| Portability | Rank2Types |
|---|---|
| Stability | provisional |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Safe Haskell | Trustworthy |
Control.Lens.Iso
Contents
Description
- type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t)
- type Iso' s a = Iso s s a a
- type AnIso s t a b = Exchange a b a (Mutator b) -> Exchange a b s (Mutator t)
- type AnIso' s a = AnIso s s a a
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- from :: AnIso s t a b -> Iso b a t s
- cloneIso :: AnIso s t a b -> Iso s t a b
- au :: AnIso s t a b -> ((s -> a) -> e -> b) -> e -> t
- auf :: AnIso s t a b -> ((r -> a) -> e -> b) -> (r -> s) -> e -> t
- under :: AnIso s t a b -> (t -> s) -> b -> a
- mapping :: Functor f => AnIso s t a b -> Iso (f s) (f t) (f a) (f b)
- simple :: Iso' a a
- non :: Eq a => a -> Iso' (Maybe a) a
- anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
- enum :: Enum a => Iso' Int a
- curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
- uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
- flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
- class Bifunctor p => Swapped p where
- class Strict s a | s -> a, a -> s where
- magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c)
- imagma :: Overloading (Indexed i) (->) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)
- data Magma i t b a
- class Profunctor p where
Isomorphism Lenses
type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t)Source
type AnIso s t a b = Exchange a b a (Mutator b) -> Exchange a b s (Mutator t)Source
When you see this as an argument to a function, it expects an Iso.
Isomorphism Construction
Consuming Isomorphisms
cloneIso :: AnIso s t a b -> Iso s t a bSource
Convert from AnIso back to any Iso.
This is useful when you need to store an isomorphism as a data type inside a container and later reconstitute it as an overloaded function.
See cloneLens or cloneTraversal for more information on why you might want to do this.
Working with isomorphisms
auf :: AnIso s t a b -> ((r -> a) -> e -> b) -> (r -> s) -> e -> tSource
Based on ala' from Conor McBride's work on Epigram.
This version is generalized to accept any Iso, not just a newtype.
For a version you pass the name of the newtype constructor to, see alaf.
Mnemonically, the German auf plays a similar role to à la, and the combinator
is au with an extra function argument.
>>>auf (wrapping Sum) (foldMapOf both) Prelude.length ("hello","world")10
Common Isomorphisms
non :: Eq a => a -> Iso' (Maybe a) aSource
If v is an element of a type a, and a' is a sans the element v, then is an isomorphism from
non v to Maybe a'a.
Keep in mind this is only a real isomorphism if you treat the domain as being .
Maybe (a sans v)
This is practically quite useful when you want to have a Map where all the entries should have non-zero values.
>>>Map.fromList [("hello",1)] & at "hello" . non 0 +~ 2fromList [("hello",3)]
>>>Map.fromList [("hello",1)] & at "hello" . non 0 -~ 1fromList []
>>>Map.fromList [("hello",1)] ^. at "hello" . non 01
>>>Map.fromList [] ^. at "hello" . non 00
This combinator is also particularly useful when working with nested maps.
e.g. When you want to create the nested Map when it is missing:
>>>Map.empty & at "hello" . non Map.empty . at "world" ?~ "!!!"fromList [("hello",fromList [("world","!!!")])]
and when have deleting the last entry from the nested Map mean that we
should delete its entry from the surrounding one:
>>>fromList [("hello",fromList [("world","!!!")])] & at "hello" . non Map.empty . at "world" .~ NothingfromList []
anon :: a -> (a -> Bool) -> Iso' (Maybe a) aSource
generalizes anon a p to take any value and a predicate.
non a
This function assumes that p a holds and generates an isomorphism between True and Maybe (a | not (p a))a.
>>>Map.empty & at "hello" . anon Map.empty Map.null . at "world" ?~ "!!!"fromList [("hello",fromList [("world","!!!")])]
>>>fromList [("hello",fromList [("world","!!!")])] & at "hello" . anon Map.empty Map.null . at "world" .~ NothingfromList []
enum :: Enum a => Iso' Int aSource
This isomorphism can be used to convert to or from an instance of Enum.
>>>LT^.from enum0
>>>97^.enum :: Char'a'
Note: this is only an isomorphism from the numeric range actually used
and it is a bit of a pleasant fiction, since there are questionable
Enum instances for Double, and Float that exist solely for
[1.0 .. 4.0] sugar and the instances for those and Integer don't
cover all values in their range.
flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')Source
The isomorphism for flipping a function.
>>>((,)^.flipped) 1 2(2,1)
class Strict s a | s -> a, a -> s whereSource
Ad hoc conversion between "strict" and "lazy" versions of a structure,
such as Text or ByteString.
Instances
Uncommon Isomorphisms
imagma :: Overloading (Indexed i) (->) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)Source
This isomorphism can be used to inspect an IndexedTraversal to see how it associates
the structure and it can also be used to bake the IndexedTraversal into a Magma so
that you can traverse over it multiple times with access to the original indices.
This provides a way to peek at the internal structure of a
Traversal or IndexedTraversal
Instances
| (FunctorWithIndex i (Magma i t b), FoldableWithIndex i (Magma i t b), Traversable (Magma i t b)) => TraversableWithIndex i (Magma i t b) | |
| Foldable (Magma i t b) => FoldableWithIndex i (Magma i t b) | |
| Functor (Magma i t b) => FunctorWithIndex i (Magma i t b) | |
| Functor (Magma i t b) | |
| Foldable (Magma i t b) | |
| (Functor (Magma i t b), Foldable (Magma i t b)) => Traversable (Magma i t b) | |
| (Show i, Show a) => Show (Magma i t b a) |
Profunctors
class Profunctor p where
Formally, the class Profunctor represents a profunctor
from Hask -> Hask.
Intuitively it is a bifunctor where the first argument is contravariant and the second argument is covariant.
You can define a Profunctor by either defining dimap or by defining both
lmap and rmap.
If you supply dimap, you should ensure that:
dimapidid≡id
If you supply lmap and rmap, ensure:
lmapid≡idrmapid≡id
If you supply both, you should also ensure:
dimapf g ≡lmapf.rmapg
These ensure by parametricity:
dimap(f.g) (h.i) ≡dimapg h.dimapf ilmap(f.g) ≡lmapg.lmapfrmap(f.g) ≡rmapf.rmapg
Methods
dimap :: (a -> b) -> (c -> d) -> p b c -> p a d
lmap :: (a -> b) -> p b c -> p a c
rmap :: (b -> c) -> p a b -> p a c
Instances
| Profunctor (->) | |
| Profunctor Reviewed | |
| Monad m => Profunctor (Kleisli m) | |
| Functor w => Profunctor (Cokleisli w) | |
| Functor f => Profunctor (DownStar f) | |
| Functor f => Profunctor (UpStar f) | |
| Arrow p => Profunctor (WrappedArrow p) | |
| Profunctor (Tagged *) | |
| Profunctor (Indexed i) | |
| Profunctor (Market a b) | |
| Profunctor (Exchange a b) |