.LittlewoodRichardson ( _lrRule )
import Number.Ratio ( T( (:%) ) )
type Partition = [Int]
_isPartition :: Partition -> Bool
_isPartition :: Partition -> Bool
_isPartition [] = Bool
True
_isPartition [Int
x] = Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0
_isPartition (Int
x:xs :: Partition
xs@(Int
y:Partition
_)) = (Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
y) Bool -> Bool -> Bool
&& Partition -> Bool
_isPartition Partition
xs
_diffSequence :: [Int] -> [Int]
_diffSequence :: Partition -> Partition
_diffSequence = Partition -> Partition
forall {a}. C a => [a] -> [a]
go where
go :: [a] -> [a]
go (a
x:ys :: [a]
ys@(a
y:[a]
_)) = (a
xa -> a -> a
forall a. C a => a -> a -> a
-a
y) a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a] -> [a]
go [a]
ys
go [a
x] = [a
x]
go [] = []
_dualPartition :: Partition -> Partition
_dualPartition :: Partition -> Partition
_dualPartition [] = []
_dualPartition Partition
xs = Int -> Partition -> Partition -> Partition
forall {t}. (C t, Num t) => t -> Partition -> Partition -> [t]
go Int
0 (Partition -> Partition
_diffSequence Partition
xs) [] where
go :: t -> Partition -> Partition -> [t]
go !t
i (Int
d:Partition
ds) Partition
acc = t -> Partition -> Partition -> [t]
go (t
it -> t -> t
forall a. C a => a -> a -> a
+t
1) Partition
ds (Int
dInt -> Partition -> Partition
forall a. a -> [a] -> [a]
:Partition
acc)
go t
n [] Partition
acc = t -> Partition -> [t]
forall {t}. (C t, Num t) => t -> Partition -> [t]
finish t
n Partition
acc
finish :: t -> Partition -> [t]
finish !t
j (Int
k:Partition
ks) = Int -> t -> [t]
forall a. Int -> a -> [a]
replicate Int
k t
j [t] -> [t] -> [t]
forall a. [a] -> [a] -> [a]
++ t -> Partition -> [t]
finish (t
jt -> t -> t
forall a. C a => a -> a -> a
-t
1) Partition
ks
finish t
_ [] = []
_ij :: Partition -> ([Int], [Int])
_ij :: Partition -> (Partition, Partition)
_ij Partition
lambda =
(
(Int -> Int -> Partition) -> Partition -> Partition
forall a b. (Int -> a -> [b]) -> [a] -> [b]
iconcatMap (\Int
i Int
a -> Int -> Int -> Partition
forall a. Int -> a -> [a]
replicate Int
a (Int
i Int -> Int -> Int
forall a. C a => a -> a -> a
+ Int
1)) Partition
lambda,
(Int -> Partition) -> Partition -> Partition
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\Int
a -> [Int
1 .. Int
a]) ((Int -> Bool) -> Partition -> Partition
forall a. (a -> Bool) -> [a] -> [a]
filter (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>Int
0) Partition
lambda)
)
_convParts :: AlgRing.C b => [Int] -> ([b], [b])
_convParts :: forall b. C b => Partition -> ([b], [b])
_convParts Partition
lambda =
((Int -> b) -> Partition -> [b]
forall a b. (a -> b) -> [a] -> [b]
map Int -> b
forall a b. (C a, C b) => a -> b
fromIntegral Partition
lambda, (Int -> b) -> Partition -> [b]
forall a b. (a -> b) -> [a] -> [b]
map Int -> b
forall a b. (C a, C b) => a -> b
fromIntegral (Partition -> Partition
_dualPartition Partition
lambda))
_N :: [Int] -> [Int] -> Int
_N :: Partition -> Partition -> Int
_N Partition
lambda Partition
mu = Partition -> Int
forall a. C a => [a] -> a
sum (Partition -> Int) -> Partition -> Int
forall a b. (a -> b) -> a -> b
$ (Int -> Int -> Int) -> Partition -> Partition -> Partition
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Int -> Int -> Int
forall a. C a => a -> a -> a
(*) Partition
mu Partition
prods
where
prods :: Partition
prods = (Int -> Int) -> Partition -> Partition
forall a b. (a -> b) -> [a] -> [b]
map (\Int
i -> Partition -> Int
forall a. C a => [a] -> a
product (Partition -> Int) -> Partition -> Int
forall a b. (a -> b) -> a -> b
$ Int -> Partition -> Partition
forall a. Int -> [a] -> [a]
drop Int
i ((Int -> Int) -> Partition -> Partition
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Int -> Int
forall a. C a => a -> a -> a
+Int
1) Partition
