jord-2.0.0.0: Geographical Position Calculations
Copyright(c) 2020 Cedric Liegeois
LicenseBSD3
MaintainerCedric Liegeois <ofmooseandmen@yahoo.fr>
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Geo.Jord.Ellipsoid

Description

Types and functions for working with ellipsoids (including spheres).

see Data.Geo.Jord.Ellipsoids for supported ellipsoids.

Synopsis

Documentation

data Ellipsoid Source #

Parameters of an ellispoid describing the surface of a celestial body. An ellispoid is a circle if its equatorialRadius and polarRadius are equal (both its eccentricity and flattening are 0); it is used to represent a celestial body as a sphere.

Instances

Instances details
Eq Ellipsoid Source # 
Instance details

Defined in Data.Geo.Jord.Ellipsoid

Show Ellipsoid Source # 
Instance details

Defined in Data.Geo.Jord.Ellipsoid

equatorialRadius :: Ellipsoid -> Length Source #

equatorial radius or semi-major axis (a).

polarRadius :: Ellipsoid -> Length Source #

polar radius or semi-minor axis (b).

ellispoid :: Length -> Double -> Ellipsoid Source #

ellispoid eqr invf: ellipsoid with equatorial radius eqr and inverse flattening invf.

sphere :: Length -> Ellipsoid Source #

sphere r: ellipsoid with equatorial & polar radius radius r. The returned ellipsoid is a sphere.

toSphere :: Ellipsoid -> Ellipsoid Source #

toSphere e: sphere from mean radius of ellipsoid e.

isSphere :: Ellipsoid -> Bool Source #

isSphere e returns True if ellipsoid e is a sphere.

meanRadius :: Ellipsoid -> Length Source #

meanRadius e computes the mean radius of ellipsoid e.