{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Math.Algebra.Jack
(
Partition
, jack
, jack'
, zonal
, zonal'
, schur
, schur'
, skewSchur
, skewSchur'
)
where
import Prelude
hiding ((*), (+), (-), (/), (^), (*>), product, fromIntegral, fromInteger)
import Algebra.Additive ( (+), (-), zero )
import Algebra.Ring ( (*), product, one, (^), fromInteger )
import qualified Algebra.Field as AlgField
import qualified Algebra.Ring as AlgRing
import Control.Lens ( (.~), element )
import Data.Array ( Array, (!), (//), listArray )
import Data.Maybe ( fromJust, isJust )
import qualified Data.Map.Strict as DM
import Math.Algebra.Jack.Internal ( _N, jackCoeffC
, jackCoeffP, jackCoeffQ
, _betaratio, _isPartition
, Partition, skewSchurLRCoefficients
, isSkewPartition, _fromInt )
import Math.Algebra.Hspray ( (.^) )
jack'
:: [Rational]
-> Partition
-> Rational
-> Char
-> Rational
jack' :: [Rational] -> Partition -> Rational -> Char -> Rational
jack' = [Rational] -> Partition -> Rational -> Char -> Rational
forall a. (Eq a, C a) => [a] -> Partition -> a -> Char -> a
jack
jack :: forall a. (Eq a, AlgField.C a)
=> [a]
-> Partition
-> a
-> Char
-> a
jack :: forall a. (Eq a, C a) => [a] -> Partition -> a -> Char -> a
jack [] Partition
_ a
_ Char
_ = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"jack: empty list of variables."
jack x :: [a]
x@(a
x0:[a]
_) Partition
lambda a
alpha Char
which =
case Partition -> Bool
_isPartition Partition
lambda of
Bool
False -> [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"jack: invalid integer partition."
Bool
True -> case Char
which of
Char
'J' -> a
resultJ
Char
'C' -> Partition -> a -> a
forall a. C a => Partition -> a -> a
jackCoeffC Partition
lambda a
alpha a -> a -> a
forall a. C a => a -> a -> a
* a
resultJ
Char
'P' -> Partition -> a -> a
forall a. C a => Partition -> a -> a
jackCoeffP Partition
lambda a
alpha a -> a -> a
forall a. C a => a -> a -> a
* a
resultJ
Char
'Q' -> Partition -> a -> a
forall a. C a => Partition -> a -> a
jackCoeffQ Partition
lambda a
alpha a -> a -> a
forall a. C a => a -> a -> a
* a
resultJ
Char
_ -> [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"jack: please use 'J', 'C', 'P' or 'Q' for last argument."
where
jck :: Int -> Partition -> Array (Int, Int) (Maybe a) -> a
jck Int
m Partition
kappa Array (Int, Int) (Maybe a)
arr = Int
-> Int -> Partition -> Partition -> Array (Int, Int) (Maybe a) -> a
jac Int
m Int
0 Partition
kappa Partition
kappa Array (Int, Int) (Maybe a)
arr
n :: Int
n = [a] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
x
resultJ :: a
resultJ = Int -> Partition -> Array (Int, Int) (Maybe a) -> a
jck Int
n Partition
lambda Array (Int, Int) (Maybe a)
forall {a}. Array (Int, Int) (Maybe a)
arr0
nll :: Int
nll = Partition -> Partition -> Int
_N Partition
lambda Partition
lambda
arr0 :: Array (Int, Int) (Maybe a)
arr0 = ((Int, Int), (Int, Int)) -> [Maybe a] -> Array (Int, Int) (Maybe a)
forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray ((Int
1, Int
1), (Int
nll, Int
n)) (Int -> Maybe a -> [Maybe a]
forall a. Int -> a -> [a]
replicate (Int
nll Int -> Int -> Int
forall a. C a => a -> a -> a
* Int
n) Maybe a
forall a. Maybe a
Nothing)
jac :: Int -> Int -> Partition -> Partition
-> Array (Int,Int) (Maybe a)
-> a
jac :: Int
-> Int -> Partition -> Partition -> Array (Int, Int) (Maybe a) -> a
jac Int
m Int
k Partition
mu Partition
nu Array (Int, Int) (Maybe a)
arr
| Partition -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null Partition
nu Bool -> Bool -> Bool
|| Int
nu0 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
|| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = a
forall a. C a => a
one
| Int
ellNu Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
m Bool -> Bool -> Bool
&& Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = a
forall a. C a => a
zero
| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 =
if Int
nu0 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
then
a
x0
else
let as :: [a]
as = [Int
i Int -> a -> a
forall a. (C a, Eq a) => Int -> a -> a
.^ a
alpha a -> a -> a
forall a. C a => a -> a -> a
+ a
forall a. C a => a
one | Int
i <- [Int
1 .. Int
nu0Int -> Int -> Int
forall a. C a => a -> a -> a
-Int
1]] in
[a] -> a
forall a. C a => [a] -> a
product [a]
as a -> a -> a
forall a. C a => a -> a -> a
* a
x0 a -> Integer -> a
forall a. C a => a -> Integer -> a
^ (Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
nu0)
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
&& Maybe a -> Bool
forall a. Maybe a -> Bool
isJust Maybe a
maybe_a =
Maybe a -> a
forall a. HasCallStack => Maybe a -> a
fromJust (Maybe a -> a) -> Maybe a -> a
forall a b. (a -> b) -> a -> b
$ Maybe a
maybe_a
| Bool
otherwise = a
s
where
nu0 :: Int
nu0 = Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
0
ellNu :: Int
ellNu = Partition -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Partition
nu
xm :: a
xm = [a]
x [a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!! (Int
m Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1)
xmi :: a -> a
xmi a
i = a
xm a -> Integer -> a
forall a. C a => a -> Integer -> a
^ (a -> Integer
forall a. Integral a => a -> Integer
toInteger a
i)
_N_lambda_nu_m :: (Int, Int)
_N_lambda_nu_m = (Partition -> Partition -> Int
_N Partition
lambda Partition
nu, Int
m)
maybe_a :: Maybe a
maybe_a = Array (Int, Int) (Maybe a)
arr Array (Int, Int) (Maybe a) -> (Int, Int) -> Maybe a
forall i e. Ix i => Array i e -> i -> e
! (Int, Int)
_N_lambda_nu_m
wMu :: Int
wMu = Partition -> Int
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum Partition
mu
jck' :: Partition -> Array (Int, Int) (Maybe a) -> a
jck' Partition
kappa Array (Int, Int) (Maybe a)
array = Int -> Partition -> Array (Int, Int) (Maybe a) -> a
jck (Int
mInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) Partition
kappa Array (Int, Int) (Maybe a)
array a -> a -> a
forall a. C a => a -> a -> a
* (Int -> a
forall {a}. Integral a => a -> a
xmi (Int
wMu Int -> Int -> Int
forall a. C a => a -> a -> a
- Partition -> Int
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum Partition
kappa))
s :: a
s = a -> Int -> a
go (Partition -> Array (Int, Int) (Maybe a) -> a
jck' Partition
nu Array (Int, Int) (Maybe a)
arr) (Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
1 Int
k)
go :: a -> Int -> a
go :: a -> Int -> a
go !a
ss Int
ii
| Int
ellNu Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
ii Bool -> Bool -> Bool
|| Int
u Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 =
a
ss
| Int
ellNu Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ii Bool -> Bool -> Bool
&& Int
u Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 Bool -> Bool -> Bool
|| Int
u Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
ii =
a -> Int -> a
go (a
ss a -> a -> a
forall a. C a => a -> a -> a
+ a
tt) (Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
+ Int
1)
| Bool
otherwise =
a -> Int -> a
go a
ss (Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
+ Int
1)
where
jj :: Int
jj = Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1
u :: Int
u = Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
jj
nu' :: Partition
nu' = (Int -> IndexedTraversal' Int Partition Int
forall (t :: * -> *) a.
