| Copyright | (C) 2012-2016 Edward Kmett, (C) 2006-2012 Neil Mitchell |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Stability | experimental |
| Portability | Rank2Types |
| Safe Haskell | Trustworthy |
| Language | Haskell98 |
Data.Data.Lens
Description
- template :: forall s a. (Data s, Typeable a) => Traversal' s a
- tinplate :: (Data s, Typeable a) => Traversal' s a
- uniplate :: Data a => Traversal' a a
- biplate :: forall s a. (Data s, Typeable a) => Traversal' s a
- upon :: forall p f s a. (Indexable [Int] p, Applicative f, Data s, Data a) => (s -> a) -> p a (f a) -> s -> f s
- upon' :: forall s a. (Data s, Data a) => (s -> a) -> IndexedLens' [Int] s a
- onceUpon :: forall s a. (Data s, Typeable a) => (s -> a) -> IndexedTraversal' Int s a
- onceUpon' :: forall s a. (Data s, Typeable a) => (s -> a) -> IndexedLens' Int s a
- gtraverse :: (Applicative f, Data a) => (forall d. Data d => d -> f d) -> a -> f a
Generic Traversal
uniplate :: Data a => Traversal' a a Source #
Field Accessor Traversal
upon :: forall p f s a. (Indexable [Int] p, Applicative f, Data s, Data a) => (s -> a) -> p a (f a) -> s -> f s Source #
This automatically constructs a Traversal' from an function.
>>>(2,4) & upon fst *~ 5(10,4)
There are however, caveats on how this function can be used!
First, the user supplied function must access only one field of the specified type. That is to say the target
must be a single element that would be visited by holesOnOf template uniplate
Note: this even permits a number of functions to be used directly.
>>>[1,2,3,4] & upon head .~ 0[0,2,3,4]
>>>[1,2,3,4] & upon last .~ 5[1,2,3,5]
>>>[1,2,3,4] ^? upon tailJust [2,3,4]
>>>"" ^? upon tailNothing
Accessing parents on the way down to children is okay:
>>>[1,2,3,4] & upon (tail.tail) .~ [10,20][1,2,10,20]
Second, the structure must not contain strict or unboxed fields of the same type that will be visited by Data
upon:: (Datas,Dataa) => (s -> a) ->IndexedTraversal'[Int] s a
upon' :: forall s a. (Data s, Data a) => (s -> a) -> IndexedLens' [Int] s a Source #
The design of onceUpon' doesn't allow it to search inside of values of type a for other values of type a.
upon' provides this additional recursion.
Like onceUpon', upon' trusts the user supplied function more than upon using it directly
as the accessor. This enables reading from the resulting Lens to be considerably faster at the risk of
generating an illegal lens.
>>>upon' (tail.tail) .~ [10,20] $ [1,2,3,4][1,2,10,20]
onceUpon :: forall s a. (Data s, Typeable a) => (s -> a) -> IndexedTraversal' Int s a Source #
This automatically constructs a Traversal' from a field accessor.
The index of the Traversal can be used as an offset into or into the list
returned by elementOf (indexing template).holesOf template
The design of onceUpon doesn't allow it to search inside of values of type a for other values of type a.
upon provides this additional recursion, but at the expense of performance.
>>>onceUpon (tail.tail) .~ [10,20] $ [1,2,3,4] -- BAD[1,10,20]
>>>upon (tail.tail) .~ [10,20] $ [1,2,3,4] -- GOOD[1,2,10,20]
When in doubt, use upon instead.
onceUpon' :: forall s a. (Data s, Typeable a) => (s -> a) -> IndexedLens' Int s a Source #
This more trusting version of upon uses your function directly as the getter for a Lens.
This means that reading from upon' is considerably faster than upon.
However, you pay for faster access in two ways:
- When passed an illegal field accessor,
upon'will give you aLensthat quietly violates the laws, unlikeupon, which will give you a legalTraversalthat avoids modifying the target. - Modifying with the lens is slightly slower, since it has to go back and calculate the index after the fact.
When given a legal field accessor, the index of the Lens can be used as an offset into
or into the list returned by elementOf (indexed template).holesOf template
When in doubt, use upon' instead.