lapack-0.2.2: Numerical Linear Algebra using LAPACK

Numeric.LAPACK.Orthogonal.Householder

Synopsis

# Documentation

data Householder vert horiz height width a Source

Instances

 (Show height, Show width, Show a, Storable a, C height, C width, C vert, C horiz) => Show (Householder vert horiz height width a) (C vert, C horiz, C height, C width, Floating a) => Format (Householder vert horiz height width a)

mapExtent :: (C vertA, C horizA) => (C vertB, C horizB) => Map vertA horizA vertB horizB height width -> Householder vertA horizA height width a -> Householder vertB horizB height width aSource

fromMatrix :: (C vert, C horiz, C height, C width, Floating a) => Full vert horiz height width a -> Householder vert horiz height width aSource

determinant :: (C sh, Floating a) => Square sh a -> aSource

determinantAbsolute :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> RealOf aSource

leastSquares :: (C vert, C horiz, C height, Eq height, C width, Eq width, C nrhs, Floating a) => Householder horiz Small height width a -> Full vert horiz height nrhs a -> Full vert horiz width nrhs aSource

minimumNorm :: (C vert, C horiz, C height, Eq height, C width, Eq width, C nrhs, Floating a) => Householder vert Small width height a -> Full vert horiz height nrhs a -> Full vert horiz width nrhs aSource

```HH.minimumNorm (HH.fromMatrix a) b
==
```

Constructors

 NonTransposed Transposed

Constructors

 NonConjugated Conjugated

Instances

 Bounded Conjugation Enum Conjugation Eq Conjugation Show Conjugation

data Inversion Source

Constructors

 NonInverted Inverted

Instances

 Bounded Inversion Enum Inversion Eq Inversion Show Inversion

extractQ :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> Square height aSource

extractR :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> Full vert horiz height width aSource

multiplyQ :: (C vertA, C horizA, C widthA, C vertB, C horizB, C widthB, C height, Eq height, Floating a) => Inversion -> Householder vertA horizA height widthA a -> Full vertB horizB height widthB a -> Full vertB horizB height widthB aSource

tallExtractQ :: (C vert, C height, C width, Floating a) => Householder vert Small height width a -> Full vert Small height width aSource

tallExtractR :: (C vert, C height, C width, Floating a) => Householder vert Small height width a -> Upper width aSource

tallMultiplyQ :: (C vert, C horiz, C height, Eq height, C width, C fuse, Eq fuse, Floating a) => Householder vert Small height fuse a -> Full vert horiz fuse width a -> Full vert horiz height width aSource

tallMultiplyQAdjoint :: (C vert, C horiz, C height, C width, C fuse, Eq fuse, Floating a) => Householder horiz Small fuse height a -> Full vert horiz fuse width a -> Full vert horiz height width aSource

tallMultiplyR :: (C vertA, C vert, C horiz, C height, Eq height, C heightA, C widthB, Floating a) => Transposition -> Householder vertA Small heightA height a -> Full vert horiz height widthB a -> Full vert horiz height widthB aSource

tallSolveR :: (C vertA, C vert, C horiz, C height, C width, Eq width, C nrhs, Floating a) => Transposition -> Conjugation -> Householder vertA Small height width a -> Full vert horiz width nrhs a -> Full vert horiz width nrhs aSource