lambda)) [Int
1 .. Partition -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Partition
lambda]
hookLengths :: AlgRing.C a => Partition -> a -> ([a], [a])
hookLengths :: forall a. C a => Partition -> a -> ([a], [a])
hookLengths Partition
lambda a
alpha = ([a]
lower, [a]
upper)
where
(Partition
i, Partition
j) = Partition -> (Partition, Partition)
_ij Partition
lambda
([a]
lambda', [a]
lambdaConj') = Partition -> ([a], [a])
forall b. C b => Partition -> ([b], [b])
_convParts Partition
lambda
upper :: [a]
upper = (Int -> Int -> a) -> Partition -> Partition -> [a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith ([a] -> [a] -> Int -> Int -> a
fup [a]
lambdaConj' [a]
lambda') Partition
i Partition
j
where
fup :: [a] -> [a] -> Int -> Int -> a
fup [a]
x [a]
y Int
ii Int
jj =
[a]
x[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
jjInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
ii a -> a -> a
forall a. C a => a -> a -> a
+ a
alpha a -> a -> a
forall a. C a => a -> a -> a
* ([a]
y[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
iiInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral (Int
jj Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1))
lower :: [a]
lower = (Int -> Int -> a) -> Partition -> Partition -> [a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith ([a] -> [a] -> Int -> Int -> a
flow [a]
lambdaConj' [a]
lambda') Partition
i Partition
j
where
flow :: [a] -> [a] -> Int -> Int -> a
flow [a]
x [a]
y Int
ii Int
jj =
[a]
x[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
jjInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1) a -> a -> a
forall a. C a => a -> a -> a
+ a
alpha a -> a -> a
forall a. C a => a -> a -> a
* ([a]
y[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
iiInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
jj)
_productHookLengths :: AlgRing.C a => Partition -> a -> a
_productHookLengths :: forall a. C a => Partition -> a -> a
_productHookLengths Partition
lambda a
alpha = [a] -> a
forall a. C a => [a] -> a
product [a]
lower a -> a -> a
forall a. C a => a -> a -> a
* [a] -> a
forall a. C a => [a] -> a
product [a]
upper
where
([a]
lower, [a]
upper) = Partition -> a -> ([a], [a])
forall a. C a => Partition -> a -> ([a], [a])
hookLengths Partition
lambda a
alpha
jackCoeffC :: AlgField.C a => Partition -> a -> a
jackCoeffC :: forall a. C a => Partition -> a -> a
jackCoeffC Partition
lambda a
alpha =
a
alphaa -> Integer -> a
forall a. C a => a -> Integer -> a
^Integer
k a -> a -> a
forall a. C a => a -> a -> a
* Integer -> a
forall a. C a => Integer -> a
fromInteger ([Integer] -> Integer
forall a. C a => [a] -> a
product [Integer
2 .. Integer
k]) a -> a -> a
forall a. C a => a -> a -> a
* a -> a
forall a. C a => a -> a
recip a
jlambda
where
k :: Integer
k = Int -> Integer
forall a b. (C a, C b) => a -> b
fromIntegral (Partition -> Int
forall a. C a => [a] -> a
sum Partition
lambda)
jlambda :: a
jlambda = Partition -> a -> a
forall a. C a => Partition -> a -> a
_productHookLengths Partition
lambda a
alpha
jackCoeffP :: AlgField.C a => Partition -> a -> a
jackCoeffP :: forall a. C a => Partition -> a -> a
jackCoeffP Partition
lambda a
alpha = a
forall a. C a => a
one a -> a -> a
forall a. C a => a -> a -> a
/ [a] -> a
forall a. C a => [a] -> a
product [a]
lower
where
([a]
lower, [a]
_) = Partition -> a -> ([a], [a])
forall a. C a => Partition -> a -> ([a], [a])
hookLengths Partition
lambda a
alpha
jackCoeffQ :: AlgField.C a => Partition -> a -> a
jackCoeffQ :: forall a. C a => Partition -> a -> a
jackCoeffQ Partition
lambda a
alpha = a
forall a. C a => a
one a -> a -> a
forall a. C a => a -> a -> a
/ [a] -> a
forall a. C a => [a] -> a
product [a]
upper
where
([a]
_, [a]
upper) = Partition -> a -> ([a], [a])
forall a. C a => Partition -> a -> ([a], [a])