Traversable t =>
Int -> IndexedTraversal' Int (t a) a
element Int
jj ((Int -> Identity Int) -> Partition -> Identity Partition)
-> Int -> Partition -> Partition
forall s t a b. ASetter s t a b -> b -> s -> t
.~ Int
u Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1) Partition
nu
gamma :: a
gamma = Partition -> Partition -> Int -> a -> a
forall a. C a => Partition -> Partition -> Int -> a -> a
_betaratio Partition
mu Partition
nu Int
ii a
alpha
tt :: a
tt = a
gamma a -> a -> a
forall a. C a => a -> a -> a
* a
y
where
y :: a
y
| Int
u Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
1 =
Int
-> Int -> Partition -> Partition -> Array (Int, Int) (Maybe a) -> a
jac Int
m Int
ii Partition
mu Partition
nu' Array (Int, Int) (Maybe a)
arr
| Partition
nu' Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
0 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 =
Int -> a
forall {a}. Integral a => a -> a
xmi Int
wMu
| Bool
otherwise =
Partition -> Array (Int, Int) (Maybe a) -> a
jck' Partition
nu' (Array (Int, Int) (Maybe a)
arr Array (Int, Int) (Maybe a)
-> [((Int, Int), Maybe a)] -> Array (Int, Int) (Maybe a)
forall i e. Ix i => Array i e -> [(i, e)] -> Array i e
// [((Int, Int)
_N_lambda_nu_m, a -> Maybe a
forall a. a -> Maybe a
Just a
ss)])
zonal'
:: [Rational]
-> Partition
-> Rational
zonal' :: [Rational] -> Partition -> Rational
zonal' = [Rational] -> Partition -> Rational
forall a. (Eq a, C a) => [a] -> Partition -> a
zonal
zonal :: (Eq a, AlgField.C a)
=> [a]
-> Partition
-> a
zonal :: forall a. (Eq a, C a) => [a] -> Partition -> a
zonal [a]
x Partition
lambda = [a] -> Partition -> a -> Char -> a
forall a. (Eq a, C a) => [a] -> Partition -> a -> Char -> a
jack [a]
x Partition
lambda (Integer -> a
forall a. C a => Integer -> a
fromInteger Integer
2) Char
'C'
schur'
:: [Rational]
-> Partition
-> Rational
schur' :: [Rational] -> Partition -> Rational
schur' = [Rational] -> Partition -> Rational
forall a. C a => [a] -> Partition -> a
schur
schur :: forall a. AlgRing.C a
=> [a]
-> Partition
-> a
schur :: forall a. C a => [a] -> Partition -> a
schur [] Partition
_ = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"schur: empty list of variables"
schur x :: [a]
x@(a
x0:[a]
_) Partition
lambda =
case Partition -> Bool
_isPartition Partition
lambda of
Bool
False -> [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"schur: invalid integer partition"
Bool
True -> Int -> Int -> Partition -> Array (Int, Int) (Maybe a) -> a
sch Int
n Int
1 Partition
lambda Array (Int, Int) (Maybe a)
forall {a}. Array (Int, Int) (Maybe a)
arr0
where
n :: Int
n = [a] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
x
nll :: Int
nll = Partition -> Partition -> Int
_N Partition
lambda Partition
lambda
arr0 :: Array (Int, Int) (Maybe a)
arr0 = ((Int, Int), (Int, Int)) -> [Maybe a] -> Array (Int, Int) (Maybe a)
forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray ((Int
1, Int
1), (Int
nll, Int
n)) (Int -> Maybe a -> [Maybe a]
forall a. Int -> a -> [a]
replicate (Int
nll Int -> Int -> Int
forall a. C a => a -> a -> a
* Int
n) Maybe a
forall a. Maybe a
Nothing)
sch ::
Int -> Int -> [Int] -> Array (Int,Int) (Maybe a) -> a
sch :: Int -> Int -> Partition -> Array (Int, Int) (Maybe a) -> a
sch Int
m Int
k Partition
nu Array (Int, Int) (Maybe a)
arr
| Partition -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null Partition
nu Bool -> Bool -> Bool
|| Int
nu0 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
|| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = a
forall a. C a => a
one
| Int
ellNu Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
m Bool -> Bool -> Bool
&& Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = a
forall a. C a => a
zero
| Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 = a
x0 a -> Integer -> a
forall a. C a => a -> Integer -> a
^ (Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
nu0)
| Maybe a -> Bool
forall a. Maybe a -> Bool
isJust Maybe a
maybe_a =
Maybe a -> a
forall a. HasCallStack => Maybe a -> a
fromJust Maybe a
maybe_a
| Bool
otherwise = a
s
where
nu0 :: Int
nu0 = Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
0
ellNu :: Int
ellNu = Partition -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Partition
