jord-0.4.1.0: Geographical Position Calculations

Copyright(c) 2018 Cedric Liegeois
LicenseBSD3
MaintainerCedric Liegeois <ofmooseandmen@yahoo.fr>
Stabilityexperimental
Portabilityportable
Safe HaskellSafe
LanguageHaskell2010

Data.Geo.Jord.Transformation

Description

Transformations between coordinates systems both in spherical and ellipsoidal form.

All functions are implemented using the vector-based approached described in Gade, K. (2010). A Non-singular Horizontal Position Representation

See Earth Coordinates

Synopsis

Documentation

class ETransform a where Source #

Transformation between EcefPosition and angular or n-vector positions.

Minimal complete definition

toEcef, fromEcef

Methods

toEcef Source #

Arguments

:: a 
-> Earth 
-> EcefPosition

position and earth model to to EcefPosition.

fromEcef Source #

Arguments

:: EcefPosition 
-> Earth 
-> a

EcefPosition and earth model to position.

nvectorToLatLong :: NVector -> LatLong Source #

nvectorToLatLong v transforms NVector v to an equivalent LatLong.

See also toNVector.

latLongToNVector :: LatLong -> NVector Source #

latLongToNVector ll transforms LatLong ll to an equivalent NVector.

See also fromNVector.

ecefToNVector :: EcefPosition -> Earth -> AngularPosition NVector Source #

ecefToNVector p e transforms EcefPosition p to an equivalent NVector and geodetic height using earth model e.

See also fromEcef

nvectorToEcef :: AngularPosition NVector -> Earth -> EcefPosition Source #

nvectorToEcef (n, h) e transforms NVector n and geodetic height h to an equivalent EcefPosition using earth model e.

See also toEcef

geodeticHeight :: EcefPosition -> Earth -> Length Source #

geodeticHeight p e computes the geodetic height of EcefPosition p using earth model e.

The geodetic height (or ellipsoidal height) is not the mean sea level (MSL) height.