hookLengths Partition
lambda a
alpha
symbolicHookLengthsProducts :: forall a. AlgRing.C a
=> Partition -> (Polynomial a, Polynomial a)
symbolicHookLengthsProducts :: forall a. C a => Partition -> (Polynomial a, Polynomial a)
symbolicHookLengthsProducts Partition
lambda = ([Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product [Polynomial a]
lower, [Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product [Polynomial a]
upper)
where
alpha :: Polynomial a
alpha = Polynomial a
forall a. C a => Polynomial a
outerVariable :: Polynomial a
(Partition
i, Partition
j) = Partition -> (Partition, Partition)
_ij Partition
lambda
([a]
lambda', [a]
lambdaConj') = Partition -> ([a], [a])
forall b. C b => Partition -> ([b], [b])
_convParts Partition
lambda
upper :: [Polynomial a]
upper = (Int -> Int -> Polynomial a)
-> Partition -> Partition -> [Polynomial a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith ([a] -> [a] -> Int -> Int -> Polynomial a
fup [a]
lambdaConj' [a]
lambda') Partition
i Partition
j
where
fup :: [a] -> [a] -> Int -> Int -> Polynomial a
fup [a]
x [a]
y Int
ii Int
jj =
a -> Polynomial a
forall a. a -> Polynomial a
constPoly ([a]
x[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
jjInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
ii)
Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
+ a -> Polynomial a
forall a. a -> Polynomial a
constPoly ([a]
y[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
iiInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral (Int
jj Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1)) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
alpha
lower :: [Polynomial a]
lower = (Int -> Int -> Polynomial a)
-> Partition -> Partition -> [Polynomial a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith ([a] -> [a] -> Int -> Int -> Polynomial a
flow [a]
lambdaConj' [a]
lambda') Partition
i Partition
j
where
flow :: [a] -> [a] -> Int -> Int -> Polynomial a
flow [a]
x [a]
y Int
ii Int
jj =
a -> Polynomial a
forall a. a -> Polynomial a
constPoly ([a]
x[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
jjInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral (Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1))
Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
+ a -> Polynomial a
forall a. a -> Polynomial a
constPoly ([a]
y[a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!!(Int
iiInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
jj) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
alpha
symbolicHookLengthsProduct :: AlgRing.C a => Partition -> Polynomial a
symbolicHookLengthsProduct :: forall a. C a => Partition -> Polynomial a
symbolicHookLengthsProduct Partition
lambda = (Polynomial a, Polynomial a) -> Polynomial a
forall a b. (a, b) -> a
fst (Polynomial a, Polynomial a)
hlproducts Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* (Polynomial a, Polynomial a) -> Polynomial a
forall a b. (a, b) -> b
snd (Polynomial a, Polynomial a)
hlproducts
where
hlproducts :: (Polynomial a, Polynomial a)
hlproducts = Partition -> (Polynomial a, Polynomial a)
forall a. C a => Partition -> (Polynomial a, Polynomial a)
symbolicHookLengthsProducts Partition
lambda
jackSymbolicCoeffC :: forall a. AlgField.C a => Partition -> RatioOfPolynomials a
jackSymbolicCoeffC :: forall a. C a => Partition -> RatioOfPolynomials a
jackSymbolicCoeffC Partition
lambda =
(a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Integer -> a
forall a. C a => Integer -> a
fromInteger Integer
factorialk) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
alphaPolynomial a -> Integer -> Polynomial a
forall a. C a => a -> Integer -> a
^Integer
k) Polynomial a -> Polynomial a -> T (Polynomial a)
forall a. a -> a -> T a
:% Polynomial a
jlambda
where
alpha :: Polynomial a