nu
xm :: a
xm = [a]
x [a] -> Int -> a
forall a. HasCallStack => [a] -> Int -> a
!! (Int
m Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1)
_N_lambda_nu_m :: (Int, Int)
_N_lambda_nu_m = (Partition -> Partition -> Int
_N Partition
lambda Partition
nu, Int
m)
maybe_a :: Maybe a
maybe_a = Array (Int, Int) (Maybe a)
arr Array (Int, Int) (Maybe a) -> (Int, Int) -> Maybe a
forall i e. Ix i => Array i e -> i -> e
! (Int, Int)
_N_lambda_nu_m
sch' :: Partition -> Array (Int, Int) (Maybe a) -> a
sch' Partition
kappa Array (Int, Int) (Maybe a)
array = Int -> Int -> Partition -> Array (Int, Int) (Maybe a) -> a
sch (Int
mInt -> Int -> Int
forall a. C a => a -> a -> a
-Int
1) Int
1 Partition
kappa Array (Int, Int) (Maybe a)
array
s :: a
s = a -> Int -> a
go (Partition -> Array (Int, Int) (Maybe a) -> a
sch' Partition
nu Array (Int, Int) (Maybe a)
arr) Int
k
go :: a -> Int -> a
go :: a -> Int -> a
go !a
ss Int
ii
| Int
ellNu Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
ii Bool -> Bool -> Bool
|| Int
u Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 =
a
ss
| Int
ellNu Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ii Bool -> Bool -> Bool
&& Int
u Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 Bool -> Bool -> Bool
|| Int
u Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
ii =
a -> Int -> a
go (a
ss a -> a -> a
forall a. C a => a -> a -> a
+ a
tt) (Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
+ Int
1)
| Bool
otherwise =
a -> Int -> a
go a
ss (Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
+ Int
1)
where
jj :: Int
jj = Int
ii Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1
u :: Int
u = Partition
nu Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
jj
nu' :: Partition
nu' = (Int -> IndexedTraversal' Int Partition Int
forall (t :: * -> *) a.
Traversable t =>
Int -> IndexedTraversal' Int (t a) a
element Int
jj ((Int -> Identity Int) -> Partition -> Identity Partition)
-> Int -> Partition -> Partition
forall s t a b. ASetter s t a b -> b -> s -> t
.~ Int
u Int -> Int -> Int
forall a. C a => a -> a -> a
- Int
1) Partition
nu
tt :: a
tt
| Int
u Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
1 =
a
xm a -> a -> a
forall a. C a => a -> a -> a
* Int -> Int -> Partition -> Array (Int, Int) (Maybe a) -> a
sch Int
m Int
ii Partition
nu' Array (Int, Int) (Maybe a)
arr
| Partition
nu' Partition -> Int -> Int
forall a. HasCallStack => [a] -> Int -> a
!! Int
0 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 =
a
xm
| Bool
otherwise =
a
xm a -> a -> a
forall a. C a => a -> a -> a
* Partition -> Array (Int, Int) (Maybe a) -> a
sch' Partition
nu' (Array (Int, Int) (Maybe a)
arr Array (Int, Int) (Maybe a)
-> [((Int, Int), Maybe a)] -> Array (Int, Int) (Maybe a)
forall i e. Ix i => Array i e -> [(i, e)] -> Array i e
// [((Int, Int)
_N_lambda_nu_m, a -> Maybe a
forall a. a -> Maybe a
Just a
ss)])
skewSchur'
:: [Rational]
-> Partition
-> Partition
-> Rational
skewSchur' :: [Rational] -> Partition -> Partition -> Rational
skewSchur' = [Rational] -> Partition -> Partition -> Rational
forall a. (Eq a, C a) => [a] -> Partition -> Partition -> a
skewSchur
skewSchur :: forall a. (Eq a, AlgRing.C a)
=> [a]
-> Partition
-> Partition
-> a
skewSchur :: forall a. (Eq a, C a) => [a] -> Partition -> Partition -> a
skewSchur [a]
xs Partition
lambda Partition
mu =
if Partition -> Partition -> Bool
isSkewPartition Partition
lambda Partition
mu
then (a -> Partition -> Int -> a) -> a -> Map Partition Int -> a
forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
DM.foldlWithKey' a -> Partition -> Int -> a
f a
forall a. C a => a
zero Map Partition Int
lrCoefficients
else [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"skewSchur: invalid skew partition"
where
lrCoefficients :: Map Partition Int
lrCoefficients = Partition -> Partition -> Map Partition Int
skewSchurLRCoefficients Partition
lambda Partition
mu
f :: a -> Partition -> Int -> a
f :: a -> Partition -> Int -> a
f a
x Partition
nu Int
k = a
x a -> a -> a
forall a. C a => a -> a -> a
+ (Int -> a
forall a. (C a, Eq a) => Int -> a
_fromInt Int
k) a -> a -> a
forall a. C a => a -> a -> a
* ([a] -> Partition -> a
forall a. C a => [a] -> Partition -> a
schur [a]
xs Partition
nu)