alpha = Polynomial a
forall a. C a => Polynomial a
outerVariable :: Polynomial a
k :: Integer
k = Int -> Integer
forall a b. (C a, C b) => a -> b
fromIntegral (Partition -> Int
forall a. C a => [a] -> a
sum Partition
lambda)
factorialk :: Integer
factorialk = [Integer] -> Integer
forall a. C a => [a] -> a
product [Integer
2 .. Integer
k]
jlambda :: Polynomial a
jlambda = Partition -> Polynomial a
forall a. C a => Partition -> Polynomial a
symbolicHookLengthsProduct Partition
lambda
jackSymbolicCoeffPinv :: AlgField.C a => Partition -> Polynomial a
jackSymbolicCoeffPinv :: forall a. C a => Partition -> Polynomial a
jackSymbolicCoeffPinv Partition
lambda = (Polynomial a, Polynomial a) -> Polynomial a
forall a b. (a, b) -> a
fst ((Polynomial a, Polynomial a) -> Polynomial a)
-> (Polynomial a, Polynomial a) -> Polynomial a
forall a b. (a -> b) -> a -> b
$ Partition -> (Polynomial a, Polynomial a)
forall a. C a => Partition -> (Polynomial a, Polynomial a)
symbolicHookLengthsProducts Partition
lambda
jackSymbolicCoeffQinv :: AlgField.C a => Partition -> Polynomial a
jackSymbolicCoeffQinv :: forall a. C a => Partition -> Polynomial a
jackSymbolicCoeffQinv Partition
lambda = (Polynomial a, Polynomial a) -> Polynomial a
forall a b. (a, b) -> b
snd ((Polynomial a, Polynomial a) -> Polynomial a)
-> (Polynomial a, Polynomial a) -> Polynomial a
forall a b. (a -> b) -> a -> b
$ Partition -> (Polynomial a, Polynomial a)
forall a. C a => Partition -> (Polynomial a, Polynomial a)
symbolicHookLengthsProducts Partition
lambda
_betaratio :: AlgField.C a => Partition -> Partition -> Int -> a -> a
_betaratio :: forall a. C a => Partition -> Partition -> Int -> a -> a
_betaratio Partition
kappa Partition
mu Int
k a
alpha = a
alpha a -> a -> a
forall a. C a => a -> a -> a
* a
prod1 a -> a -> a
forall a. C a => a -> a -> a
* a
prod2 a -> a -> a
forall a. C a => a -> a -> a
* a
prod3
where
mukm1 :: Int
mukm1 = Partition
mu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! (Int
kInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1)
t :: a
t = Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
k a -> a -> a
forall a. C a => a -> a -> a
- a
alpha a -> a -> a
forall a. C a => a -> a -> a
* Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
mukm1
u :: [a]
u = (Int -> Int -> a) -> Partition -> Partition -> [a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Int
s Int
kap -> a
t a -> a -> a
forall a. C a => a -> a -> a
+ a
forall a. C a => a
one a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
s a -> a -> a
forall a. C a => a -> a -> a
+ a
alpha a -> a -> a
forall a. C a => a -> a -> a
* Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
kap)
[Int
1 .. Int
k] Partition
kappa
v :: [a]
v = (Int -> Int -> a) -> Partition -> Partition -> [a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Int
s Int
m -> a
t a -> a -> a
forall a. C a => a -> a -> a
- Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
s a -> a -> a
forall a. C a => a -> a -> a
+ a
alpha a -> a -> a
forall a. C a => a -> a -> a
* Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
m)
[Int
1 .. Int
kInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1] Partition
mu
w :: [a]
w = (Int -> Int -> a) -> Partition -> Partition -> [a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Int
s Int
m -> Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
m a -> a -> a
forall a. C a => a -> a -> a
- a
t a -> a -> a
forall a. C a => a -> a -> a
- a
alpha a -> a -> a
forall a. C a => a -> a -> a
* Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
s)
[Int
1 .. Int
mukm1Int -> Int -> Int
forall a. C a => a -> a -> a
-Int
1] (Partition -> Partition
_dualPartition Partition
mu)
prod1 :: a
prod1 = [a] -> a
forall a. C a => [a] -> a
product ([a] -> a) -> [a] -> a
forall a b. (a -> b) -> a -> b
$ (a -> a) -> [a] -> [a]
forall a b. (a -> b) -> [a] -> [b]
map (\a
x -> a
x a -> a -> a
forall a. C a => a -> a -> a
/ (a
x a -> a -> a
forall a. C a => a -> a -> a
+ a
alpha a -> a -> a
forall a. C a => a -> a -> a
- a
forall a. C a => a
one)) [a]
u
prod2 :: a
prod2 = [a] -> a
forall a. C a => [a] -> a
product ([a] -> a) -> [a] -> a
forall a b. (a -> b) -> a -> b
$ (a -> a) -> [a] -> [a]
forall a b. (a -> b) -> [a] -> [b]
map (\a
x -> (a
x a -> a -> a
forall a. C a => a -> a -> a
+ a
alpha) a -> a -> a
forall a. C a => a -> a -> a
/ a
x) [a]
v
prod3 :: a
prod3 = [a] -> a
forall a. C a => [a] -> a
product ([a] -> a) -> [a] -> a
forall a b. (a -> b) -> a -> b
$ (a -> a) -> [a] -> [a]
forall a b. (a -> b) -> [a] -> [b]
map (\a
x -> (a
x a -> a -> a
forall a. C a => a -> a -> a
+ a
alpha) a -> a -> a
forall a. C a => a -> a -> a
/ a
x) [a]
w
_betaRatioOfPolynomials :: forall a. AlgField.C a
=> Partition -> Partition -> Int -> RatioOfPolynomials a
_betaRatioOfPolynomials :: forall a.
C a =>
Partition -> Partition -> Int -> RatioOfPolynomials a
_betaRatioOfPolynomials Partition
kappa Partition
mu Int
k =
((Polynomial a
x Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
num1 Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
num2 Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
num3) Polynomial a -> Polynomial a -> T (Polynomial a)
forall a. a -> a -> T a
:% (Polynomial a
den1 Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
den2 Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
den3))
where
mukm1 :: Int
mukm1 = Partition
mu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! (Int
kInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1)
x :: Polynomial a
x = Polynomial a
forall a. C a => Polynomial a
outerVariable :: Polynomial a
t :: Polynomial a
t = a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
k) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
- a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
mukm1) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
x
u :: [Polynomial a]
u = (Int -> Int -> Polynomial a)
-> Partition -> Partition -> [Polynomial a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
(
\Int
s Int
kap ->
Polynomial a
t Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
- a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Int
sInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
+ a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
kap) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
x
)
[Int
1 .. Int
k] Partition
kappa
v :: [Polynomial a]
v = (Int -> Int -> Polynomial a)
-> Partition -> Partition -> [Polynomial a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
(
\Int
s Int
m -> Polynomial a
t Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
- a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
s) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
+ a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
m) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
x
)
[Int
1 .. Int
kInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1] Partition
mu
w :: [Polynomial a]
w = (Int -> Int -> Polynomial a)
-> Partition -> Partition -> [Polynomial a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
(
\Int
s Int
m -> a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
m) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
- Polynomial a
t Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
- a -> Polynomial a
forall a. a -> Polynomial a
constPoly (Int -> a
forall a b. (C a, C b) => a -> b
fromIntegral Int
s) Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
* Polynomial a
x
)
[Int
1 .. Int
mukm1Int -> Int -> Int
forall a. C a => a -> a -> a
-Int
1] (Partition -> Partition
_dualPartition Partition
mu)
num1 :: Polynomial a
num1 = [Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product [Polynomial a]
u
den1 :: Polynomial a
den1 = [Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product ([Polynomial a] -> Polynomial a) -> [Polynomial a] -> Polynomial a
forall a b. (a -> b) -> a -> b
$ (Polynomial a -> Polynomial a) -> [Polynomial a] -> [Polynomial a]
forall a b. (a -> b) -> [a] -> [b]
map (\Polynomial a
p -> Polynomial a
p Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
+ Polynomial a
x Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
- a -> Polynomial a
forall a. a -> Polynomial a
constPoly a
forall a. C a => a
one) [Polynomial a]
u
num2 :: Polynomial a
num2 = [Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product ([Polynomial a] -> Polynomial a) -> [Polynomial a] -> Polynomial a
forall a b. (a -> b) -> a -> b
$ (Polynomial a -> Polynomial a) -> [Polynomial a] -> [Polynomial a]
forall a b. (a -> b) -> [a] -> [b]
map (\Polynomial a
p -> Polynomial a
p Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
+ Polynomial a
x) [Polynomial a]
v
den2 :: Polynomial a
den2 = [Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product [Polynomial a]
v
num3 :: Polynomial a
num3 = [Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product ([Polynomial a] -> Polynomial a) -> [Polynomial a] -> Polynomial a
forall a b. (a -> b) -> a -> b
$ (Polynomial a -> Polynomial a) -> [Polynomial a] -> [Polynomial a]
forall a b. (a -> b) -> [a] -> [b]
map (\Polynomial a
p -> Polynomial a
p Polynomial a -> Polynomial a -> Polynomial a
forall a. C a => a -> a -> a
+ Polynomial a
x) [Polynomial a]
w
den3 :: Polynomial a
den3 = [Polynomial a] -> Polynomial a
forall a. C a => [a] -> a
product [Polynomial a]
w
(.^) :: AlgAdd.C a => Int -> a -> a
.^ :: forall a. C a => Int -> a -> a
(.^) Int
k a
x = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0
then [a] -> a
forall a. C a => [a] -> a
AlgAdd.sum (Int -> a -> [a]
forall a. Int -> a -> [a]
replicate Int
k a
x)
else a -> a
forall a. C a => a -> a
AlgAdd.negate (a -> a) -> a -> a
forall a b. (a -> b) -> a -> b
$ [a] -> a
forall a. C a => [a] -> a
AlgAdd.sum (Int -> a -> [a]
forall a. Int -> a -> [a]
replicate (-Int
k) a
x)
_fromInt :: AlgRing.C a => Int -> a
_fromInt :: forall a. C a => Int -> a
_fromInt Int
k = Int
k Int -> a -> a
forall a. C a => Int -> a -> a
.^ a
forall a. C a => a
AlgRing.one
skewSchurLRCoefficients :: Partition -> Partition -> DM.Map Partition Int
skewSchurLRCoefficients :: Partition -> Partition -> Map Partition Int
skewSchurLRCoefficients Partition
lambda Partition
mu =
(Partition -> Partition) -> Map Partition Int -> Map Partition Int
forall k2 k1 a. Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a
DM.mapKeys Partition -> Partition
toPartition (Partition -> Partition -> Map Partition Int
_lrRule Partition
lambda' Partition
mu')
where
toPartition :: MCP.Partition -> Partition
toPartition :: Partition -> Partition
toPartition (MCP.Partition Partition
part) = Partition
part
fromPartition :: Partition -> MCP.Partition
fromPartition :: Partition -> Partition
fromPartition Partition
part = Partition -> Partition
MCP.Partition Partition
part
lambda' :: Partition
lambda' = Partition -> Partition
fromPartition Partition
lambda
mu' :: Partition
mu' = Partition -> Partition
fromPartition Partition
mu
isSkewPartition :: Partition -> Partition -> Bool
isSkewPartition :: Partition -> Partition -> Bool
isSkewPartition Partition
lambda Partition
mu =
Partition -> Bool
_isPartition Partition
lambda Bool -> Bool -> Bool
&& Partition -> Bool
_isPartition Partition
mu Bool -> Bool -> Bool
&& (Int -> Bool) -> Partition -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0) ((Int -> Int -> Int) -> Partition -> Partition -> Partition
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (-) Partition
lambda Partition
mu)